Search for $C P T$ and Lorentz Violation in $B^{0}-\bar{B}^{0}$ Oscillations with Dilepton Events

B. Aubert, ${ }^{1}$ M. Bona, ${ }^{1}$ D. Boutigny, ${ }^{1}$ Y. Karyotakis, ${ }^{1}$ J. P. Lees, ${ }^{1}$ V. Poireau, ${ }^{1}$ X. Prudent, ${ }^{1}$ V. Tisserand, ${ }^{1}$ A. Zghiche, ${ }^{1}$ J. Garra Tico, ${ }^{2}$ E. Grauges, ${ }^{2}$ L. Lopez, ${ }^{3}$ A. Palano, ${ }^{3}$ M. Pappagallo, ${ }^{3}$ G. Eigen, ${ }^{4}$ B. Stugu, ${ }^{4}$ L. Sun, ${ }^{4}$ G. S. Abrams, ${ }^{5}$ M. Battaglia, ${ }^{5}$ D. N. Brown, ${ }^{5}$ J. Button-Shafer, ${ }^{5}$ R. N. Cahn, ${ }^{5}$ Y. Groysman, ${ }^{5}$ R. G. Jacobsen, ${ }^{5}$ J. A. Kadyk, ${ }^{5}$ L. T. Kerth,,${ }^{5}$ Yu. G. Kolomensky, ${ }^{5}$ G. Kukartsev, ${ }^{5}$ D. Lopes Pegna, ${ }^{5}$ G. Lynch, ${ }^{5}$ L. M. Mir, ${ }^{5}$ T. J. Orimoto, ${ }^{5}$ I. L. Osipenkov, ${ }^{5}$ M. T. Ronan, ${ }^{5,}{ }^{5}$ K. Tackmann,,${ }^{5}$ T. Tanabe,,${ }^{5}$ W. A. Wenzel, ${ }^{5}$ P. del Amo Sanchez, ${ }^{6}$ C. M. Hawkes, ${ }^{6}$ A. T. Watson, ${ }^{6}$ H. Koch, ${ }^{7}$ T. Schroeder, ${ }^{7}$ D. Walker, ${ }^{8}$ D. J. Asgeirsson, ${ }^{9}$ T. Cuhadar-Donszelmann, ${ }^{9}$ B. G. Fulsom, ${ }^{9}$ C. Hearty, ${ }^{9}$ T. S. Mattison, ${ }^{9}$ J. A. McKenna, ${ }^{9}$ M. Barrett, ${ }^{10}$ A. Khan, ${ }^{10}$ M. Saleem, ${ }^{10}$ L. Teodorescu, ${ }^{10}$ V. E. Blinov, ${ }^{11}$ A. D. Bukin, ${ }^{11}$ V. P. Druzhinin, ${ }^{11}$ V. B. Golubev, ${ }^{11}$ A. P. Onuchin, ${ }^{11}$ S. I. Serednyakov, ${ }^{11}$ Yu. I. Skovpen, ${ }^{11}$ E. P. Solodov, ${ }^{11}$ K. Yu. Todyshev, ${ }^{11}$ M. Bondioli, ${ }^{12}$ S. Curry, ${ }^{12}$ I. Eschrich, ${ }^{12}$ D. Kirkby, ${ }^{12}$ A. J. Lankford, ${ }^{12}$ P. Lund, ${ }^{12}$ M. Mandelkern, ${ }^{12}$ E. C. Martin, ${ }^{12}$ D. P. Stoker, ${ }^{12}$ S. Abachi, ${ }^{13}$ C. Buchanan, ${ }^{13}$ J. W. Gary, ${ }^{14}$ F. Liu, ${ }^{14}$ O. Long, ${ }^{14}$ B. C. Shen, ${ }^{14,},{ }^{14}$ G. M. Vitug,,${ }^{14}$ L. Zhang, ${ }^{14}$ H. P. Paar, ${ }^{15}$ S. Rahatlou, ${ }^{15}$ V. Sharma, ${ }^{15}$ J. W. Berryhill, ${ }^{16}$ C. Campagnari, ${ }^{16}$ A. Cunha, ${ }^{16}$ B. Dahmes, ${ }^{16}$ T. M. Hong,,16 D. Kovalskyi, ${ }^{16}$ J. D. Richman, ${ }^{16}$ T. W. Beck,,${ }^{17}$ A. M. Eisner, ${ }^{17}$ C. J. Flacco,,${ }^{17}$ C. A. Heusch, ${ }^{17}$ J. Kroseberg, ${ }^{17}$ W. S. Lockman, ${ }^{17}$ T. Schalk, ${ }^{17}$ B. A. Schumm, ${ }^{17}$ A. Seiden, ${ }^{17}$ M. G. Wilson, ${ }^{17}$ L. O. Winstrom,,17 E. Chen,,18 C. H. Cheng, ${ }^{18}$ F. Fang, ${ }^{18}$ D. G. Hitlin, ${ }^{18}$ I. Narsky, ${ }^{18}$ T. Piatenko, ${ }^{18}$ F. C. Porter, ${ }^{18}$ R. Andreassen, ${ }^{19}$ G. Mancinelli, ${ }^{19}$ B. T. Meadows, ${ }^{19}$ K. Mishra, ${ }^{19}$ M. D. Sokoloff, ${ }^{19}$ F. Blanc, ${ }^{20}$ P. C. Bloom, ${ }^{20}$ S. Chen,,20 W. T. Ford, ${ }^{20}$ J. F. Hirschauer, ${ }^{20}$ A. Kreisel, ${ }^{20}$ M. Nagel, ${ }^{20}$ U. Nauenberg, ${ }^{20}$ A. Olivas, ${ }^{20}$ J. G. Smith, ${ }^{20}$ K. A. Ulmer, ${ }^{20}$ S. R. Wagner, ${ }^{20}$ J. Zhang,,${ }^{20}$ A. M. Gabareen, ${ }^{21}$ A. Soffer,,${ }^{21,(母)}$ W. H. Toki, ${ }^{21}$ R. J. Wilson, ${ }^{21}$ F. Winklmeier, ${ }^{21}$ D. D. Altenburg, ${ }^{22}$ E. Feltresi, ${ }^{22}$ A. Hauke, ${ }^{22}$ H. Jasper, ${ }^{22}$ J. Merkel, ${ }^{22}$ A. Petzold, ${ }^{22}$ B. Spaan, ${ }^{22}$ K. Wacker, ${ }^{22}$ V. Klose, ${ }^{23}$ M. J. Kobel, ${ }^{23}$ H. M. Lacker, ${ }^{23}$ W. F. Mader, ${ }^{23}$ R. Nogowski, ${ }^{23}$ J. Schubert, ${ }^{23}$ K. R. Schubert, ${ }^{23}$ R. Schwierz, ${ }^{23}$ J. E. Sundermann, ${ }^{23}$ A. Volk, ${ }^{23}$ D. Bernard, ${ }^{24}$ G. R. Bonneaud, ${ }^{24}$ E. Latour, ${ }^{24}$ V. Lombardo, ${ }^{24}$ Ch. Thiebaux, ${ }^{24}$ M. Verderi, ${ }^{24}$ P. J. Clark, ${ }^{25}$ W. Gradl, ${ }^{25}$ F. Muheim, ${ }^{25}$ S. Playfer, ${ }^{25}$ A. I. Robertson, ${ }^{25}$ J. E. Watson, ${ }^{25}$ Y. Xie, ${ }^{25}$ M. Andreotti, ${ }^{26}$ D. Bettoni, ${ }^{26}$ C. Bozzi, ${ }^{26}$ R. Calabrese, ${ }^{26}$ A. Cecchi, ${ }^{26}$ G. Cibinetto, ${ }^{26}$ P. Franchini, ${ }^{26}$ E. Luppi, ${ }^{26}$ M. Negrini, ${ }^{26}$ A. Petrella, ${ }^{26}$ L. Piemontese, ${ }^{26}$ E. Prencipe, ${ }^{26}$ V. Santoro, ${ }^{26}$ F. Anulli, ${ }^{27}$ R. Baldini-Ferroli, ${ }^{27}$ A. Calcaterra, ${ }^{27}$ R. de Sangro, ${ }^{27}$ G. Finocchiaro, ${ }^{27}$ S. Pacetti, ${ }^{27}$ P. Patteri, ${ }^{27}$ I. M. Peruzzi, ${ }^{27},{ }^{-\mid}$M. Piccolo, ${ }^{27}$ M. Rama, ${ }^{27}$ A. Zallo, ${ }^{27}$ A. Buzzo, ${ }^{28}$ R. Contri, ${ }^{28}$ M. Lo Vetere, ${ }^{28}$ M. M. Macri, ${ }^{28}$ M. R. Monge, ${ }^{28}$ S. Passaggio, ${ }^{28}$ C. Patrignani, ${ }^{28}$ E. Robutti, ${ }^{28}$ A. Santroni, ${ }^{28}$ S. Tosi, ${ }^{28}$ K. S. Chaisanguanthum, ${ }^{29}$ M. Morii, ${ }^{29}$ J. Wu, ${ }^{29}$ R. S. Dubitzky, ${ }^{30}$ J. Marks, ${ }^{30}$ S. Schenk, ${ }^{30}$ U. Uwer, ${ }^{30}$ D. J. Bard, ${ }^{31}$ P. D. Dauncey, ${ }^{31}$ R. L. Flack, ${ }^{31}$ J. A. Nash, ${ }^{31}$ W. Panduro Vazquez,,${ }^{31}$ M. Tibbetts, ${ }^{31}$ P. K. Behera, ${ }^{32}$ X. Chai, ${ }^{32}$ M. J. Charles, ${ }^{32}$ U. Mallik, ${ }^{32}$ J. Cochran, ${ }^{33}$ H. B. Crawley, ${ }^{33}$ L. Dong, ${ }^{33}$ V. Eyges, ${ }^{33}$ W. T. Meyer, ${ }^{33}$ S. Prell, ${ }^{33}$ E. I. Rosenberg, ${ }^{33}$ A. E. Rubin, ${ }^{33}$ Y. Y. Gao, ${ }^{34}$ A. V. Gritsan, ${ }^{34}$ Z. J. Guo, ${ }^{34}$ C. K. Lae, ${ }^{34}$ A. G. Denig, ${ }^{35}$ M. Fritsch, ${ }^{35}$ G. Schott,,${ }^{35}$ N. Arnaud, ${ }^{36}$ J. Béquilleux, ${ }^{36}$ A. D’Orazio, ${ }^{36}$ M. Davier, ${ }^{36}$ G. Grosdidier, ${ }^{36}$ A. Höcker, ${ }^{36}$ V. Lepeltier, ${ }^{36}$ F. Le Diberder, ${ }^{36}$ A. M. Lutz, ${ }^{36}$ S. Pruvot, ${ }^{36}$ S. Rodier, ${ }^{36}$ P. Roudeau, ${ }^{36}$ M. H. Schune, ${ }^{36}$ J. Serrano, ${ }^{36}$ V. Sordini, ${ }^{36}$ A. Stocchi, ${ }^{36}$ L. Wang, ${ }^{36}$ W. F. Wang, ${ }^{36}$ G. Wormser, ${ }^{36}$ D. J. Lange,,${ }^{37}$ D. M. Wright, ${ }^{37}$ I. Bingham, ${ }^{38}$ J. P. Burke, ${ }^{38}$ C. A. Chavez,,${ }^{38}$ J. R. Fry, ${ }^{38}$ E. Gabathuler, ${ }^{38}$ R. Gamet, ${ }^{38}$ D. E. Hutchcroft, ${ }^{38}$ D. J. Payne, ${ }^{38}$ K. C. Schofield, ${ }^{38}$ C. Touramanis,,${ }^{38}$ A. J. Bevan, ${ }^{39}$ K. A. George, ${ }^{39}$ F. Di Lodovico, ${ }^{39}$ R. Sacco,,${ }^{39}$ G. Cowan, ${ }^{40}$ H. U. Flaecher, ${ }^{40}$ D. A. Hopkins, ${ }^{40}$ S. Paramesvaran, ${ }^{40}$ F. Salvatore, ${ }^{40}$ A. C. Wren, ${ }^{40}$ D. N. Brown, ${ }^{41}$ C. L. Davis, ${ }^{41}$ J. Allison, ${ }^{42}$ N. R. Barlow, ${ }^{42}$ R. J. Barlow, ${ }^{42}$ Y. M. Chia, ${ }^{42}$ C. L. Edgar, ${ }^{42}$ G. D. Lafferty, ${ }^{42}$ T. J. West, ${ }^{42}$ J. I. Yi, ${ }^{42}$ J. Anderson, ${ }^{43}$ C. Chen, ${ }^{43}$ A. Jawahery, ${ }^{43}$ D. A. Roberts, ${ }^{43}$ G. Simi, ${ }^{43}$ J. M. Tuggle, ${ }^{43}$ C. Dallapiccola, ${ }^{44}$ S. S. Hertzbach, ${ }^{44}$ X. Li, ${ }^{44}$ T. B. Moore, ${ }^{44}$ E. Salvati, ${ }^{44}$ S. Saremi, ${ }^{44}$ R. Cowan, ${ }^{45}$ D. Dujmic,,${ }^{45}$ P. H. Fisher, ${ }^{45}$ K. Koeneke, ${ }^{45}$ G. Sciolla, ${ }^{45}$ M. Spitznagel, ${ }^{45}$ F. Taylor, ${ }^{45}$ R. K. Yamamoto, ${ }^{45}$ M. Zhao, ${ }^{45}$ Y. Zheng, ${ }^{45}$ S. E. Mclachlin, ${ }^{46, *}$ P. M. Patel,,${ }^{46}$ S. H. Robertson, ${ }^{46}$ A. Lazzaro, ${ }^{47}$ F. Palombo, ${ }^{47}$ J. M. Bauer, ${ }^{48}$ L. Cremaldi, ${ }^{48}$ V. Eschenburg, ${ }^{48}$ R. Godang, ${ }^{48}$ R. Kroeger, ${ }^{48}$ D. A. Sanders, ${ }^{48}$ D. J. Summers, ${ }^{48}$ H. W. Zhao, ${ }^{48}$ S. Brunet, ${ }^{49}$ D. Côté, ${ }^{49}$ M. Simard, ${ }^{49}$ P. Taras, ${ }^{49}$ F. B. Viaud, ${ }^{49}$ H. Nicholson,,${ }^{50}$ G. De Nardo, ${ }^{51}$ F. Fabozzi,, , ${ }^{51}$, L. Lista, ${ }^{51}$ D. Monorchio, ${ }^{51}$ C. Sciacca,,${ }^{51}$ M. A. Baak, ${ }^{52}$ G. Raven, ${ }^{52}$ H. L. Snoek,,${ }^{52}$ C. P. Jessop, ${ }^{53}$ K. J. Knoepfel, ${ }^{53}$ J. M. LoSecco, ${ }^{53}$ G. Benelli, ${ }^{54}$ L. A. Corwin, ${ }^{54}$ K. Honscheid, ${ }^{54}$
H. Kagan, ${ }^{54}$ R. Kass, ${ }^{54}$ J. P. Morris, ${ }^{54}$ A. M. Rahimi, ${ }^{54}$ J. J. Regensburger, ${ }^{54}$ S. J. Sekula, ${ }^{54}$ Q. K. Wong, ${ }^{54}$ N. L. Blount, ${ }^{55}$ J. Brau, ${ }^{55}$ R. Frey, ${ }^{55}$ O. Igonkina, ${ }^{55}$ J. A. Kolb,,${ }^{55}$ M. Lu,,${ }^{55}$ R. Rahmat, ${ }^{55}$ N. B. Sinev, ${ }^{55}$ D. Strom, ${ }^{55}$ J. Strube, ${ }^{55}$ E. Torrence, ${ }^{55}$ N. Gagliardi, ${ }^{56}$ A. Gaz, ${ }^{56}$ M. Margoni, ${ }^{56}$ M. Morandin, ${ }^{56}$ A. Pompili, ${ }^{56}$ M. Posocco, ${ }^{56}$ M. Rotondo, ${ }^{56}$ F. Simonetto, ${ }^{56}$ R. Stroili, ${ }^{56}$ C. Voci, ${ }^{56}$ E. Ben-Haim, ${ }^{57}$ H. Briand, ${ }^{57}$ G. Calderini, ${ }^{57}$ J. Chauveau, ${ }^{57}$ P. David, ${ }^{57}$ L. Del Buono, ${ }^{57}$ Ch. de la Vaissière, ${ }^{57}$ O. Hamon, ${ }^{57}$ Ph. Leruste, ${ }^{57}$ J. Malclès, ${ }^{57}$ J. Ocariz, ${ }^{57}$ A. Perez, ${ }^{57}$ J. Prendki, ${ }^{57}$ L. Gladney, ${ }^{58}$ M. Biasini, ${ }^{59}$ R. Covarelli, ${ }^{59}$ E. Manoni, ${ }^{59}$ C. Angelini, ${ }^{60}$ G. Batignani, ${ }^{60}$ S. Bettarini, ${ }^{60}$ M. Carpinelli, ${ }^{60,}$ R. Cenci, ${ }^{60}$ A. Cervelli, ${ }^{60}$ F. Forti, ${ }^{60}$ M. A. Giorgi, ${ }^{60}$ A. Lusiani, ${ }^{60}$ G. Marchiori, ${ }^{60}$ M. A. Mazur, ${ }^{60}$ M. Morganti,,60 N. Neri, ${ }^{60}$ E. Paoloni, ${ }^{60}$ G. Rizzo, ${ }^{60}$ J. J. Walsh, ${ }^{60}$ J. Biesiada, ${ }^{61}$ P. Elmer, ${ }^{61}$ Y. P. Lau, ${ }^{61}$ C. Lu, ${ }^{61}$ J. Olsen, ${ }^{61}$ A. J. S. Smith, ${ }^{61}$ A. V. Telnov, ${ }^{61}$ E. Baracchini, ${ }^{62}$ F. Bellini, ${ }^{62}$ G. Cavoto, ${ }^{62}$ D. del Re, ${ }^{62}$ E. Di Marco, ${ }^{62}$ R. Faccini, ${ }^{62}$ F. Ferrarotto, ${ }^{62}$ F. Ferroni, ${ }^{62}$ M. Gaspero, ${ }^{62}$ P. D. Jackson, ${ }^{62}$ M. A. Mazzoni, ${ }^{62}$ S. Morganti,,62 G. Piredda, ${ }^{62}$ F. Polci,,${ }^{62}$ F. Renga, ${ }^{62}$ C. Voena, ${ }^{62}$ M. Ebert, ${ }^{63}$ T. Hartmann, ${ }^{63}$ H. Schröder, ${ }^{63}$ R. Waldi, ${ }^{63}$ T. Adye, ${ }^{64}$ G. Castelli, ${ }^{64}$ B. Franek, ${ }^{64}$ E. O. Olaiya, ${ }^{64}$ W. Roethel, ${ }^{64}$ F. F. Wilson, ${ }^{64}$ S. Emery, ${ }^{65}$ M. Escalier, ${ }^{65}$ A. Gaidot, ${ }^{65}$ S. F. Ganzhur, ${ }^{65}$ G. Hamel de Monchenault, ${ }^{65}$ W. Kozanecki, ${ }^{65}$ G. Vasseur, ${ }^{65}$ Ch. Yèche, ${ }^{65}$ M. Zito, ${ }^{65}$ X. R. Chen, ${ }^{66}$ H. Liu, ${ }^{66}$ W. Park, ${ }^{66}$ M. V. Purohit, ${ }^{66}$ R. M. White, ${ }^{66}$ J. R. Wilson, ${ }^{66}$ M. T. Allen, ${ }^{67}$ D. Aston, ${ }^{67}$ R. Bartoldus, ${ }^{67}$ P. Bechtle, ${ }^{67}$ R. Claus, ${ }^{67}$ J. P. Coleman, ${ }^{67}$ M. R. Convery, ${ }^{67}$ J. C. Dingfelder, ${ }^{67}$ J. Dorfan, ${ }^{67}$ G. P. Dubois-Felsmann, ${ }^{67}$ W. Dunwoodie, ${ }^{67}$ R. C. Field, ${ }^{67}$ T. Glanzman, ${ }^{67}$ S. J. Gowdy, ${ }^{67}$ M. T. Graham, ${ }^{67}$ P. Grenier, ${ }^{67}$ C. Hast,,${ }^{67}$ W. R. Innes, ${ }^{67}$ J. Kaminski, ${ }^{67}$ M. H. Kelsey, ${ }^{67}$ H. Kim, ${ }^{67}$ P. Kim, ${ }^{67}$ M. L. Kocian, ${ }^{67}$ D. W. G. S. Leith, ${ }^{67}$ S. Li, ${ }^{67}$ S. Luitz, ${ }^{67}$ V. Luth, ${ }^{67}$ H. L. Lynch, ${ }^{67}$ D. B. MacFarlane, ${ }^{67}$ H. Marsiske, ${ }^{67}$ R. Messner, ${ }^{67}$ D. R. Muller, ${ }^{67}$ S. Nelson, ${ }^{67}$ C. P. O'Grady, ${ }^{67}$ I. Ofte,,${ }^{67}$ A. Perazzo, ${ }^{67}$ M. Perl, ${ }^{67}$ T. Pulliam, ${ }^{67}$ B. N. Ratcliff, ${ }^{67}$ A. Roodman, ${ }^{67}$ A. A. Salnikov, ${ }^{67}$ R. H. Schindler, ${ }^{67}$ J. Schwiening, ${ }^{67}$ A. Snyder, ${ }^{67}$ D. Su, ${ }^{67}$ M. K. Sullivan, ${ }^{67}$ K. Suzuki, ${ }^{67}$ S. K. Swain, ${ }^{67}$ J. M. Thompson, ${ }^{67}$ J. Va'vra, ${ }^{67}$ A. P. Wagner, ${ }^{67}$ M. Weaver, ${ }^{67}$ W. J. Wisniewski, ${ }^{67}$ M. Wittgen, ${ }^{67}$ D. H. Wright, ${ }^{67}$ A. K. Yarritu, ${ }^{67}$ K. Yi, ${ }^{67}$ C. C. Young, ${ }^{67}$ V. Ziegler, ${ }^{67}$ P. R. Burchat, ${ }^{68}$ A. J. Edwards, ${ }^{68}$ S. A. Majewski, ${ }^{68}$ T. S. Miyashita, ${ }^{68}$ B. A. Petersen,,68 L. Wilden, ${ }^{68}$ S. Ahmed, ${ }^{69}$ M. S. Alam, ${ }^{69}$ R. Bula, ${ }^{69}$ J. A. Ernst, ${ }^{69}$ B. Pan, ${ }^{69}$ M. A. Saeed, ${ }^{69}$ F. R. Wappler, ${ }^{69}$ S. B. Zain, ${ }^{69}$ S. M. Spanier, ${ }^{70}$ B. J. Wogsland, ${ }^{70}$ R. Eckmann, ${ }^{71}$ J. L. Ritchie, ${ }^{71}$ A. M. Ruland, ${ }^{71}$ C. J. Schilling, ${ }^{71}$ R. F. Schwitters, ${ }^{71}$ J. M. Izen, ${ }^{72}$ X. C. Lou, ${ }^{72}$ S. Ye, ${ }^{72}$ F. Bianchi, ${ }^{73}$ F. Gallo, ${ }^{73}$ D. Gamba, ${ }^{73}$ M. Pelliccioni, ${ }^{73}$ M. Bomben, ${ }^{74}$ L. Bosisio, ${ }^{74}$ C. Cartaro, ${ }^{74}$ F. Cossutti, ${ }^{74}$ G. Della Ricca, ${ }^{74}$ L. Lanceri, ${ }^{74}$ L. Vitale, ${ }^{74}$ V. Azzolini, ${ }^{75}$ N. Lopez-March, ${ }^{75}$ F. Martinez-Vidal, ${ }^{75, * *}$ D. A. Milanes, ${ }^{75}$ A. Oyanguren, ${ }^{75}$ J. Albert, ${ }^{76}$ Sw. Banerjee, ${ }^{76}$ B. Bhuyan, ${ }^{76}$ K. Hamano, ${ }^{76}$ R. Kowalewski, ${ }^{76}$ I. M. Nugent, ${ }^{76}$ J. M. Roney, ${ }^{76}$ R. J. Sobie, ${ }^{76}$ P. F. Harrison, ${ }^{77}$ J. Ilic, ${ }^{77}$ T. E. Latham, ${ }^{77}$ G. B. Mohanty, ${ }^{77}$ H. R. Band, ${ }^{78}$ X. Chen, ${ }^{78}$ S. Dasu, ${ }^{78}$ K. T. Flood, ${ }^{78}$ J. J. Hollar, ${ }^{78}$ P. E. Kutter, ${ }^{78}$ Y. Pan, ${ }^{78}$ M. Pierini, ${ }^{78}$ R. Prepost, ${ }^{78}$ S. L. Wu, ${ }^{78}$ and H. Neal ${ }^{79}$

