Stability of half-quantum vortices in $p_x + ip_y$ superconductors

Suk Bum Chung,1 Hendrik Bluhm,2 and Eun-Ah Kim2

1Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
2Department of Physics, Stanford University, Stanford, California 94305, USA
(Dated: June 19, 2007)

We consider the stability conditions for half-quantum vortices in quasi two dimensional $p_x + ip_y$ superconductors due to their spin degrees of freedom. They were first considered by Kee et al.14 as a candidate material for a quasi-2D (ab plane) $p_x + ip_y$ spin-triplet SC.13 Sr2RuO4, a layered perovskite, has recently emerged as a candidate material for a quasi-2D system, Eq. (2) simplifies, since the \hat{l} is fixed to the c-axis (±z direction) confining \mathbf{k} to the ab-plane:}

$$d(\mathbf{k}) = \Delta_0 \mathbf{d} \exp(i \varphi_{\mathbf{k}l} \hat{\mathbf{l}} \times \hat{\mathbf{l}}),$$

where $\varphi_{\mathbf{k}l}$ is the azimuthal angle $\hat{\mathbf{k}}$ makes around $\hat{\mathbf{l}}$. For a (quasi-)2D system, Eq. (2) simplifies, since the \hat{l} is fixed to the c-axis ($\pm z$ direction) confining \mathbf{k} to the ab-plane:

$$d(\mathbf{k}) = \Delta_0 \hat{\mathbf{d}} \exp(i \varphi_{\mathbf{k}} \hat{\mathbf{l}}),$$

for a single domain, where $\varphi_{\mathbf{k}}$ is the azimuthal angle $\hat{\mathbf{k}}$ makes around the c-axis. Notice that there are two independent continuous symmetries associated with the order parameter matrix in Eq. (2) and (3): the spin rotation symmetry SO_2 around the unit vector $\hat{\mathbf{d}}$, and the $U(1)$ symmetry which is the combination of a gauge transformation and an orbital rotation around $\hat{\mathbf{l}}$. When $\hat{\mathbf{l}}$ is

Work supported in part by US Department of Energy contract DE-AC02-76SF00515

Submitted to Physical Review Letters
fixed, we denote the ‘orbital phase’ associated with this combined $U(1)$ symmetry by χ.

It is the spin degree of freedom represented by the \mathbf{d}-vector which allows for the existence of half-quantum vortices. In a singlet (single component) superconductor, $1/2$-qv’s are forbidden by the requirement of single valuedness of the order parameter. However in the $p_x + ip_y$ SC, each component of the order parameter matrix can remain single valued by simultaneously rotating the \mathbf{d}-vector by π while the orbital phase χ winds by π. Since only χ couples to the magnetic vector potential, this type of topological defect only carries a flux of $hc/4e$, i.e. half a superconducting flux quantum $\Phi_0 = hc/2e$. From Eq. (1), one can intuitively characterize a $1/2$-qv as a vortex with a single unit of vorticity for one of the spin components and zero vorticity for the other [21].

In the absence of an external magnetic field, the spin-orbit (dipole) coupling favors alignment of \mathbf{d} and \mathbf{l}, making $1/2$-qv’s energetically costly [3, 19]. However, Knight-shift measurement on Sr$_2$RuO$_4$ by Murakawa et al. [17] suggests that a sufficiently large magnetic field $H > 200$ G ($< H_{c2} \sim 750$ G [12]) along the c-axis may neutralize the dipolar interaction by fixing the \mathbf{d}-vector orientation to the ab-plane (or RuO$_2$ plane). While this opens the possibility of $1/2$-qv’s, the associated \mathbf{d}-vector bending introduces ‘hydrodynamic’ spin terms in the gradient free energy. In the following, we will determine their effect on the stability of half-quantum vortices.

