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ABSTRACT 

t An analysis is carried out to extract the leading effective trajectories 
- 

and residues in pp and n-p elastic scattering. The results are compared with 

the predictions of the constituent interchange model and the logarithmic dual 

model, which are shown to be the only two types of theory capable of providing 

a uniform link between backward and forward Regge regions and the fixed angle 

region. The hypothesis of a smooth connection between forward and backward 

Regge regions puts strong constraints on a priori unrelated trajectories and 

residues. The possibility of a connection between the two models is discussed. 

As expected from interchange theory the extracted n-p trajectory and residue 

behave quite differently than those for pp. The dual model seems to give the 

best overall description of the pp trajectory and residue functions while the 7rp 

results agree completely with the interchange predictions. The two model fits 

to pp elastic scattering at moderate energies (12-24 GeV) are-used to extract 

an expected Pomeron term. The shape of the extracted diffractive contribution 

is strikingly similar to the recent ISR differential cross sections which exhibit 

a dip at t=-1.4 (GeV)2 and a slow fall off in the large t-region. 
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1. INTRODUCTION 

Recently there has been a great deal of interest in large momentum trans- 

.fer pr^ocesses. Two of the more successful theoretical approaches have been 

those of the constituent interchange model (CIM) 1,2,3,4) and of the logarithmic 

trajectory dual model (LDM) 5). The parton interchange theory provides a good 

description of all experimentally measured large angle exclusive scattering 

processes; the dual model has been shown to provide a precise fit to the non- 

diffractive component of pp elastic scattering at all angles 637) . 

In both theories the fixed angle behavior provides a smooth link between 

forward and backward Regge behavior. However they differ in their predictions 

at higher energies and momentum transfers. The LDM predicts, for instance, 

that the effective Regge trajectory falls logarithmically for all momentum 

transfers, while the CIM predicts that the effective trajectory should approach 

a calculable, process dependent, constant (provided the form factors have fixed 

power law fall off). 

In this paper we analyze the pp and np elastic scattering data extracting 

effective trajectories and residue functions. For this purpose it is very 

important to distinguish between 

s@ tt) and (4 cY(t) (1) 
in order to treat the large momentum transfer region properly. The results 

are then compared to the predictions of the two theories. In addition we 

complement the two models by including a Pomeron contribution and in each 

case present a fit to the full momentum transfer range of pp elastic scattering. 

Having performed this fit at low energies, s below 60 GeV2, the resulting 

Pomeron extrapolates very well to ISR energies. 
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2. PROPERTIES OF THE CIM AND LDM 

In this section we will review the properties of the parton interchange 

and lo^garithmic dual models with emphasis upon their predictions for asymptotic 

effective trajectories and residue functions. (See also ref. 3). ) We begin by 

demonstrating that the interchange and logarithmic trajectory models are the 

only ones that provide a uniform fixed angle link between forward and backward 

Regge behavior. The argument is essentially the same as that given by Arik. * 

Consider an exotic s-channel amplitude. For small (-t) and large (-u) the 

leading asymptotic term is presumed to have the standard Regge form 

Q,(t) 
P,(t) (4 t (2) 

whereas for large (-t) and small (-u) (i.e., in the backward direction) the 

leading term is 

QQ4 
P,(u) t-4 * (3) 

(Throughout this paper we define the Regge form to have scale factor = 1. Any 

power dependence of P(t) can be absorbed by choice of a different scale factor.) 

If one now requires 8) that the fixed angle amplitude be obtained either as the 

large t limit of the forward Regge form or as the large u limit of the backward 

Regge form we obtain 

p,(t) (4 
Qp 

= p,(u) (4 
yp) 

9 (4) 

when both t and u are ,asymptotic. The only solution to this functional equation 

is 

P,(t) t-4 
a,(t) 

= PoWo) 
ypo) 

(-u/u,) 
y) 

(5) 
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with 

Q+(t) = q-to) - d .%-t/to) , 

. with the u channel results obtained by t - u interchange. If nonleading con- 

tributions are also considered, the trajectories become more general functions 

of t but approach the above form at large t (ref. 9) ). 

The general result with a nonzero d corresponds to a logarithmically 

decreasing trajectory (as in the dual model amplitude), while the special case 

with d=O is the prediction of interchange theory that all trajectories approach 

a constant at large negative t. In addition we see from eq. (5) that B,(t) of 

eq. (4) has the form 

P,(t) = PO t-w,) 
yp) -q-t()) 

(u,) . (6) 

That is the effective residue function for, say, the t channel, is an increasing 

or decreasing function of negative t depending upon whether or not the crossed 

channel trajectory, extrapolated to -1 using the forms of eq. (5), is positive 

or negative. In particular, for the interchange case, in which effective tra- 

jectories are negative asymptotically, the residue function always decreases 

for increasing (asymptotic) negative t. Nonasymptotic corrections can have a 

considerable effect however. In practice, the asymptotic interchange amplitude 

can take the form (up to logarithmic modifications) of a sum of two such terms, 

both of which are important at fixed angles with only one dominant in the “Regge” 

regions (the coupled channel problem exhibits this behavior 10) ) , or the form of 

a convolution integral which reduces to eq. (5) (with d=O) in either “Regge” 

region. 

The interchange contribution to bound state scattering is depicted in fig. la, 

the two scattering states simply interchange two of their respective fundamental 
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constituents. In many respects this is the simplest possible theory of deep 

elastic scattering since for simple wavefunctions,it requires a knowledge only 

of the form factors of the colliding particles, and not a detailed understanding 

of the underlying forces which bind the constituents together to form the 

physical hadrons . Furthermore, constituent interchange inevitably occurs in 

any composite model of the hadrons. 

To the extent that it is not necessary to explicitly exhibit vector gluons 

(or other binding forces) either because of a weak coupling constant or some 

type of selection rule, Reggeization in the small angle region must proceed 

via t-channel iteration of the interchange amplitude. This is discussed in 

detail in ref. lo). On the other hand, vector gluon exchanges (such as those 

depicted in fig. 2) could well result in the Reggeization of the scattering 

11) amplitude . Since this type of Reggeization preserves the topology of the 

usual duality diagrams, one might expect that there exists a dual amplitude with 

Regge behavior which in the limit of weak gluon coupling strength reduces to the 

parton inter change amplitude. 

If in analogy with the Coulomb trajectory 11) one identifies the coefficient d 

as being proportional to the coupling constant (g2/4r), then we shall show that 

the dual amplitude discussed here does, in general, reduce to the form of an 

interchange amplitude in a particular limit. 