> (The BABAR Collaboration)
${ }^{1}$ Laboratoire de Physique des Particules, IN2P3/CNRS et Université de Savoie, F-74941 Annecy-Le-Vieux, France
${ }^{2}$ Universitat de Barcelona, Facultat de Fisica, Departament ECM, E-08028 Barcelona, Spain
${ }^{3}$ Università di Bari, Dipartimento di Fisica and INFN, I-70126 Bari, Italy
${ }^{4}$ University of Bergen, Institute of Physics, N-5007 Bergen, Norway
${ }^{5}$ Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA
${ }^{6}$ University of Birmingham, Birmingham, B15 2TT, United Kingdom
${ }^{7}$ Ruhr Universität Bochum, Institut für Experimentalphysik 1, D-44780 Bochum, Germany
${ }^{8}$ University of Bristol, Bristol BS8 1TL, United Kingdom
${ }^{9}$ University of British Columbia, Vancouver, British Columbia, Canada V6T $1 Z 1$
${ }^{10}$ Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
${ }^{11}$ Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia
${ }^{12}$ University of California at Irvine, Irvine, California 92697, USA
${ }^{13}$ University of California at Los Angeles, Los Angeles, California 90024, USA
${ }^{14}$ University of California at Riverside, Riverside, California 92521, USA
${ }^{15}$ University of California at San Diego, La Jolla, California 92093, USA
${ }^{16}$ University of California at Santa Barbara, Santa Barbara, California 93106, USA
${ }^{17}$ University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, California 95064, USA
${ }^{18}$ California Institute of Technology, Pasadena, California 91125, USA
${ }^{19}$ University of Cincinnati, Cincinnati, Ohio 45221, USA
${ }^{20}$ University of Colorado, Boulder, Colorado 80309, USA
${ }^{21}$ Colorado State University, Fort Collins, Colorado 80523, USA
${ }^{22}$ Universität Dortmund, Institut für Physik, D-44221 Dortmund, Germany
${ }^{23}$ Technische Universität Dresden, Institut für Kern- und Teilchenphysik, D-01062 Dresden, Germany
${ }^{24}$ Laboratoire Leprince-Ringuet, CNRS/IN2P3, Ecole Polytechnique, F-91128 Palaiseau, France