The starting point of our analysis is the appropriate Ginzburg-Landau (GL) gradient free energy in its most general form from the London limit [19]:

$$f_{\text{grad}} = \frac{1}{2} [\rho_s \mathbf{v}^2 - (\rho_s - \rho_p) (\mathbf{l} \cdot \mathbf{v}_s)]^2 + \frac{1}{2} \left(\frac{h}{2m} \right)^2 \sum_i [\rho_{sp} (\nabla \hat{d}_i)^2 - (\rho_{sp} - \rho_{sp}) (\mathbf{l} \cdot \nabla \hat{d}_i)]^2 + K_{ij}^{mn} \partial_i \hat{d}_m \partial_j \hat{d}_n + C_{ij} (v_s) (\nabla \times \hat{l}_j) + \frac{1}{8\pi} (\nabla \times \mathbf{A})^2, \quad (4)$$

where \mathbf{v}_s is the superflow velocity, m is the fermion mass, and ρ_s, ρ_p and ρ_{sp} are components of the superfluid and spin fluid density matrix, respectively. Note that these are rank-two matrices, since there is one symmetry direction, \mathbf{l}, for the orbital degree of freedom. For a 2D single-domain, the fact that \mathbf{l} is fixed leads to great simplification. The superflow velocity \mathbf{v}_s is then $(h/2m)(\nabla \chi - 2e\mathbf{A}/hc)$, as in a conventional s-wave SC. For vortex lines along the c-axis, ρ_{sp} is projected out of the problem due to the absence of any variation along the \hat{l} direction (c-axis), and the superfluid and spin current densities can be regarded as scalars. When \mathbf{d} is restricted to the ab-plane, it can be parametrized as $\mathbf{d} = (\cos \alpha, \sin \alpha, 0)$, and the free energy becomes

$$f^{2D}_{\text{grad}} = \frac{1}{2} \left(\frac{h}{2m} \right)^2 [\rho_s (\nabla \chi - 2e\mathbf{A}/hc)^2 + \rho_{sp} (\nabla \alpha)^2] + \frac{1}{8\pi} (\nabla \times \mathbf{A})^2, \quad (5)$$

with the last term accounting for screening of the supercurrent, which is absent for the case of 3He-A thin film [6, 21]. This decouples the ‘superflow’ energy (dependent on χ and \mathbf{A}) and the \mathbf{d}-vector bending energy, which depends on α.

We note that an isolated $1/2$-qv cannot exist inside an infinitely large system, as was pointed out in Ref. [13]. Unlike a full qv which only costs screened super current self energy, a single $1/2$-qv costs a spin current energy that diverges logarithmically

$$\epsilon_{sp} = \frac{\pi}{4} \left(\frac{h}{2m} \right)^2 \rho_{sp} \ln \left(\frac{R}{\xi} \right) \quad (6)$$

per unit length, where ξ is the core radius and R the lateral sample dimension. The divergence in Eq. (6) is due to the absence of screening, for the \hat{l}-winding (the $\nabla \alpha$ term in Eq. (5)) does not couple to the electromagnetic gauge field.

A pair of $1/2$-qv’s with opposite windings in \hat{d} (i.e., one with $n_{sp} = +1/2$ and the other with $n_{sp} = -1/2$) would be free of such divergent energy cost. The energy per unit length of a pair of $1/2$-qv’s separated by r_{12} is

$$E^{\text{pair}}_{\text{half}}(r_{12}) = \frac{\Phi_0^2}{2 \times 16\pi^2 \lambda^2} \left[\ln \left(\frac{\lambda}{\xi} \right) + K_0 \left(\frac{r_{12}}{\lambda} \right) + \rho_{sp} \ln \left(\frac{r_{12}}{\lambda} \right) \right], \quad (7)$$

where K_0 is a modified Bessel function. The first term of Eq. (7) is the screened self-energy of superflow. The second term accounts for the magnetic interaction between the vortices, and the third term, in which the logarithmic divergence of Eq. (6) is canceled out by the interaction term, is purely due to spin flow. However, such a pair is topologically equivalent to a single full qv (see Fig. 1) with the self-energy