We begin by reviewing the general form of the interchange contribution to 

deep elastic hadronic, scattering. The (u-t) topology contribution, fig. la, to 

the invariant scattering amplitude, M(s, t, u) for hadrons composed of two 

spinless constituents may in the simplest 12) covariant model be expressed in 
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the form 

with 

N&G ‘1 i 6 (X-;)‘(l-x)B-l+ e(z-x)xB-I . 

For asymptotic values of t >> u >> m2, this reduces to 

M - t-4 
1-D-A (-uj -C B > Df-A-l , N (-q-B (-U)l-C-A B < D+A-1 

(8) 

while for u >> t >> m2, 

M N (-u)~-~-~ (-t)-B B > C+A-1 
2 (9) 

N (-u)-* (-,)1-A-D B < C+A-1 

where $A, which describes the breakup of particle A into its constituents, 

behaves asymptotically as l/tA. Up to possible logarithmic modifications, this 

same power law characterizes particle A’s electromagnetic form factor, 

FA tt) N l/tA if the hadronic constituents are pointlike. This expression must 

be symmetrized in the particles A, B, C, and D. In the case of identical 

particle scattering, there are additional singular end point 

we obtain (for u >> t >> m2) by keeping both NB terms 

MT y (-t) 
UB 

1-2B + a$ (-U)1-2B 1 

contributions and 

with the result for t >> u >> m2 obtained by t ct u interchange. A particularly 

important example is that of p-p scattering which corresponds to B=2 (dipole 
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form factor for the proton) for which we obtain 

dfl 1 (-u) + tan(-t) 2 
dt=- 

w 6 
S I (11) 

as an adequate approximation for arbitrary (asymptotic) t and u. If we neglect 

the logarithmic modifications in the region of 90 degrees, this is equivalent to 

dg 1 1 
YE-- s12 (l-z2)6 * 

(12) 

The above discussion has assumed that only (u-t) topology graphs contribute to 

p-p scattering. This is certainly the case if, as argued elsewhere, only 

valence quarks are present in the proton’s wave function at high transverse 

momentum. 

The effects of spin complications and more detailed dimensional counting 

models for the proton 14 can be significant. A detailed calculation in such a 

model yields fixed angle l/s 10 behavior with angular behavior .of 1 

do 1 1 10 (1-z2)6 ’ 
i.e., - -- dt 

S1° (1-z2)6 * 
The l/s result depends upon assuming no pairing 

of quarks in the ‘proton wave function; if the n quark is paired to one of the p 

quarks (as deep inelastic data may be indicating) the two particle approximation 

used in deriving eq. (12) is valid and 1/s12 behavior results. Theoretical 

models involving specific vector gluon diagrams which preserve the pn quark 

pairing within the interchange diagram can be used to verify this result. 

Equation (12) and especially the spin l/2 dimensional counting result are 

in fact quite close to the fixed angle fit proposed by Landshoff and 

Polkinghorne 15) i 

da 1 1 
dt-p (1-z2)7 * 

(13) 
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For the quark pairing case, the l/sL” behavior of the fit can be viewed as the 

effezive power behavior exhibited by (s+m 2 -12 for the range of s (s < 45 GeV2) ) 

considered by Landshoff and Polkinghorne 16) . Note that unrestricted use of 

eq. (13) implies that oeff(-a) = -6.5 when, of course, s >> -t. 

The other special case with which we will be particularly concerned here 

is n-p scattering, corresponding to B=D=2, A=C=l in the simplest model, in 

which the pion has a monopole form factor as expected in a two quark model 

with no anomalous dimensions. Since B=DtA-1 the simple formula of eq. (8) is 

logarithmically modified to 

M- Qn t-q .& = 
(-t)2 u - 

Fptt) - + , 

which is valid for arbitrary (asymptotic) t and u. Also, for 7r-p scattering there 

is in general a (s-t) topology 17) interchange graph (fig. lb) which yields a con- 

tribution of the same form as above but with u +, s. The relative size of these 

two contributions depends upon the quantum numbers carried by the constituents 

of the proton and pion. Inclusion of quark spin and a dimensional counting Born 

graph framework modify the above results slightly; for instance the (u-t) topology 

alone yields dt Gc (n-p - 7rp) - l/(t4 su3). 

We should also note that the form 

(l-4 

with nB=B, while valid in either the x - 0 or x -r 1 limit may be too simple for 

intermediate x values, In general there are other contributions to NB(x) of the 

same form but with nB > B. This does not affect the n-p result (except to 

remove the log (t)) but would modify the pp result. In the latter case, for 
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2 u >> t >> m , B there is no longer a l/u , l/u2 term arising from scaling x near 

0 and the dominant contribution to M is 

M- Fptt) - - 5 - ,f ui o (15) 

. For arbitrary t and u this type of contribution is best approximated as 

M-1 
su2t2 (16) 

in the case of pp scattering. 

The above results may be reexpressed in terms of the behavior of effective 

trajectory and residue functions at asymptotic momentum transfer as follows. 

We are going to make an analysis using Regge theory at large angles where the 

criteria for the validity of the Regge expansion are not satisfied. However, the 

validity of the expansion used here depends only on how rapidly the Mandelstam 

double spectral functions approach their asymptotic form. This can occur even 

if the Regge criteria are not met. We define the spin-averaged differential 

cross section as 

da - -4 [MI2 dt 
SLI 

and take 

M- 

For pp scattering we then have for 

(4 am #G(t) lul>> ItI , 

t-4 a@) P(u) ItI >> lul . 

the naive calculations described above, 

1 
m(-m)=-2 P(t) - 3 

t-t) 
(17) 

though there are important, perhaps temporarily, dominant terms for which 

a(-~) = - 3 and P(t) - -L 
(-t)2 D 

(18) 

The more sophisticated three spin l/2 quark model, with fixed angle power 

behavior da/dt N l/sl’ yields 

a(--J) = -1 and p(t) - & . (1% 
(4 
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Even if the dipole behavior of the form factor and hence of the wave functions I 
breaks down as t---co, the above oeff predictions should be approximately 

correct over the sizeable kinematic regime for which the form factors exhibit 

dipole behavior. For 7rp scattering we obtain in the spinless case the asymp- 

totic& channel results for meson trajectories 

a,(-cg = -1 1 and - - 4 (-t)2 ’ 

while for the u channel baryon trajectories, 

(20) 

a$- m) = -2 and p N 1 u (-u) * (21) 

In general, all of the above effective trajectory predictions hold for both the 

I=0 and I=1 t channel trajectories and 1=1/2 and 3/2 u-channel trajectories. 