${ }^{25}$ University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
${ }^{26}$ Università di Ferrara, Dipartimento di Fisica and INFN, I-44100 Ferrara, Italy
${ }^{27}$ Laboratori Nazionali di Frascati dell'INFN, I-00044 Frascati, Italy
${ }^{28}$ Università di Genova, Dipartimento di Fisica and INFN, I-16146 Genova, Italy
${ }^{29}$ Harvard University, Cambridge, Massachusetts 02138, USA
${ }^{30}$ Universität Heidelberg, Physikalisches Institut, Philosophenweg 12, D-69120 Heidelberg, Germany
${ }^{31}$ Imperial College London, London, SW7 2AZ, United Kingdom
${ }^{32}$ University of Iowa, Iowa City, Iowa 52242, USA
${ }^{33}$ Iowa State University, Ames, Iowa 50011-3160, USA
${ }^{34}$ Johns Hopkins University, Baltimore, Maryland 21218, USA
${ }^{35}$ Universität Karlsruhe, Institut für Experimentelle Kernphysik, D-76021 Karlsruhe, Germany
${ }^{36}$ Laboratoire de l'Accélérateur Linéaire, IN2P3/CNRS et Université Paris-Sud 11,
Centre Scientifique d'Orsay, B. P. 34, F-91898 ORSAY Cedex, France
${ }^{37}$ Lawrence Livermore National Laboratory, Livermore, California 94550, USA
${ }^{38}$ University of Liverpool, Liverpool L69 7ZE, United Kingdom
${ }^{39}$ Queen Mary, University of London, E1 4NS, United Kingdom
${ }^{40}$ University of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom ${ }^{41}$ University of Louisville, Louisville, Kentucky 40292, USA
${ }^{42}$ University of Manchester, Manchester M13 9PL, United Kingdom
${ }^{43}$ University of Maryland, College Park, Maryland 20742, USA
${ }^{44}$ University of Massachusetts, Amherst, Massachusetts 01003, USA
${ }^{45}$ Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, Massachusetts 02139, USA
${ }^{46}$ McGill University, Montréal, Québec, Canada H3A $2 T 8$
${ }^{47}$ Università di Milano, Dipartimento di Fisica and INFN, I-20133 Milano, Italy
${ }^{48}$ University of Mississippi, University, Mississippi 38677, USA
${ }^{49}$ Université de Montréal, Physique des Particules, Montréal, Québec, Canada H3C 3J7
${ }^{50}$ Mount Holyoke College, South Hadley, Massachusetts 01075, USA
${ }^{51}$ Università di Napoli Federico II, Dipartimento di Scienze Fisiche and INFN, I-80126, Napoli, Italy
${ }^{52}$ NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands
${ }^{53}$ University of Notre Dame, Notre Dame, Indiana 46556, USA
${ }^{54}$ Ohio State University, Columbus, Ohio 43210, USA
${ }^{55}$ University of Oregon, Eugene, Oregon 97403, USA
${ }^{56}$ Università di Padova, Dipartimento di Fisica and INFN, I-35131 Padova, Italy
${ }^{57}$ Laboratoire de Physique Nucléaire et de Hautes Energies, IN2P3/CNRS, Université Pierre et Marie Curie-Paris6, Université Denis Diderot-Paris7, F-75252 Paris, France
${ }^{58}$ University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
${ }^{59}$ Università di Perugia, Dipartimento di Fisica and INFN, I-06100 Perugia, Italy
${ }^{60}$ Università di Pisa, Dipartimento di Fisica, Scuola Normale Superiore and INFN, I-56127 Pisa, Italy
${ }^{61}$ Princeton University, Princeton, New Jersey 08544, USA
${ }^{62}$ Università di Roma La Sapienza, Dipartimento di Fisica and INFN, I-00185 Roma, Italy
${ }^{63}$ Universität Rostock, D-18051 Rostock, Germany
${ }^{64}$ Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 OQX, United Kingdom
${ }^{65}$ DSM/Dapnia, CEA/Saclay, F-91191 Gif-sur-Yvette, France
${ }^{66}$ University of South Carolina, Columbia, South Carolina 29208, USA
${ }^{67}$ Stanford Linear Accelerator Center, Stanford, California 94309, USA
${ }^{68}$ Stanford University, Stanford, California 94305-4060, USA
${ }^{69}$ State University of New York, Albany, New York 12222, USA
${ }^{70}$ University of Tennessee, Knoxville, Tennessee 37996, USA
${ }^{11}$ University of Texas at Austin, Austin, Texas 78712, USA
${ }^{72}$ University of Texas at Dallas, Richardson, Texas 75083, USA
${ }^{73}$ Università di Torino, Dipartimento di Fisica Sperimentale and INFN, I-10125 Torino, Italy
${ }^{74}$ Università di Trieste, Dipartimento di Fisica and INFN, I-34127 Trieste, Italy
${ }^{75}$ IFIC, Universitat de Valencia-CSIC, E-46071 Valencia, Spain
${ }^{76}$ University of Victoria, Victoria, British Columbia, Canada V8W 3P6
${ }^{77}$ Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
${ }^{78}$ University of Wisconsin, Madison, Wisconsin 53706, USA
${ }^{79}$ Yale University, New Haven, Connecticut 06511, USA