$$E^{\text{full}} = \pi \left(\frac{h}{2m} \right)^2 \rho_s \ln \left(\frac{\lambda}{\xi} \right) = \frac{\Phi_0^2}{16\pi^2 \lambda^2} \ln \left(\frac{\lambda}{\xi} \right), \quad (8)$$

where $\lambda = \frac{me}{2\sqrt{\epsilon}}$ is the London penetration depth. Hence the most relevant question, regarding the stability of $1/2$-qv’s in the bulk of a SC is whether a pair of $1/2$-qv’s can be generated by the decay of a full qv. (Note that Eqs. (7-8) are approximately equal at $r_{12} = \xi$. [20]
Using parameters relevant to Sr$_2$RuO$_4$ in Eq. (7), we find that a 1/2-qv pair in bulk Sr$_2$RuO$_4$ will only be stable if ρ_{sp}/ρ_s satisfy certain conditions. In Fig. 1 we plot $E_{\text{pair}}^{\text{half}}(r_{12}) - E_{\text{pair}}^{\text{full}}(r_{12})$ for $r_{12} > \xi$, using parameters plausible for Sr$_2$RuO$_4$. We used $\alpha = 1/3$ based on the experimental value $\lambda_{ab} \approx 152$ nm [12, 13] and the estimated value of the Ginzburg-Landau coherence length $\xi_{ab} \approx 66$ nm [12]. For all three values of ρ_{sp}/ρ_s shown, a finite equilibrium pair size $r_{\text{equil}} > \xi$ exists. However, we note that while the London approximation predicts a minimum of the energy difference $E_{\text{pair}}^{\text{half}}(r_{12}) - E_{\text{pair}}^{\text{full}}$ at a finite value $r_{12} = r_{\text{equil}}$ for $\rho_{sp}/\rho_s < 1$, the London limit is only valid when ρ_{sp}/ρ_s is small enough to give $r_{\text{equil}} > \xi$.

We now discuss the ratio between the neutral spin superfluid density ρ_{sp} and the charged mass superfluid density ρ_s in Eq. (6). In the case of 3He, the ρ_{sp}/ρ_s ratio has been derived theoretically in terms of Landau parameters [7, 10, 21, 22]. Using sum rules for the longitudinal current-current correlation, Leggett showed that $\rho_{sp} < \rho_s$ [22]. This follows from the fact that the mass current is conserved even in the presence of interactions due to Galilean invariance, while the spin current is not, since a corresponding symmetry is absent. In the case of Sr$_2$RuO$_4$, the lattice breaks the Galilean invariance. However, since all interactions that scatter the mass current also affect a spin current, but not vice versa, one still expects $\rho_{sp} < \rho_s$ [22]. While the actual value of ρ_{sp}/ρ_s is unknown for Sr$_2$RuO$_4$, it has recently been measured to be ≈ 0.3 near $T = 0$ in 3He-A [21]. Since many Fermi liquid properties of Sr$_2$RuO$_4$, such as the mass renormalization ratio, are similar to that of 3He [12], ρ_{sp}/ρ_s for Sr$_2$RuO$_4$ is also not anticipated to be much larger than ≈ 0.4. If so, the 1/2-qv pair would have a robust energy minimum (see Fig. 1).

Although the above analysis implies that a pair of half quantum vortices can be stable against combining into a single full qv, the vortex core energy, which we have not taken into account, can make stop a single full qv from decaying into a pair of half quantum vortices. Since the core interactions may be substantial for $r_{12} \lesssim \xi$, it is not guaranteed that the finite equilibrium separation in our analysis corresponds to a global energy minimum. In the case of a merely local minimum, a finite separation $r_{\text{equil}} > 0$ would only represent a metastable state, whose formation depends on the history of the sample. In this case, a full vortex would not decay into two 1/2-qv’s. If ρ_{sp}/ρ_s is so large that $r_{\text{equil}} \lesssim \xi$, it is possible for even a local minimum to be absent. However if $\rho_{sp}/\rho_s \sim 0.4$, as in the case of 3He, this is rather unlikely.