The above m scattering results are modified in the case of spin l/2 quarks. One 

finds that 01 efft- 4 = -3/z and Pu-* in the backward direction (essentially be- 
t-w 

cause of the necessary helicity change in going from meson to nucleon) while the for- 

ward direction results are unchanged. The limiting values and forms given above 

depend sensitively on the detailed quark model assumed, especially on the angular 

distribution of quark-hadron elastic scattering. Dimension counting rules for a(-=)) 

and P(t) have been given in ref. 3), section 5.4. 

Unfortunately, currently available data cannot necessarily be said to be 

fully asymptotic in the above sense. Thus comparison of the interchange predic- 

tions to the effective trajectories and residues extracted (as described later) 

from the data, must proceed (particularly in the pp case) via performing 

exactly the same extraction procedure upon the full interchange expression - 

that is by treating the full theoretical result as data. These predicted trajectories 

should also hold in inclusive scattering where the increased data rate should allow 

the analysis to be extended to very large momentum transfers. 

In addition one must not forget that an examination of the effects of higher 

order iterated diagrams and of hadronic bremsstrahlung (8) indicates that 

interchange theory Reggeizes smoothly at small momentum transfers. Thus 

even in a theory in which the interchange amplitude dominates at fixed angle 
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for asymptotic energies, the leading trajectories may well be sufficientlylhigh 

near t - 0 to produce the normal Regge intercepts while at large (-t) joining 

smoothly on to the limiting values given above. Thus a direct extraction of the 

effective trajectories from experimental data will yield values which should 

de&&e toward the above limiting values as -t gets large. Secondly, it is 

quite clear that the effective trajectory behaves in an essentially different 

fashion in the pp and np’amplitudes. Consider pp scattering for a moment. At 

fixed s as t decreases from its value at 90’ the iterated Q interchange process 

will begin to couple (see fig. 3). Since oeff(~) > oeff(pp), it is clear that this 

effect will increase rapidly in importance as -t decreases towards zero. It is 

only for quite large -t that the effects of the higher lying np trajectory are very 

nearly cancelled in pp scattering 18) . Thus as t decreases to moderate 

values the effective trajectory extracted for pp scattering should rise to the 

level of the higher lying coupled np trajectory. In contrast the w effective 

trajectory (in the t channel) does not receive iterative contributions from any 

coupled channel with a still higher large t limit for its effective trajectory. In 

addition the Q effective trajectory limit is high to begin with. Thus, the com- 

plications due to coupled channel iterative contributions are not likely to be 

phenomenologically significant except at relatively small t. 

In cases where exotic trajectories are exchanged, such as backward ip (and 

K-p) scattering, one might expect that the rise of the Regge trajectory as u de- 

creases is small. Thus backward scattering should show a behavior character- 

ized by CY- (u-0) - oy, (-W) = -4, with a constant residue. 
PP PP 

Thus the backward cross 

section is predicted to behave as s -10 , which is consistent with the data even in the 

(exotic) backward peak region. 

we turn now to the logarithmically trajectoried dual model (5) which can, 

for our purposes, be most transparently written as 

M = C(q) q+) a(u) p , 

(22) 



T = b-at E = b-au . 

t 1 -- 
4M2 

Qn 7 a(t) = - Qn q 
= o!(to) + Gq ln tog 

1 -0 

Note that the trajectory has a branch point at 4M2 
q 

which one might be tempted 

to identify with the threshold for rrquark’l production 19) . 

It is apparent from the above equation that the parameter l/Qn q plays the 

role of d of eq. (5); in fact in the limit of large t and u the factor P of eq. (22) 

becomes equal to unity and the dual amplitude reduces exactly to the form in 

eq. (5). It has been argued 11) that for Coulomb scattering the Regge trajectories 

are logarithmic with the coefficient of the logarithm proportional to g2/4n, the 

coupling of the vector gluon to the bound constituents. Then taking g2/4, - 0, 

in which limit one might expect to obtain an interchange-like amplitude (i. e. , the 

diagrams of fig. 2 vanish leaving those of fig. 1) would be equivalent to 

l/b q -0, i.e., q - 0 for the dual amplitude. It is apparent from eq. (22) that 

if o(t o) approaches a definite value a0 , as q - 0, an interchange-like result 

obtains (a0 < 0 is required) 

M- ao @o C’(-t) (-u) . (23) 

(This u-t symmetric result is easily generalized. ) 

This proportionality between l/In q and g2/47r is also suggested by the fact 

that the Veneziano amplitude is the q - 1 limit of the more general amplitude of 

eq. (22) provided that 01’) i 

Q~ = 1/4Mz Bnq (24) 

the slope of the resulting linear trajectory, is held fixed, and that o(to) 

approaches a definite limit. Physically this limit corresponds to large r’quark” 
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mass and large coupling constant. Infinitely massive quarks can only be bound 

to form finite massed hadronic states on an indefinitely rising linear trajectory 

*if the^coupling constant issinfinite, again suggesting that 

r) 
!i&‘~ In q (25) 

If the “quark” mass were finite and the “quarks” able to escape, there would 

exist at some energy an ionization point near which the trajectory would be very 

nonlinear. 

Thus we see that there is a continuum of physically reasonable models 

with increasingly flat trajectories at large momentum transfer. Sufficient 

experimental information to distinguish between the dual models and the inter- 

change model (with Reggeization complications included), in the case of pp 

scattering is not currently available. Similarly, a 7rp dual amplitude has not 

been developed theoretically. The difficulties in making this distinction will 

become apparent in the following sections. Among these models, the inter- 

change model does have the advantage that results for other types of processes, 

meson and proton initiated processes as well as inclusive processes, are easily 

and unambiguously obtained (once form factor behaviors are known or given) 

and appear to agree well with experimental data. It is not clear, however, 

that similar agreement cannot be obtained with the dual model. Higher energy 

fixed angle measurements (say for 60 GeV2 < s < 100 GeV2) together with 

correlated form factor measurements would probably be definitive in the proton 

case, and are certainly highly desireable. 

As a final note, we should, perhaps, emphasize one further complication 

which might be present and would make the distinction between interchange and 

dual models still more difficult. It is quite conceivable that form factors do 
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not have fixed power law fall off at increasing momentum transfer, but rather 

the effective inverse power, n in l/tn, could be an increasing function of -t. 

This%, in fact, expected in the above mentioned dual models, as well as in 

l’scale invariant” parton models 20) . Thus the wave function damping employed 

in the interchange computation should perhaps be a function of the kinematic 

range being examined. 