We report results of a search for $C P T$ and Lorentz violation in $B^{0}-\bar{B}^{0}$ oscillations using inclusive dilepton events from 232 million $\Upsilon(4 S) \rightarrow B \bar{B}$ decays recorded by the BABAR detector at the PEPII B Factory at SLAC. We find 2.8σ significance, compatible with no signal, for variations in the complex $C P T$ violation parameter z at the Earth's sidereal frequency and extract values for the
quantities Δa_{μ} in the general Lorentz-violating standard-model extension. The spectral powers for variations in z over the frequency range 0.26 year $^{-1}$ to 2.1 day $^{-1}$ are also compatible with no signal.

PACS numbers: $13.25 . \mathrm{Hw}, 12.15 . \mathrm{Hh}, 11.30 . \mathrm{Er}$

It was shown recently [1] that an interacting quantum field theory need not be local for $C P T$ violation to imply violation of Lorentz invariance. In the general Lorentzviolating standard-model extension (SME) [2], the parameter for $C P T$ violation in neutral meson oscillations depends on the 4 -velocity of the meson [3].

We report a search for this effect using $\Upsilon(4 S) \rightarrow B \bar{B}$ decays recorded by the BABAR detector at the PEP-II asymmetric-energy $e^{+} e^{-}$collider. Any observed CPT violation should vary with a period of one sidereal day $(\simeq$ 0.99727 solar days) as the $\Upsilon(4 S)$ boost direction follows the Earth's rotation with respect to the distant stars [4].

The physical states of the $B^{0}-\bar{B}^{0}$ system are

$$
\begin{align*}
\left|B_{L}\right\rangle & =p \sqrt{1-\mathrm{z}}\left|B^{0}\right\rangle+q \sqrt{1+\mathrm{z}}\left|\bar{B}^{0}\right\rangle \\
\left|B_{H}\right\rangle & =p \sqrt{1+\mathrm{z}}\left|B^{0}\right\rangle-q \sqrt{1-\mathrm{z}}\left|\bar{B}^{0}\right\rangle, \tag{1}
\end{align*}
$$

where $L(H)$ labels the "light" ("heavy") eigenstate of the effective Hamiltonian. The complex parameter z vanishes if $C P T$ is conserved; T invariance implies $|q / p|=1$.

In the SME, $C P T$ - and Lorentz-violating coupling coefficients $a_{\mu}^{q_{i}}$ for the two valence quarks in the B^{0} meson are contained in quantities $\Delta a_{\mu}=r_{q_{1}} a_{\mu}^{q_{1}}-r_{q_{2}} a_{\mu}^{q_{2}}$, where the $r_{q_{i}}$ are due to quark-binding and normalization effects. The $C P T$ parameter z depends on the meson 4 -velocity $\beta^{\mu}=\gamma(1, \vec{\beta})$ in each experiment's observer frame as 3]

$$
\begin{equation*}
\mathrm{z} \simeq \frac{\beta^{\mu} \Delta a_{\mu}}{\Delta m-i \Delta \Gamma / 2} \tag{2}
\end{equation*}
$$

where $\beta^{\mu} \Delta a_{\mu}$ is real and varies with sidereal time due to the rotation of $\vec{\beta}$ relative to the constant vector $\Delta \vec{a}$. The magnitude of the decay rate difference $\Delta \Gamma \equiv \Gamma_{H}-\Gamma_{L}$ is known to be small compared to the $B^{0}-\bar{B}^{0}$ oscillation frequency $\Delta m \equiv m_{H}-m_{L}$; hence Eq. 2 constrains

$$
\begin{equation*}
\Delta m \operatorname{Re} \mathbf{z} \simeq 2 \Delta m(\Delta m / \Delta \Gamma) \operatorname{Im} \mathbf{z} \simeq \beta^{\mu} \Delta a_{\mu} \tag{3}
\end{equation*}
$$

Limits on analogous flavor-dependent Δa_{μ} specific to $K^{0} \bar{K}^{0}$ oscillations [5] and to $D^{0} \bar{D}^{0}$ oscillations [6] have been reported by the KTeV and FOCUS collaborations, respectively. KTeV has also reported a limit on sidereal variation of the phase ϕ_{+-}of the $C P$-violating amplitude ratio $\eta_{+-}=\mathcal{A}\left(K_{L} \rightarrow \pi^{+} \pi^{-}\right) / \mathcal{A}\left(K_{S} \rightarrow \pi^{+} \pi^{-}\right)$7].