Mesoscopic geometries – Given that the experimentally unknown core interaction may be significant, and neutron scattering [13] and vortex imaging [14, 15] found no evidence for vortex dissociation in macroscopic samples, we propose utilizing mesoscopic geometries. A sample size of order λ would promote the chance of a 1/2-qv entering by cutting off the divergent spin current energy and reducing the effect of supercurrent screening. Here we discuss a thin slab and a cylinder as two examples.

We find that a slab of thickness $L = 2\lambda$ (see Fig. 2) will only permit a entry of 1/2-qv if $\rho_{sp}/\rho_s < (2\xi/\lambda)K_1(2\xi/\lambda)$. Consider the Gibbs free energy for a vortex at position x in the slab (see Fig. 2), with winding numbers n_s and n_{sp} in ϕ and α, respectively, and a uniform applied field H: $(n_s = n_{sp} = 1/2$ and $n_s = 0$ for a 1/2-qv and a full qv, respectively)

$$G(x; n_s, n_{sp}) = \varepsilon_{m}(x; n_s)$$

$$+ \sum_{\delta = \pm 1}\sum_{j=1}^{\infty}(-1)^{j-1}(x - x_j^\delta)\varepsilon_{1v}(x - x_j^\delta; n_s n_{sp}).$$

Here, $\varepsilon_{m}(x; n_s)$ is the energy (per unit sample thickness) due to the interaction with the Meissner current:

$$\frac{\varepsilon_{1v}(x; n_s)}{4\pi\lambda^2} = \frac{\rho_{sp}H}{\Phi_0/4\pi\lambda^2} \frac{\cos(\lambda x) - \cos[(L - 2\xi)/2\lambda]}{\cos(L/2\lambda)}.$$ (10)

The second line of Eq. (9) accounts for the boundary condition of vanishing current normal to each surface. We solve the boundary condition using an infinite set of image vortices at positions $x_j^\delta = (-1)^j(x_0^\delta \pm jL)$ for $j = 1, \ldots, \infty$ with vorticities $(-1)^jn_{s,sp}$. Between a vortex with winding number (n_s, n_{sp}) in the slab and each of its image vortices at a distance r from it, there is an interaction energy (per unit sample thickness):

$$\varepsilon_{1v}(r; n_s, n_{sp}) = -n_s^2\left[K_0(r/\lambda) - K_0(2\xi/\lambda)\right] + n_{sp}^2\rho_{sp}/\rho_s \ln\left(r/2\xi\right).$$ (11)

We plot $G(x; 1, 0)$ and $G(x; 1/2, 1/2)$ in Fig. 2b for $H = 3.0\Phi_0/4\pi\lambda^2$ and $L = 2\lambda$ for $\rho_{sp}/\rho_s = 0.4$. For those parameters, clearly only the 1/2-qv is stable inside the sample. The energy difference between the two types of vortices at the center is estimated to be much larger than k_BT_c at low enough temperatures (as large as $10^4k_BT_c/\mu m$ at $T \sim 100$ mK). Hence, the entry of a 1/2-qv into the slab will be favored over that of a full qv.
However, the fact that many vortices will enter the slab at different positions along its length more or less at once complicates both further theoretical modeling and experiments. Thus, we also consider cylindrical samples, which can only accommodate single vortices (of either type) if the radius is small enough [23]. For example, the fabrication of a sub-micron disk of Sr$_2$RuO$_4$, while challenging, is within reach of available technologies such as focused ion beam (FIB) milling. The entry of a vortex or fluxoid in a cylinder or annulus geometry can be detected as an abrupt change in the magnetization as H is ramped up. As in the case of a thin slab, a 1/2-qv can be energetically favored for small enough ρ_{sp}/ρ_s due to the suppression of the supercurrent screening.