3. DATA ANALYSIS 

This section is devoted to an analysis of the existing data for pp and m 

elastic scattering. Emphasis is given to the extraction of effective trajectory 

and residue functions at high momentum transfer. In performing this extraction 

it is essential to understand the variable dependence of the scattering amplitudes 

particularly when t is a substantial fraction of s. For large t the difference 

between so1 and uo is substantial. For instance, if the amplitude actually was 

given exactly by 

Ptw-urn (26) 

but the t channel effective trajectory is extracted using the variable s, one 

would obtain 

oeff = & (27) 

by neglecting masses relative to t and s. That is, because of an inappropriate 

choice of variable, the extracted trajectory would be considerably lower than 

its ultimate value (for large s >> t) if t is a reasonable fraction of s. Corre- 

spondingly if one has data for more than one value of s at any given t substantial 

variation in the extracted effective trajectory should be observed in this 

example. 
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These considerations are of crucial importance in the case of pp scattering. 

Most theories, including the dual models and the interchange theory, predict 

-that tee differential cross section should have the form 

2ae,,(t) 
s (s-4m2) 2 = (-u) 1 P(t) 1 2 (lul-->> ItI) . 

That is, the invariant amplitude should reflect the underlying (u-t) topology of 

the contributing diagrams. This requirement is equivalent to the requirement 

that the nondiffractive component of Regge behavior in pp scattering should be 

purely real, there being no direct channel resonance contributions. Thus as 

argued above power law behavior of the invariant amplitude will be more quickly 

revealed, and with less ambiguity, if effective trajectory and residue analyses 

are performed using the variables u and t. 

A direct extraction of the effective trajectory from the data 21) according to 

eq. (28) yields the results of fig. 4. Figure 4a shows that the.effective trajec- 

tory falls from 1 at small t in a nonlinear fashion to -2.7 at the largest t value 

for which the extraction can be performed. The pp data employed is that 

available with s < 60 GeV2. The indicated errors on this extraction arise mainly 

from a small s dependence of aeff at any given t. (Usually aeff tends to increase 

slightly as s increases at fixed t. In fact there is some evidence for a slight 

break in the s dependence at approximately .&?n(-u) = 3 from fig. 4b in which we 

plot the log of the invariant amplitude squared, s2da/dt, as a function of dn(-u) 

for various integer t’values. ) The corresponding residue function is presented 

in fig. 4~. It is immediately apparent that the extracted residue tends to 

increase with increasing -t. This behavior would seem in disagreement with 

the interchange predictions, for asymptotic Regge expressions, of section 1. 

However from eq. (11) we see that in the region of 90 degrees (z < 0.5)) secondary 
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terms are significant and a more careful examination is required. We will 

return to this point in a moment. 
-c, 
First we give the results of the effective trajectory extraction if the 

variable s is employed for the Regge dependence instead of the variable -u. 

These are given in fig. 5 . Two features of the graph are immediately apparent. 

First the effective trajectory falls much more rapidly in -t. Second, there is 

considerably more s dependence of the extracted trajectory at any given t (as 

indicated by the error bars 22)). In addition to which a number of discontinuities 

appear which can be traced back to substantial changes in the s of the data 

corresponding to the t values on either side of the break. The above anomalies, 

we argue, are evidence in favor of the u variable extraction being most 

meaningful. 23) 

Let us return to assessing the degree to which interchange theory is able 

to describe the effective trajectory behavior given above. For this purpose we 

will take the form (see eq. (12)) 

g = (s+m2)-l2 (1-~~+4rn~/s)-~ 

as representative of the interchange result in the s < 60 GeV2 range. (Note in 

particular, that we use l/~~~~(l-z~)~, instead of the asymptotically equivalent 

form l/(tu)n. Also, ad hoc mass corrections have been included. ) We consider 

t> 3 GeV2 only, and take m2=1 in eq. (12a). Performing the aeff extraction 

using eq. (I2a) evaluated at the kinematic points for which actual data is 

available, we obtain the results of fig. 6. (Also given in this figure are the 

corresponding results for the Landshoff-Polkinghorne formula eq. (13). ) 

Two correlated differences between these graphs and those of fig. 4 are immedi- 

ately apparent . The effective trajectory of the interchange result is much 
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flatter (for t > 3 GeV2) and the residue function, while not falling very rapidly, 

certainly does not increase as for the actual data (t-channel Reggeization of 

the in&change graph can be expected, as discussed earlier, to lead to a much 

more steeply falling trajectory than the basic interchange graph alone; if the 

natural scale factor of the Reggeization, i. e. , in (-u/u ) OJ tt) 
0 , is then larger 

than 1, the residue discussed here will inevitably increase as (-t) increases). 

The above type of difference is, in a certain sense, second order. In the 

physical amplitude the decrease associated with a falling trajectory is compen- 

sated by the rising residue in such a way that an effectively flat trajectory with 

roughly constant residue gives approximately the same differential cross section 

in the kinematic range considered. In fact, if we restrict ourselves to t/s>. 2, 

the ratio of the experimental cross section to the theoretical cross section, 

eq. (12a), does not change by much more than 50% from its central value for 

s < 60 GeV2 and in the range 20 < s < 40 by no more than 30%. However, closer 

analysis as done here reveals definite systematic, and, as described earlier, 

expected differences, associated with the effects of Reggeization. These 

differences can best be summarized by the graph of fig. 7 in which we sche- 

matically plot the log of the differential cross section associated with a slowly 

falling trajectory and constant residue function, in comparison to that associated 

with a more rapidly falling trajectory and rising residue. The t range is chosen 

such that the fixed angular range coincides more or less with that of the actual 

data. 

One sees that, for the lowest s value, over the given angular range the 

true cross section divided by the theoretical cross section (with flat residue, 

as indicated by the s independent intercept) should tend to increase as t 

increases, while just the opposite effect should be observed at high s. Careful 
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numerical examination of the above ratio reveals such a trend. The point of 

crossover is in the vicinity of s = 35 GeV2. Examination of the above ratio is 
4 

also useful in evaluating the relative merits of the l/s 10 behavior of eq. (13), ‘ 

the Landshoff -Polkinghorne form. Use of this energy behavior introduces 

systematic discrepancies at the highest s values (45 < s < 60 GeV2). To 

demonstrate this we have plotted in fig. 8 the range of variation of the experi- 

mental to theoretical cross section ratio (in arbitrary units) as a function of t 

for the various s values at which large angle data is available. In fig. 8a 

eq. (12a) is compared to the experimental data (we require t/s > .2 for this 

case) while in fig. 8b we employ the LP form eq. (13) (we require t/s > . 1). 

