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ABSTRACT 

We have investigated the structure of modified field theories. 

Higher derivatives are introduced into the Lagrangian in such a way 

that the bare propagator becomes q -4 -2 rather than q . A modification 

of this type to the gluon propagator in a quark-gluon‘model gives the 

possibility of permanent quark binding. We find that such a model 

has difficulties with unitarity and with infrared divergences when 

treated in naive perturbation theory. If the problems associated with 

going beyond perturbation theory can be overcome, these difficulties 

may be eliminated. 
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I. INTRODUCTION 

Although the quark-parton model has had some impressive successes, 1 

no particles which can be identified as the hadronic constituents have been 

observed. One reaction to this frustrating situation has been to speculate 

that the constituents are permanently bound into the observed hadrons and 

cannot be separated by even arbitrarily large energies. In this paper, we 

will study some properties of an unconventional field theory model which is 

designed to produce this kind of permanent binding. The model involves a 

qe4 bare propagator for the gluon field. The static-limit potential associated 

with this propagator rises linearly with the distance from a point source. 

Other approaches to permanent binding have been discussed by Casher, Kogut, 

2 and Susskind, Wilson, 3 and Chodds, Jaffe, Johnson, Thorn, and Weisskopf. 4 
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Two Dimensional Quantum Electrodynamics 

We can ease into the subject by briefly discussing two dimensional QED 

Ih which displays some of the properties in which we are interested. Although 

this theory is trivial in the sense that it is in the equivalence class of free 

fields, it hasthe advantage of being completely soluble. 

The theory is formulated by writing down the Lagrangian for a spin l/2 

massless fermion interacting with a photon in the usual way. However, the 

equations are interpreted in a space of one time and one space dimension. 

This theory has been solved and discussed from several points of view. 5 The 

most interesting discussion for our purposes has been given by Casher, Kogut, 

and Susskind. h They emphasized the novel permanent binding features of this 

theory. 

The work on this theory has demonstrated that the photon acquires a mass 

and that the fermions cannot exist separately. At an intuitive level, the 

impossibility of producing separated fermions can be understood from looking 

at the Coulomb interaction in two dimensions. (In fact, in two dimensions, 

the Coulomb interaction is everything since the space does not allow transverse 

fields.) Gauss’s Law is 

a2 
- @(t, x) = -ep (t, x) 
8X2 

. 
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A solution for the source 

-ep(t,x) = 6(x) 

- is 

@=1/21x1 . 

This sho(vs that the potential of a point charge grows linearly with distance 

from the charge. An infinite energy would be required to produce an asymp- 

totically separated fermion pair. 

Linearly Rising Potential in Four Dimensions 

Returning now to four dimensional Minkowski space, we wonder whether 

a linearly growing potential arises in any natural way. In fact, it does. The 

function r solves 

v2v2+ = -87r S3(2) . 

This Green’s function equation could be expected to arise from the static limit 

of the Poincare invariant field equation 

a2a2@ = j . (1) 

In momentum space, the propagator for this differential equation is k -4 . 

These considerations suggest the construction of a quantum field theory 

in which the hadron constituents interact through the exchange of a gluon whose 

field satisfies an equation such as Eq. (1). In constructing a realistic theory, 

it is necessary to make a decision as to whether the gluon field should be 

scalar, pseudoscalar, Abelian or non-Abelian gauge vector, etc. The bulk of 

this paper will be involved with elucidating the structure of a quantum field 

satisfying Eq. (1). In order to keep the discussion as simple as possible, we 

have concentrated on the scalar case. However, in constructing a realistic 

theory of quark binding, an Abelian vector or non-Abelian vector field will 
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probably be needed. The scalar case has the disadvantage that like charges 

attract. The Abelian vector case may be thought of as QED with the qV2 

-photon propagator replaced by q -4 . Here we have likes repelling and oppo- 

sites attracting as needed. By comparing with QED, we can see that the 

theory will have improved uitraviolet behavior, which will relate favorably 

to the Bjorken scaling phenomenon. The infrared behavior will be much worse 

and will result in permanent quark binding if the heuristic arguments con- 

cerning the potential can be carried through in a complete theory. A more 

complicated theory6 involving colored quarks would employ a non-Abelian 

vector glue. 

This is not the first appearance of field theories involving higher deriva- 

tives. For early work one should refer to the paper of Pais and Uhlenbeck. 7 

Much more recently, Ken Kauffmann’ has independently discussed ideas very 

similar to those appearing here. His work contains a clear discussion of the 

advantages of the non-Abelian vector gluon version. He emphasizes that the 

self-coupling of the gluons in this theory could prevent the appearance of these 

unusual particles in the scattering states. Another independent approach has 

been developed by Stephen Blaha. * He modified the usual quantization proce- 

dure to get a gluon propagator 

rather than the’more conventional 

1 

(k2 + ie)2 

propagator that we will be using. 