For simplicity, we only compare the free energies for fluxoids trapped in a thin, hollow cylinder. Although the fabrication of this geometry is significantly more challenging, it has the additional advantage over a filled cylinder or disk of eliminating the core. For a long, thin hollow cylinder of radius R and thickness $d \ll \lambda, R$, the London approximation is nearly accurate [24], and one can obtain the Gibbs free energy per unit length for fluxoids of either type in the presence of an external field H from Eq. (6) via a Legendre transformation:

$$G(n_s, n_{sp}) = \frac{\Phi_0}{4\pi R^2} \left(\frac{1}{1 + \beta} \left(n_s - \frac{\Phi}{\Phi_0}\right)^2 + \frac{\rho_{sp}}{\rho_s} n_{sp}^2 - \frac{\Phi}{\Phi_0} \right)^2. \tag{12}$$

We defined $\beta = dR/2\lambda^2$ [25], and $\Phi = \pi R^2 H$, the flux through the cylinder. It is the presence of the n_{sp}^2 term in Eq. (12), which is the only difference from the s-wave case, that allows for the 1/2-qv possibility of $n_s = n_{sp} = 1/2$. At $\Phi/\Phi_0 = 1/2$, $G(1/2, 1/2) < G(1, 0) = G(0, 0)$ if $\rho_{sp}/\rho_s < (1 + \beta)^{-1}$ and a 1/2-qv will have lower energy than a full qv. The vorticity could be detected by monitoring the magnetization, as it was done for bilayer Al rings, which effectively form a two-component SC [26].

Conclusion – Vortices with a fraction of a flux quantum, which are topologically allowed in any multicomponent superconductors (SC), tend to be energetically unfavorable [27]. We considered the vortex energetics of $p_x + ip_y$ SC in the London limit using a GL formalism. For an isolated 1/2-qv, we noted the importance of controlling a logarithmically divergent energy due to the unscreened spin current. While such divergence is regulated in a pair of 1/2-qv’s of opposite spin winding, ρ_{sp}/ρ_s needs to be sufficiently small in order to make finite separation in such a pair (meta-)stable. Given the fragile nature of 1/2-qv’s in bulk samples, we propose using mesoscopic geometries to look for 1/2-qv’s.

Although we predict that pairs of 1/2-qv’s can indeed be energetically favored over full qv’s in bulk samples and a single 1/2-qv can be stable in a mesoscopic samples, if ρ_{sp}/ρ_s is sufficiently small, a number of real material features can affect the existence or complicate the observation of 1/2-qv’s in Sr$_2$RuO$_4$. Such features include locking of the d-vector within the Ru$_2$O$_4$ plane, proliferation of microscopic domain walls, significant core energy effects, and boundary scattering. Nonetheless, given the exciting promise associated with these exotic excitations, our analysis forms a point of departure in the quest of realizing 1/2-qv’s in Sr$_2$RuO$_4$ or other candidate materials for exotic superconductivity, such as UPT$_3$ [28].

Acknowledgments

We are grateful to A.J. Leggett, M. Stone, K. Moler, V. Vakaryuk, A. Fetter, H.-Y. Kee, C. Kallin, S. Kivelson, P. Oreto for their insights and many helpful discussions. SC has been supported by University of Illinois Applied Mathematics Fellowship and NSF Grant No. DMR 06-03528, HB by DOE under Contract No. DE-AC02-76SF00515, and EAK by the Stanford Institute for Theoretical Physics.

[29] Eq. (7) suggests an entropy driven transition of Berezinskii-Kosterlitz-Thouless type at T_{KT} below
The onset temperature T_{KT} is at $k_B T_{KT} = \frac{1}{8} \frac{T_c - T_{KT}}{T_c} \rho_s \mu_s d \left(\frac{\Phi_0}{2 \pi \lambda} \right)^2$, where d is the sample thickness. However, experimental values of λ and T_c suggest $T_{KT} \approx T_c$.