For s < 40 GeV2 eq. (13) works as well as eq. (12a) did over the smaller t/s 

range, except for the appearance of a systematic s dependence. (The ratio falls at 

high s indicating that the l/sL’ power is too weak. ) The improved t/s range 

of eq. (13) is associated with its stronger z dependence. Were we to modify 

eq. (12a) by increasing the power of the angle dependent factor from 6 to 7, as 

might be appropriate after spin effects are included (the pn quark pair probably 

have spin 1 in any realistic model), the t/s range over which 50% or less 

variation occurs is extended to t/s > . 1. However, we see no reason to expect 

that fixed angle formulae should work for z > .6 at present energies, in any 

case. (For either choice of z dependence in eq. (12a) the systematic s 

dependence observed for eq. (13) is considerably reduced.) 

The failure of a l/s lo behavior, because of the fixed angle nature of the 

data, is roughly equivalent to the observation that the Landshoff-Polkinghorne 

form, eq. (13), will never yield an effective trajectory as low as the value 

-2.7 obtained at t= -19 GeV/c’, even temporarily. (Recall that oeff - -0.5 

according to eq. (13) when s >> t .) Equation (12a) does considerably better in 
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, 

this regard. For instance at t= -19 eq. (12a) gives aeff = - 2.1 while eq. (13) 

gives aeff = -1.5. Only for the modified NB form, however, of eq. (5) with 

oeff z-3 could the present trend of the extracted trajectory be said to be indica- 

tive of the eventual result. Of course, there exists the possibility mentioned 

at the end of section 1, ‘that the wave functions employed in the interchange 

calculation should be given stronger damping than dipole, when probed in the 

s > 40 GeV2 kinematic range, in which case a! eff falls below -2. Direct meas- 

urements of the proton’s electromagnetic form factor beyond t= -25 GeV’ would 

determine whether such modification is necessary. 

One should also keep in mind the possibility that while the 1/s12 behavior, 

corresponding to pn quark pairing within the proton, may be dominant at present 

energies, a l/s lo behavior in which the pair is broken apart will, if present at all, 

ultimately dominate. 

Finally we should note that if instead of l/s2n (l-~~)~ in eq. (12a) we used 

the asymptotically equivalent form l/(tu)n the results would have been signifi- 

cantly different, the latter form not being as consistent with the experimental 

data. This again illustrates the significance of mass corrections when s < 60 

GeV2. Given this fact, the uncertainty in the form of the interchange formula 

itself and the complications of iterative Reggeization which are certain 

(particularly for pp scattering) to convert a fixed angle formula such as eq. (12a) 

into one with a rising trajectory (as -t decreases in the present range, -t < 20 

GeV/c’). it’ is difficult to decide whether or not an interchange description will 

work with precision for pp scattering at fixed angle. Only higher s measure- 

ments will provide a definitive test. 

The logarithmic trajectory dual model provides a better description of the 

effective trajectory and residue. Though the full dual amplitude with no 
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asymptotic approximations can be compared directly with the data, as is done 

in the next section, it is useful to examine an illustrative rough description of 

the d%a in which we drop all nonleading asymptotic terms. The large t and u 

limit of the dual amplitude is exactly given by eq. (3) with d not equal to zero. 

That is the trajectory continues to fall as -t increases in magnitude. More 

precisely from eq. (22) we obtain 

M-q a(u) a(t) = (-u)w~ @-atpwwl 

with a logarithmically falling trajectory 

i.e., M is completely determined by the three parameters a, b, and q which 

characterize the trajectory. We can determine the appropriate values for these 

parameters as follows: 

(a) trajectory intercept = l/2 implies that 

1 Qnb 
-=In Or 

l/2 
2 b=q 2 

(b) the passing of the experimental trajectory through 0 at 

t = -2 implies 

b+2a=l , 

(c) the trajectory curvature determines q 

q = At/At1 , 

where At and, At’ correspond to the t intervals between 

two successive changes of the trajectory a! by one unit. 

From (c) and fig. 4a we obtain q = .75 which yields b = 0.86, a = 0.07. We 

should then have, roughly, at large t, 

M - (wu)+) (-tjnnb/Jn q . 
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In this formula Q(t), of course, fits the experimentally determined aeff of 

fig. 4a very well. From fig. 4b we see that the experimental residue increases 

roughly only as t2 though at the highest t values an increase of t8 would not be 

inconsistent. However, this apparent disagreement for moderate t is purely an 

artifact of our asymptotic approximation which is not justified there. The small 

value of a (which from eq. (28) is equivalent to a large Regge scale factor, 

u. = l/a) implies that for the t and u range of present data the approximation P=l 

is not valid., Even for very large u, where G(q/r), G(q/c) - 1, we should, for 

moderate t, still include l/G(q/r) in the residue function. The decrease of l/G 

towards its large (-t) limit of unity diminishes the rise of the effective residue 

function. 

Thus in the dual model the parameters of the trajectory determine the 

residue function except for an overall constant. For a trajectory of the observed 

shape, the dual model residue function is predicted to rise as‘-t increases. This 

rise is simply due to the fact that the natural Regge scale factor (u,) of the model 

is bigger than the 1 GeV scale factor used in the residue extraction. (Note that 

(l/so) Q! increases as -t increases if a! decreases. ) Thus the dual model provides 

a simple explanation of the rising extracted residue function. However, good 

agreement with experiment requires use of the full dual model amplitude, which 

includes unambiguous nonasymptotic terms in P of eq. (22) (associated with 

daughter trajectories). The most direct check of the ability of the dual model . 
to describe the data is to attempt to fit the experimental data with the full 

amplitude. For this reason we leave detailed discussion of this case to the 

next section in which we will discuss more detailed fits to the full angular range 

of pp elastic scattering which incorporate a Pomeron type of contribution in 

addition to the interchange, or dual, model amplitudes. 
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In the remainder of this section we turn to a discussion of QJ elastic 

scattering for which interchange theory gives a fairly definite prediction, 

eq. ?O), which should not be strongly modified by effects of Reggeization 

except for quite small -t . We have extracted the effective trajectory in this 

case keeping in mind the fact that both (ut) and (St) graph topologies are in 

general present. This complicates the matrix element which must be used. 

Interchange theory predicts for 7rp scattering a large -t cross section of the 

form 

s PZrn $ = p2(t) I 2 (-s) Qeff(t) + ( - u)aeff(t) ,2 
, (29) 

where a! eff - -1 as t-L -03. The relative magnitude of the two terms is fixed 

by simple quark counting rules. Determination of the effective trajectory 

proceeds iteratively. First, a value for the oeff associated with the second 

term is guessed and the data are then used to determine oeff.for the first term. 