We adopt the basis $(\hat{x}, \hat{y}, \hat{z})$ for the rotating laboratory frame and the basis $(\hat{X}, \hat{Y}, \hat{Z})$ for the Sun-centered nonrotating frame containing $\Delta \vec{a}$ [8]. \hat{Z} is parallel to the Earth's rotation axis, $\hat{X}(\hat{Y})$ is at right ascension $0^{\circ}\left(90^{\circ}\right)$, and \hat{y} is at declination 0°. We take β^{μ} for each B meson to be the $\Upsilon(4 S) 4$-velocity, and choose \hat{z} to lie along $-\vec{\beta}$. The event sidereal time \hat{t} is given by the right ascension of \hat{z} as it precesses around \hat{Z} at the sidereal frequency
$\Omega=2 \pi \mathrm{rad} /$ sidereal-day. We find $\hat{t}=14.0$ sidereal-hours at the Unix epoch (00:00:00 UTC, 1 Jan. 1970) from the latitude $\left(37.4^{\circ} \mathrm{N}\right)$ and longitude $\left(122.2^{\circ} \mathrm{W}\right)$ of $B A B A R$ and the $\Upsilon(4 S)$ boost $\left(\langle\beta \gamma\rangle \simeq 0.55\right.$ toward 37.8° east of south $)$, which also yield $\cos \chi=\hat{z} \cdot \hat{Z}=0.628$ in Eq. [4]

$$
\begin{align*}
\beta^{\mu} \Delta a_{\mu}= & \gamma\left[\Delta a_{0}-\beta \Delta a_{Z} \cos \chi\right. \\
& \left.-\beta \sin \chi\left(\Delta a_{Y} \sin \Omega \hat{t}+\Delta a_{X} \cos \Omega \hat{t}\right)\right] \tag{4}
\end{align*}
$$

Neutral B mesons from $\Upsilon(4 S)$ decay evolve in orthogonal flavor states until one decays, after which the flavor of the other continues to oscillate. We use direct semileptonic decays $(b \rightarrow X \ell \nu$, where $\ell=e$ or μ) to tag the flavor of each $B^{0}\left(\bar{B}^{0}\right)$ by the charge of the lepton $\ell^{+}\left(\ell^{-}\right)$. The decay rate for opposite-sign dilepton $\left(\ell^{+} \ell^{-}\right)$events is

$$
\begin{align*}
N^{+-} \propto & e^{-|\Delta t| / \tau_{B^{0}}}\left\{\left(1+|z|^{2}\right) \cosh (\Delta \Gamma \Delta t / 2)\right. \\
& +\left(1-|z|^{2}\right) \cos (\Delta m \Delta t) \tag{5}\\
& \quad-2 \operatorname{Re} z \sinh (\Delta \Gamma \Delta t / 2)+2 \operatorname{Im} z \sin (\Delta m \Delta t)\}
\end{align*}
$$

We define $1 / \tau_{B^{0}}$ to be the average neutral B decay rate, and $\Delta t \equiv t^{+}-t^{-}$, where $t^{+}\left(t^{-}\right)$is the proper time for one of a pair of B mesons to decay to $\ell^{+}\left(\ell^{-}\right)$. We make the approximation $\sinh (\Delta \Gamma \Delta t / 2) \simeq \Delta \Gamma \Delta t / 2$, which is valid for the range $|\Delta t|<15 \mathrm{ps}$ used in this analysis. We use $|\Delta \Gamma|=6 \times 10^{-3} \mathrm{ps}^{-1}$ in the $\cosh (\Delta \Gamma \Delta t / 2)$ term, consistent with the value reported in Ref. [9].

The asymmetry between the decay rates at $\Delta t>0$ and $\Delta t<0$ compares the probabilities $P\left(B^{0} \rightarrow B^{0}\right)$ and $P\left(\bar{B}^{0} \rightarrow \bar{B}^{0}\right)$. Omitting second-order terms in z gives

$$
\begin{equation*}
A_{C P T}(\Delta t) \simeq \frac{-\operatorname{Re} \mathbf{z} \Delta \Gamma \Delta t+2 \operatorname{Im} \mathrm{z} \sin (\Delta m \Delta t)}{\cosh (\Delta \Gamma \Delta t / 2)+\cos (\Delta m \Delta t)} \tag{6}
\end{equation*}
$$

The BABAR detector is described elsewhere 12]. We use about 232 million $\Upsilon(4 S) \rightarrow B \bar{B}$ decays and $16 \mathrm{fb}^{-1}$ of offresonance data, from 40 MeV below the $\Upsilon(4 S)$ resonance, collected during 1999-2004 to search for variations in z with sidereal time of the form

$$
\begin{equation*}
\mathrm{z}=\mathrm{z}_{0}+\mathrm{z}_{1} \cos (\Omega \hat{t}+\phi) \tag{7}
\end{equation*}
$$

For long data-taking periods, any day/night variations in detector response tend to cancel over sidereal time.

We have previously measured [10] time-integrated values of $\operatorname{Im} z$ and $\operatorname{Re} z \Delta \Gamma$ from the Δt distribution of the same events. Here, we measure $\operatorname{Im} z_{0}, \operatorname{Re} z_{0} \Delta \Gamma, \operatorname{Im} z_{1}$, and $\operatorname{Re} z_{1} \Delta \Gamma$ by extending the likelihood fit to include the event sidereal time \hat{t}, and extract values for the SME quantities Δa_{μ}. In a complementary approach, we also measure the spectral power of periodic variations in z over a wide frequency band using the periodogram method [11] developed to study variable stars.

The event selection is the same as in Ref. 10]. Briefly, we suppress non- $B \bar{B}$ background by event-shape and event-topology requirements, and select events having at least two well-identified lepton candidates with momenta $0.8-2.3 \mathrm{GeV} / c$ in the $\Upsilon(4 S)$ rest frame that are not part of reconstructed $J / \psi, \psi(2 S) \rightarrow e^{+} e^{-}, \mu^{+} \mu^{-}$decays or photon conversions. Lepton candidates must have at least one z-coordinate measurement in the silicon vertex tracker to allow Δt to be well-measured. We reject events in which either of the two highest-momentum lepton candidates (the dilepton) is classified as a cascade lepton from a $b \rightarrow(c, \tau) \rightarrow \ell$ transition by a neuralnetwork algorithm that uses as input variables the momenta and opening angle of the two leptons together with the event's visible energy and missing momentum. The selected dilepton sample comprises 1.18 million oppositesign events and 0.22 million same-sign events.

We estimate the $\Upsilon(4 S)$ decay point in the transverse plane with a χ^{2}-fit using the transverse distances to the two lepton tracks and the beam-spot. To measure Δt, we assume each lepton originates from a direct B meson decay at the point on the lepton track with the least transverse distance to the $\Upsilon(4 S)$. The component Δz, along the Lorentz boost, of the distance between these two points yields $\Delta t=\Delta z /\langle\beta \gamma\rangle c$. For opposite-sign events $\Delta z=z^{+}-z^{-}$; for same-sign events we use $|\Delta z|$.