The process is iterated until the two agree (as they must in any theory due to 

the relation of the two topologies by s-u crossing). The data of ref. 24) for 

7r*p were used and yield the effective trajectory and residue given in fig. 9a, b. 

The trajectory values oscillate around Q! - -1 for (-t) > 3 GeV/c’, as predicted 

by the interchange theory and in agreement with the values obtained by 

Owen et al. 24) in an analysis of their own data. One should note that this -- 

description of the data demands that both the I=0 and I=1 trajectories have the 

same limiting value. It is satisfying that the residue behavior exhibited in 

fig. 9b is in accord with interchange expectations. The best power law fit to 

the residue function, corresponding to p - l/t2, is adequate over a substantial 

range of t. 
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Interestingly, the Q trajectory shows no indication of continuing to fall 

25) as -t increases . Such a fall would most probably be expected were a 
4 

. logarithmic dual model applicable. In m scattering, the kinematic range for 

which a! is observed to reach its relatively high asymptotic value is quite 

accessible, making this an important test of interchange theory for exclusive 

processes. It should be noted that the oeff = -1 limit depends only upon the 

behavior of the pion’s wave function, an object predicted to have simple mono- 

pole behavior for arbitrarily large off-shell masses by the two quark model. 

In addition this monopole behavior has been indirectly verified by the success 

of the interchange theory of high transverse momentum production of pions at 

the ISR26). The above simplicity should apply also to processes such as 

photoproduction of pions for which interchange theory predicts a high a,,(-“), 

3) as high, perhaps, as -l/2. (See ref. in which inclusive evidence for high 

aeffls in y+p - (K, p, n) + X is discussed. ) 

Thus we have seen that effective trajectory analyses can provide a sensitive 

and useful means for describing data and pinpointing the nature of any proposed 

theoretical description of the data. The fit of Landshoff and Polkinghorne 15) to 

deep elastic pp scattering, which is quite good on the average, is revealed as 

systematically different from the data. Inclusion of Reggeization effects in 

interchange models is necessary to describe the existing pp data with s < 50 

GeV2. Higher energy measurements will be required before any firm conclu- + 

sion can be drawn concerning the validity of interchange-like formulae at fixed 

angle. It does appear, hotiever, that forms with ultimate l/s 10 behavior are 

in trouble. In contrast, 7i-p scattering with its relatively high asymptotic 

effective trajectory (resulting in the relative unimportance of Reggeization 

effects except at quite small -t) appears to be well described by the interchange 

result. A combination of Regge and CIM terms has been used to fit pp -. 7;‘~~ 

by Donnachie and Thomas . 25) 
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4. PROTON-PROTON ELASTIC SCATTERING 

This section attempts more complete phenomenological analyses of pp 

elas& scattering, based upon the interchange and dual models. Both models 

must be supplemented by a specific ansatz for the forward diffractive 

contribution. 

A. Interchange Theory 

We will employ here the form of eq. (28a) ignoring iterative Reggeization 

effects. Our aim here is not an absolutely precise fit to the large angle region, 

but rather an attempt to use our relatively good understanding of this region as 

a tool in extracting from the data with s < 45 GeV2 (the Coconni data is not 

included) the true shape of the Pomeron contribution. We find that the Pomeron 

must have substantial structure such as that of the form 

p = i sA eW+b h S) P 
+ cs S 

s(PL=19. 3 
> 

GeV/c) @ fll J&R&b eht , (39) 

The first term is, of course, the normal forward peak with possible shrinkage 

allowed for (we restrict ourselves to t > . 1 GeV/c’). The second term can be 

thought of as an edge effect as suggested by G. L. Kane 27) and provides, as it 

turns out, the necessary structure, in the form of a sharp break, in the forward 

direction around -t - 1.2 GeV/c’. In addition, this second term does have an 

important effect at high s values, out to -t -8 and provides much of the extra 

contribution required in the t/s < . 2 range where eq. (28a), alone, predicts too 

small a cross section. The constant C is real for a true edge effect. The 

second term is required to,vanish in the forward direction for simplicity. An 

equally good description of the data is possible in which this term is made pure 

imaginary, corresponding to a secondary diffractive minima or multi-Pomeron 

effect in which case the energy dependent factor (s/s(pL= 19.3)) should be 
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replaced by some power of h s. The resulting “Pomeron” then has a very 

sharp dip such as that seen at ISR. 

T^he best fit (28) to the data yields the values 

A = (70.0 pb) l/2 

a= 2.32 b = 0.57 

C= -0.594 @b/GeV/c) l/2 
(31) 

p = -0.335 R = 0.784 h = 1.14 

where the parameters are given in GeV/c units. 

The interchange contribution will include the inevitable and very necessary 

mass corrections of eq. (12a) in a slightly more general form. These correc- 

tions are present, of course, in any nonasymptotic description of the form 

factors. These not only render it finite at z=l but they also tend to increase the 

level of the effective trajectory for the interchange contribution at small -t. 

This latter trend is desirable as we know from section 2. Assuming that the 

nucleon form factors ultimately fall as dipoles, the interchange amplitude will 

be written as 28) 

I = N(l-z2 -k 4m2/s) -3 (s+4h2)-6 (32) 

which yields eq. (13) in the asymptotic limit. The total scattering amplitude is 

then P+I. The fit could be improved by slightly increasing the assumed fall 

off of the form factors but this will not be done here. The best values of the 

parameters in I are all reasonable and turn out to be 

m2 = 1.06 , A2 = 0.784 , N= 1.42~10-~ ts(pL=lg. 3)? dib 

(33) 
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The above amplitude is compared with the data in fig. 10. The x2 of the fit was 

646 for 395 data points; nine parameters were adjusted. 

A number of qualitative features of this description of pp elastic scattering 

are of particular interest. One may isolate the contributions to the amplitude 

of the three terms, for ‘various values of the energy. A physical picture 

immediate emerges. For low values of lab momentum, 

the interchange contribution I hides the secondary lrhump’* structure of the 

Pomeron. However, since I falls rapidly with the energy, the secondary maxi- 

mum becomes increasingly exposed as plab increases. Indeed at ISR energies, 

the interchange contribution is exceedingly small for the moderate -t values 

(< 6 GeV/c’) measured so far. Thus the ISR data reflects only the forward 

diffractive effects. It is interesting to note that the extrapolation of our diffrac- 

tive terms (with parameters determined from the intermediate energy data) to 

ISR energies is in good qualitative agreement with the data. Thus the inter- 

change description of fixed angle scattering has allowed us to account reasonably 

successfully for the non-Pomeron portion of the scattering amplitude making 

even a moderate energy extraction of the purely diffractive terms, including 

otherwise hidden structure, possible. 