We model the Δt-distribution of the dilepton sample with the probability density functions (PDFs) used in Ref. 10] to represent contributions from $B^{0} \bar{B}^{0}$ and $B^{+} B^{-}$ decays and non $-B \bar{B}$ events. The latter are estimated, using off-resonance data, to be 3.1% of the sample. The fit to data determines that 59% of the $B \bar{B}$ events are $B^{+} B^{-}$ decays. With minor $B \bar{B}$ background contributions fixed to values from Monte Carlo (MC) simulation, the fit to data also determines the fractions of $B^{0} \bar{B}^{0}$ and $B^{+} B^{-}$ decays that are signal events $(\simeq 80 \%)$ with two direct leptons, and the fractions $(\simeq 10 \%)$ that are events with one direct lepton and a $b \rightarrow c \rightarrow \ell$ cascade decay of the other B meson. Same-sign dilepton events are retained primarily to improve the determination of these fractions.

Each PDF is a convolution of a decay rate in Δt with a resolution function that is a sum of Gaussians or, for events with a cascade lepton, its convolution with one or two double-sided exponentials accounting for the lifetimes of intermediate τ or $D_{(s)}$ meson states, respectively. We use a sum of three Gaussians for signal events. The fit to data determines their fractions and also their widths except that of the widest, which is fixed to 8 ps . For leptons from different B mesons, our $B^{0} \bar{B}^{0}$ decay rate contains z to first-order (cf. Eq. 5) for opposite-sign events and is $\propto e^{-|\Delta t| / \tau_{B^{0}}}\{\cosh (\Delta \Gamma \Delta t / 2)-\cos (\Delta m \Delta t)\}$ for same-sign events; for $B^{+} B^{-}$decays, it is $\propto e^{-|\Delta t| / \tau_{B} \pm}$. For leptons from the same B meson, the decay rates are exponentials with effective lifetimes determined from MC simulation. Dilution factors are included to account for wrong flavor tags in cascade decays.

Each event's timestamp yields the time elapsed since the Unix epoch. We use this time, folded over one sidereal day and shifted in phase by 14.0 sidereal-hours, for \hat{t}.

We extract z from a two-dimensional maximum likelihood fit to the opposite-sign and same-sign data events binned separately in Δt and \hat{t}. The likelihood function in Δt for each of the 24 sidereal-time slices contains a common sum of the PDFs, and z varies with \hat{t} as in Eq. 7 , The likelihood fit corresponds to $A_{C P T}$ in Eq. 6. We obtain the values for z and ϕ reported in Table प (upper left). The statistical correlation between $\operatorname{Im} z_{0}$ and $\operatorname{Re} z_{0} \Delta \Gamma$ is 76%; between $\operatorname{Im} z_{1}$ and $\operatorname{Re} z_{1} \Delta \Gamma$ it is 79%.

Table \rrbracket shows the sources of systematic uncertainties in the asymmetry parameters. Separate contributions are added in quadrature in the totals. We vary separately $\tau_{B^{0}}, \tau_{B^{ \pm}}$, and Δm by 1σ from their known values [13], and vary $|\Delta \Gamma|$ over the range $0-0.1 \mathrm{ps}^{-1}$ to allow 3σ deviations from the value reported in Ref. [9]. Fixed parameters in the PDF resolution functions for non-signal events are varied separately by 10%, motivated by a comparison of resolution parameters fitted to signal events in data and MC simulation. The fractions of the $D_{(s)}$ meson components in background cascade decays are also varied by 10%. The effects of possible internal misalignments of the silicon vertex tracker (SVT) and uncertainty in the absolute z-scale are evaluated in $B^{0} \bar{B}^{0}$ MC samples. The clock that sets the event timestamps is governed by the PEP-II master oscillator, which is stable to within 0.001% of its set frequency. Resynchronization of the clock with U.S. time standards at intervals of less than four months limits relative sidereal phase errors to less than 0.2%. Another small uncertainty in sidereal phase arises in calculating the $\Upsilon(4 S)$ boost's right ascension. We use $e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}(\gamma)$ data events, with true $\Delta z=0$, to check for sidereal variations in measured Δz that could mimic a Lorentz-violation signal. The measured amplitude (0.022 ± 0.025) $\mu \mathrm{m}$ and mean $(0.030 \pm 0.018) \mu \mathrm{m}$ are sources of negligible uncertainties. At the solar-day frequency, the amplitude is $(0.028 \pm 0.025) \mu \mathrm{m}$.

In Fig. 1 we plot the sidereal-time dependence of the measured asymmetry $A_{C P T}^{\text {meas }}$ for the opposite-sign dilepton events with $|\Delta t|>3 \mathrm{ps}$, thereby omitting highlypopulated bins where any asymmetry is predicted to be small. Figure 2 shows confidence level contours for $\operatorname{Im} z_{1}$ and $\operatorname{Re} \mathbf{z}_{1} \Delta \Gamma$. The significance for sidereal variations in z, characteristic of $C P T$ and Lorentz violation, is 2.8σ.

The results of the fit described above are compatible with the SME constraint $\operatorname{Rez} \Delta \Gamma \simeq 2 \Delta m \operatorname{Im} z$ (Eq. (3) for $\Delta m=0.507 \mathrm{ps}^{-1}$ [13]. We repeat the likelihood fit subject to this constraint. The asymmetry in Eq. 6 becomes

$$
\begin{equation*}
A_{C P T}(\Delta t) \simeq \frac{2 \operatorname{Imz}\{-\Delta m \Delta t+\sin (\Delta m \Delta t)\}}{\cosh (\Delta \Gamma \Delta t / 2)+\cos (\Delta m \Delta t)} \tag{8}
\end{equation*}
$$

We obtain the results reported in Table I (right). The statistical correlation between $\operatorname{Im} z_{1}$ and ϕ is 48%. The significance for sidereal variations in z is again 2.8σ. We

TABLE I: Asymmetry parameter values, with statistical errors, for $A_{C P T}$ in Eq. 6 (upper left) and with SME constraint in Eq. 8 (upper right). Equation 7 implies $z_{1} \rightarrow-z_{1}$ for $\phi \rightarrow \phi+\pi$. Systematic uncertainties are shown in lower part of Table.

$A_{C P T}$ parameter	Without SME constraint					With SME constraint		
	$\begin{gathered} \operatorname{Im~z}_{0} \\ \left(\times 10^{-3}\right) \\ \hline \end{gathered}$	$\begin{gathered} \operatorname{Re}_{0} \Delta \Gamma \\ \left(\times 10^{-3} \mathrm{ps}^{-1}\right) \end{gathered}$	$\begin{gathered} \operatorname{Im} z_{1} \\ \left(\times 10^{-3}\right) \\ \hline \end{gathered}$	$\begin{gathered} \operatorname{Re}_{1} \Delta \Gamma \\ \left(\times 10^{-3} \mathrm{ps}^{-1}\right) \end{gathered}$	$\begin{gathered} \phi \\ (\mathrm{rad}) \\ \hline \end{gathered}$	$\begin{gathered} \operatorname{Im} z_{0} \\ \left(\times 10^{-3}\right) \\ \hline \end{gathered}$	$\begin{gathered} \operatorname{Im~z}_{1} \\ \left(\times 10^{-3}\right) \\ \hline \end{gathered}$	$\begin{gathered} \phi \\ (\mathrm{rad}) \\ \hline \end{gathered}$
Value from fit	-14.2 ± 7.3	-7.3 ± 4.1	-24 ± 11	-18.5 ± 5.6	2.63 ± 0.31	-5.2 ± 3.6	-17.0 ± 5.8	2.56 ± 0.36
Systematic effects								
$\tau_{B^{0}}, \tau_{B \pm}, \Delta m, \Delta \Gamma$	± 0.7	± 0.4	± 0.6	± 0.5	± 0.05	± 0.4	± 0.7	± 0.01
SVT alignment, z scale	± 0.6	± 1.5	± 2.0	± 1.1	± 0.20	± 1.7	± 1.4	± 0.15
PDF resolution models	± 2.0	± 1.0	± 2.5	± 1.2	± 0.02	± 0.8	± 1.0	± 0.01
Background fractions	± 0.1	± 0.1	± 0.2	± 0.2	± 0.01	± 0.2	± 0.3	± 0.01
Sidereal phase	± 0.0	± 0.0	± 0.0	± 0.0	± 0.03	± 0.0	± 0.0	± 0.03
Total syst. error	± 2.2	± 1.8	± 3.3	± 1.7	± 0.21	± 1.9	± 1.9	± 0.15

FIG. 1: Asymmetry $A_{C P T}^{\text {meas }}$ for opposite-sign dilepton events with $|\Delta t|>3$ ps versus sidereal time. The sample includes event types, e.g. $B^{+} B^{-}$decays, for which $A_{C P T}=0$. The curve is a projection, for $|\Delta t|>3 \mathrm{ps}$, using results of the two-dimensional likelihood fit for $|\Delta t|<15 \mathrm{ps}$.