Thus, in elastic pp scattering we may be seeing relatively clearly the two 

most basic types of interaction mechanisms likely to occur on the parton, i.e. , 

proton constituent, level. It has been shown that the ISR Pomeron shape (which * 

is much like that at lower energies according to the above extraction) is well 

described in a sophisticated version of the Chou Yang model 29) which in its 

simplest form says 

da 
x = G4(t) (34) 

- 26 - 



as a result of the contribution of diagrams like that of fig. 11 , i. e. , vector 

gluon exchange between the partons. (The more sophisticated versions of this 
- 

model include s-channel iterative effects which cause the Pomeron to have 

substantial structure and to be smaller at large t relative to its t=O value than 

in the simpler model of eq. (34). ) The large t region is reasonably well des - 

cribed by the other fundamental interaction, parton interchange. This contri- 

bution as we have seen, can also be important at small t and moderate s for 

which it obscures the Pomeron structure. As s increases more and more of the 

first contribution is uncovered. 

B. Dual Model 

A glance at the pp elastic scattering data of fig. 12 shows that there is a 

strongly energy dependent contribution associated with the positive curvature 

“tails” in the In (da/dt) plots. This positive curvature contribution is smaller 

at higher energies and at sufficiently high energy an energy independent diffrac- 

tion minimum is revealed, fig. 13 , at t= -1.3 followed by a maximum at t= -2. 

The energy independent diffractive component has negative curvature and its 

effects are easily recognized at moderate energies. The philosophy of the dual 

model fit is to identify these two contributions with normal Regge terms and the 

Pomeron in accordance with the Harari-Freund hypothesis 30) . The only new 

feature is the range of t over which the Regge ideas are applied. The dual 

model fit of ref. 6) works very well out to t = -24 GeV2. In fact, one dual term 

provides a very good description of the data in the region -t > 5 GeV2 and 

s> 18 GeV2. As has been noted by Barger et al. 23 ) 
-- another Regge exchange 

contribution is needed in the region s < 18 GeV2. This is in accord with our 

aeff extraction and is related to our plab > 8.5 GeV/c cut in the data. The point 

is that there is a lower lying trajectory falling off faster in -t than the trajectory 
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of fig. 4. This trajectory has sufficient coupling strength to be important up 

to s = 18 GeV’. Dual model fits to the lower energy range as well as the higher 
4 

energy range are fully in accord with this picture. That is, good fits are 

obtained with a sum of two dual terms, each involving different trajectories. 

Since the Pomeron contribution to go-degree scattering data is negligible we 

can use the go-degree data to demonstrate how the second trajectory contributes 

to the s < 18 GeV2 region. In fig. 14 we show curves for the one dual term (1) 

and two dual term (2) contributions to pp go-degree data. Note that the slight 

nonlinear behavior of the go-degree data is described with precision. Of course, 

from the go-degree data alone one could not infer the presence of two trajectories. 

However, since the dual model fit covers a vast area of the s, t plane and there 

does appear to be more than one trajectory contributing in pp elastic scattering, 

linear fits to go-degree data may represent an oversimplification of the under- 

lying dynamics. The parton interchange model relates the near‘linearity of the 

go-degree curve to the near dipole behavior of the proton form factor and does 

not predict that the go-degree curve should be perfectly linear. 

When dual model fits to the It I > 5 region are extrapolated back into the 

region where the Pomeron contribution is important, it is found that the dual 

component accounts for nearly all of the cross section at the t= -1.3 shoulder 

as in fig. 15 . Thus, the Pomeron component is seen to have a much sharper 

dip (dashed line in fig. 15 ) than is visible in the data itself. Amazingly, when 

the dual contribution is ,extrapolated to ISR energies, it still appears to be 

contributing at the t= -1.3 dip (fig. 13 ) and determining how much of the diffrac- 

tion minimum is revealed. In fig. 16 we show curves for an extracted Pomeron 
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contribution assuming that the Pomeron is purely imaginary and using 

- 4, 
du =- 
dt 

Note that the dual contribution to pp scattering is purely real. It is remarkable 

that the extracted Pomeron contributions present the same qualitative features 

at low energies as at ISR energies 

dip structure at t = -1, 3 (GeV)2 

same slope for large t: A = 1, 9 (GeV)-2 . 

In order to obtain a fit at all angles6) we add an eikonalized Chou-Yang 29) 

Pomeron exchange term to our two dual terms. Details are given in ref. 6) . 

The comparison with experimental data at moderate energies (12-24 GeV) is 

shown in fig. 12. For ISR energies, especially for It I > 2 (GeV)2, Chou-Yang 

Pomeron exchange term gives a too rapid fall off with t and inclusion of diffrac- 

tive dissociation is necessary to describe the data 31) . 

In addition to the differential cross section the dual model (with the zero 

width resonances smoothed out 16)) together with the optical theorem was used 

to fit the pi/pp total cross section difference 697) and the ratio of real to 

imaginary part for pp scattering amplitude. (See figs. 17 and 18. ) We observe 
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that cr$p)-cr(pp) is well described for p lab>-1. 3 GeV/c and the ratio of the real 
- 

to ima^ginary part works well for plab > 4 GeV/c. The two trajectories of the 

dual amplitudes were constrained to have the same q which was found to be 

q= .795. Their intercepts were a! 1(O) = 0.8 and o,(O) = 0.37 and the coupling 

of cy2 was found to be much greater than that of CY~. One might speculate that 

there is a connection between these two Regge contributions and the pn quark 

pairing or no pairing possibilities discussed in Section 3. The coupling of the 

lower lying effective parton model trajectory (with pairing) is expected (and is 

found) to be greater than the higher lying trajectory. 

. - 

A different possibility was proposed in ref. 6) . There the trajectory with 

the weakest coupling, al, was identified with oP and it was noted that Serpuhkov 

measurements of 7r+p and 7rBp total cross sections give (Y 
P 

= 0.7 which is higher 

than the charge exchange value of a! 
P 

= 0.5 and near the value of al(O) = 0.7. 

The second trajectory which couples strongly was identified with the omega and 

the intercept a,(O) = 0.37 is just the conventional value of the omega intercept. 

With this identification, universality of omega and rho couplings turns out to be 

approximately true in the range 5 GeV/c < plab < 25 GeV/c. For plab = 12 

GeV/c and t = 0, the ratio of omega to rho contributions was found to be 10 as 

compared with the expected theoretical value of 9 (ref. 32)) . 