FIG. 2: Contours indicating $1 \sigma, 2 \sigma$, and 3σ significance, around the central values of $\operatorname{Im} \mathbf{z}_{1}$ and $\operatorname{Re} \mathbf{z}_{1} \Delta \Gamma$ (solid circle).
obtain consistent results for $\operatorname{Im} z_{0}, \operatorname{Im} z_{1}$, and ϕ when second-order terms (Eq. [5) of form $|z|^{2}=\rho^{2} \cos ^{2}(\Omega \hat{t}+\phi)$, motivated by finding $\left|\operatorname{Im} z_{1}\right|>\left|\operatorname{Im} z_{0}\right|$, are included in the likelihood fit to data with ρ^{2} as a free parameter.

We use Eqs. 3. 4, and 7 to extract the SME quantities

$$
\begin{aligned}
\Delta a_{0}-0.30 \Delta a_{Z} & \simeq(-3.0 \pm 2.4)(\Delta m / \Delta \Gamma) \times 10^{-15} \mathrm{GeV} \\
\Delta a_{X} & \simeq(-22 \pm 7)(\Delta m / \Delta \Gamma) \times 10^{-15} \mathrm{GeV} \\
\Delta a_{Y} & \simeq\left(-14_{-13}^{+10}\right)(\Delta m / \Delta \Gamma) \times 10^{-15} \mathrm{GeV}
\end{aligned}
$$

We now use the periodogram method [11] to compare the spectral power for variations in z at the sidereal frequency with those in a wide band of surrounding frequencies. The spectral power at a test frequency ν is

$$
\begin{equation*}
P(\nu) \equiv \frac{1}{N \sigma_{w}^{2}}\left|\sum_{j=1}^{N} w_{j} e^{2 i \pi \nu T_{j}}\right|^{2}, \tag{9}
\end{equation*}
$$

where the data, comprising N measurements w_{j} made at times T_{j}, have variance σ_{w}^{2}. Here, T_{j} is the time elapsed since the Unix epoch for opposite-sign dilepton event j, and the weights $w_{j}=\Delta m \Delta t_{j}-\sin \left(\Delta m \Delta t_{j}\right)$ are suited to the study of periodic variations in z according to Eq. 8 .

In the absence of an oscillatory signal, the probability that $P(\nu)$ exceeds a value S at a given frequency is $\exp (-S)$; if M independent frequencies are tested, the largest $P(\nu)$ value exceeds S with probability

$$
\begin{equation*}
\operatorname{Pr}\left\{P_{\max }(\nu)>S ; M\right\}=1-\left(1-e^{-S}\right)^{M} \tag{10}
\end{equation*}
$$

We use 20994 test frequencies from 0.26 year $^{-1}$ to 2.1 solar-day ${ }^{-1}$, spaced by 10^{-4} solar-day ${ }^{-1}$. This oversamples the frequency range by a factor of about 2.2 and avoids underestimating the spectral power of a signal. The number of independent frequencies is about 9500.

Figure 3 shows the periodogram we obtain. The largest spectral power is $P_{\max }(\nu)=8.78$, for the test frequency $\nu=0.46312$ solar-day ${ }^{-1}$. With no signal, the probability of finding a larger spectral power in our periodogram is 76%. Interpolation to the sidereal frequency

FIG. 3: Periodogram for opposite-sign dilepton events. The solar-day and sidereal-day frequencies are indicated by the left and right triangles, respectively, in the inset.
($\simeq 1.00274$ solar-day $^{-1}$) yields $P(\nu)=5.28$, a value that is exceeded at 78 test frequencies. At the solar-day frequency, where any effects due to day/night variations in detector response should appear, $P(\nu)=1.47$.

In conclusion, we report results of a search for sidereal variations in the $C P T$ violation parameter z that are complementary to our previous time-integrated measurements [10] using the same events. Neither the likelihood fits nor the periodogram method detect asymmetries large enough to provide evidence for $C P T$ and Lorentz violation. We have constrained the quantities Δa_{μ} of the Lorentz-violating standard-model extension that parameterize $C P T$ violation in $B^{0}-\bar{B}^{0}$ oscillations.

The authors are indebted to Alain Milsztajn (deceased) for his help with the periodogram analysis. We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and
kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MIST (Russia), MEC (Spain), and STFC (United Kingdom). Individuals have received support from the Marie Curie EIF (European Union) and the A. P. Sloan Foundation.

* Deceased
† Now at Tel Aviv University, Tel Aviv, 69978, Israel
\ddagger Also with Università di Perugia, Dipartimento di Fisica, Perugia, Italy
§ Also with Università della Basilicata, Potenza, Italy
『 Also with Universita' di Sassari, Sassari, Italy
** Also with Universitat de Barcelona, Facultat de Fisica, Departament ECM, E-08028 Barcelona, Spain
[1] O. W. Greenberg, Phys. Rev. Lett. 89, 231602 (2002).
[2] D. Colladay and V. A. Kostelecký, Phys. Rev. D 55, 6760 (1997); Phys. Rev. D 58, 116002 (1998); V. A. Kostelecký, Phys. Rev. D 69, 105009 (2004).
[3] V. A. Kostelecký, Phys. Rev. Lett. 80, 1818 (1998).
[4] V. A. Kostelecký, Phys. Rev. D 64, 076001 (2001).
[5] H. Nguyen (KTeV Collaboration), in V. A. Kostelecký, ed., CPT and Lorentz Symmetry II, World Scientific, Singapore, 2002.
[6] J. M. Link et al. (FOCUS Collaboration), Phys. Lett. B 556, 7 (2003).
[7] Y. B. Hsiung (KTeV Collaboration), Nucl. Phys. B (Proc. Suppl.) 86, 312 (2000).
[8] V. A. Kostelecký and C. D. Lane, Phys. Rev. D 60, 116010 (1999); V. A. Kostelecký and M. Mewes, Phys. Rev. D 66, 056005 (2002).
[9] B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 70, 012007 (2004).
[10] B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 96, 251802 (2006).
[11] N. R. Lomb, Astrophys. Space Sci., 39, 447 (1976); J. D. Scargle, Astrophys. J, 263, 835 (1982).
[12] B. Aubert et al. (BABAR Collaboration), Nucl. Instrum. Methods A479, 1 (2002).
[13] W.-M. Yao et al. (Particle Data Group), J. Phys. G 33, 1 (2006) and 2007 partial update for edition 2008.