Arik 7) has argued for a slightly different parametrization of tr2 and 

identified it with an exchange degenerate omega, rho, f, and A2 trajectory. 

He takes q=O. 9 for o2 so that the spectrum of leading meson recurrences is 

more linear and very close to the observed spectrum. 
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4. CONCLUSIONS 

In this paper we have attempted to make several points ranging from the 

#theoretical to the phenomenological. In this latter category, it has been shown 

that attempts to extract effective trajectories at large momentum transfer from 

the presently available (finite energy) data are model dependent. This effect 

arises from the difference between the two asymptotically equivalent Regge 

forms for the energy dependence of the amplitude, so or (-u)~. A model must 

be used to assign the proper linear combination of these forms. However, it 

was shown that in the case of pp scattering the theoretically preferable, s-channel 

exotic, (ut) form (-u) Q(t) of the amplitude gave a more energy independent 

effective trajectory than the naive (St) form. Thus the data itself can be used to 

restrict the possible combinations if it is sufficiently accurate and copious. 

The trajectories that were found here for pp and r-p scattering were not 

linear. They were much flatter at large momentum transfers than the conven- 

tional ones. Whether these trajectories ultimately approach negative constants 

(which must be integers if dimensional counting is correct) or fall slowly (such 

as in the logarithmic trajectory dual model) cannot be answered with certainty 

at the present time. The n-p data seems to strongly prefer the flat trajectories 

of the interchange model at large 1 t 1. This reaction also has a trajectory which 

is definitely higher than that found in the pp case. This situation could only 

occur if there is a cancellation of the leading trajectory in the pp case such as 

is found to be theoretmally necessary to enforce factorization and the proper 

fixed angle behavior. 10 One should always keep in mind that the effective tra- 

jectories are just that, and they are expected to vary with energy due to the 

contributions from cuts, subsidiary trajectories, etc. This may be especially 

important at small t, whereas the large t limits should be quite independent of s. 
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Both the CIM and the LDM agree very well with the pp data. However, the 

detailed agreement of the dual model is clearly superior. The effective Regge 
- 

residue extracted from the data clearly reflects this fact, since the dual model 

residue prediction is in better agreement with the data than is the CIM. An 

additional feature of both model fits is that the structure of the Pomeron which 

is required to fit the “shoulder” in the vicinity of t = -1.3 (GeV/c)’ at inter- 

mediate energies (s ? 60) is in remarkable agreement with the structure 

observed at the CERN-ISR in pp elastic scattering. 

The overall result of our study of the large It I region for pp and 7r-p 

scattering is that there is strong phenomenological evidence that the forward 

and backward coherent Regge regions smoothly extrapolate to the same fixed 

angle behavior in the central region (0 u 90’). This extended duality is a strong 

restriction on the theory and provides rather unusual and unexpected connections 

. - between Regge trajectories and residues. 

We have also found in this work that there may be a close relationship 

between the CIM and LDM and that the latter theory goes over into the former 

as certain coupling constants approach limiting values. It is already well known 

that there is a limit in which the LDM goes over into the ordinary dual model 

with linear trajectories. 

The simple behavior of the data at large momentum transfers, and the 

simple interpretation given in theoretical terms by the CIM and the LDM should 

provide an interesting area of study. Clearly more data is required on more 

reactions at more energies at all angles before the validity of the theoretical 

ideas used here can be fully assessed. However, the agreement already 

established on a variety of reactions at energies which range from plab - 5 GeV/c 

to the ISR is impressive and encouraging. 
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1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

FIGURE CAPTIONS 

a) Interchange topology - ut diagram. 
- 
b) Interchange topology - st diagram. 

a) ut and b) st vector gluon exchange diagrams which could 

contribute to Reggeization. 

Illustration of the coupling between pp - pp scattering to pn - pn 

scattering as t channel iterations become important. 

4 Extracted effective trajectory for pp elastic scattering. Error bars 

indicate typical amount of s dependence of extracted a! eff at any given 

t . The variable (-u) is employed. 

b) Extracted residue function, p(t). 

4 Plot of In (s2(d@/dt) vs Bn (-u), indicating a possible change in slope 

(for given t value) as &I (-u) increases. 

Extracted effective trajectory using the variable s. 

a) Effective trajectory extractions performed using the theoretical 

cross section forms of eq. (12a) (interchange model) and eq. (13). 

b) Extracted residue functions corresponding to the above trajectories. 

Rough comparison of cross sections for which a) the residue function 

t i.e., intercept on a log-log plot) is constant while the trajectory falls 

slowly (with increasing -t ) ; and b) the residue function grows as -t 

increases but the trajectory falls more rapidly in such a way as to 1 

approximately compensate. 

Plots of the ratio of experimental cross section to theoretical cross 

section as a function of t for 

4 eq. (12a) 4 eq. (12a) modified to have increased 

W eq. (13) (1-z2) dependence, l/(l-~~)~. 

- 37 - 



9. a) Effective trajectory for n-p elastic scattering, extracted using 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

eq. (29). 

I$ Corresponding residue function. 

As before error bars indicate s dependence of extracted values. 

Comparison of the phenomenological cross section for the interchange 

fit (eqs. (30), (31), (32), (33)) to the pp elastic scattering data. 

Vector gluon exchange contribution to proton-proton elastic scattering. 

Comparison of theoretical curves with high energy pp elastic scattering 

dab.. 

pp data at ISR energy s = 20 16 GeV2. The dual contribution (solid line) 

passes just below the dip at t = -1.3 GeV2. Subtraction of the dual con- 

tribution from the experimental data eq. (4) yields the dashed “pure” 

Pomeron curve. 

Comparison of experimental points with theoretical dual model curves 

for 90’ pp scattering. 

Differential cross section for pp elastic scattering at pL N 19.2 GeV/c. 

The solid and dashed lines are the dual and f’pure’f Pomeron contributions 

respectively. 

Pomeron contributions at various energies obtained by subtracting the 

dual (normal Reggeon) contribution. Note the dip structure around t = 1.3 

(GeV)2 and the same slope for It I> 2 (GeV)2 at all energies. The solid 

lines represent’a fall off with a slope A = 1, 9 (GeV)-2. 

The solid curve is the dual contribution to u totti%) - ~tot(PP) and the 

points are values determined from experimental data. 

The solid curve is the predicted ratio of the real to imaginary part of the 

forward pp amplitude. The imaginary part is computed from the proton- 

proton total cross section. 
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