-4- 



Binding 

We have seen that the classical potential that results from a field equation 

- such as Eq. (1) is linearly rising and suggests permanent quark binding. It is 

an open question whether or not this result will obtain in the quantum field 

theory. As an indication of what may happen, we can consider the work of 

Johnson’ and Wilson. 10 

Johnson considered a field theory with a differential equation for the quark 

field + of the form 

(a2 + m2) e(x) = I(x) q(x) . 

He observes that if the quark-quark matrix elements of I(x) are sufficiently 

singular, permanent quark binding could result. Without going into the details 

of his development, we will simply check our theory for the required type of 

singularity. 

In a simple scalar version of the theory the interaction could be 

$64 $2w 

and give 

I(x) = m) * 

To get an expression for Cp in terms of $, we can solve the gluon field equation 

a2a2 <p(x) = $2(x) 

to get 
, 

d’(X) = fin f J d4Y DR(X-Y) e2&) * 
The crucial matrix eleinent 

< quark q II(O) I quark q*> 
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then contains the term 

s d4y DR(-y) <sI$~(O) iq > e i(q-q’) - Y 
- 

(2) 

The retarded propagator satisfies 

a2a2 DR(x) = 04(x) 

and is given by 

D,(x) = A4 d4k 
.-ik. x 

(270 
s (k2 + ie k0)2 ’ 

Expression 2 becomes 

1 

(Q2 + ie Q”)2 
<sl G2(0) Icy’> 

with 

Q=q’-q . 

Since the imaginary part of the propagator goes like 

E (Q”) SYQ2) , 

the matrix element contains a singularity of the type that Johnson argued will 

result in quark binding. A more detailed analysis of our model from this 

approach would be worthwhile. 

For another indication of whether or not the quantum field theory will 

result in quark binding, we will consider the ideas of Wilson. Although the 

specific mechanism he was interested in is not related to our model, his 

introductory d.&cussion was more general. He discusses the matrix element 

from the Feynman path approach. After all gluon field configurations are 

summed over, the contribution of a particular quark path to expression (3) 
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depends on 

exp [-g2 Jd# JdsrV DFpV(x-xYd . 

DF is the free propagator for an Abelian gauge field coupled with strength g 

to the quarks. The integrals are over the quark path being considered. The 

observation which he makes is that quark binding results from the important 

distinction between the usual propagator 

1 

(x-xl) 2 

and the 

Qn (x-x’)2 

which appears in two dimensional, QED. As we will see later, the coordinate 

space counterpart of our q -4 propagator is 

hx2 . 

So, again, we are encouraged in the hope that a complete analysis of the type 

of model we are interested in will show that permanent quark binding results. 

Such a complete analysis is, as in any non-trivial field theory, very 

difficult. In this paper , we will content ourselves with developing the formal 

structure of the model. Attempts at results which go beyond the usual pertur- 

bation approach to field theory will be left for later work. Section II is 

concerned with the formal development of the quantum field theory. The 

usual canonical quantization prescription cannot be applied in a direct and 

unambiguous way to theories with higher derivatives. The method we will use 

seems to be equivalent to the old method of Peierls 11 and (at least for the case 

under consideration) to a method recently proposed by Durr . 12 An alternate 

quantization method involving a dummy field rather than higher derivatives 

-7- 



is discussed in the Appendix. Section III develops the interacting field and 

perturbation theory. It is worth noting that simple interactions involve the 
- 

introduction of a fundamental scale by way of the coupling constant. Section 

IV contains our speculations on what may happen if one can transcendthe 

difficulties of going beyond perturbation theory. 
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II. FORMAL DEVELOPMENT 

Euler-Lagrange Equations 
- 

In this section we will lay out the derivation of the Euler-Lagrange equa- 

tions from a Lagrangian in which higher than first derivatives of the fields 

appear. The fields which appear will be denoted ei(x). The usual notation 

where 

ap zz L 
alrU 

will be 13 used. The Lagrangian will be a function of qi, apei, apavGi, . . . . The 

action is given by 

A= l’d4x2Z’ . 

The first thing to notice is that 

so these quantities should not be varied independently. We now proceed with 

the variation of A in the usual way. Using the relationships 

partially integrating, and taking 

0 = q= apth+= apavsqi= . . . 

on the surface, we get 



We have taken care in restricting ourselves to the independent quantities 

apavei with _ v<p . 

. 
In this context, when the Lagrangian contains a term such as d~aV$iF@Vi, the 

6 variation 6apavei will give flvi if /.J = v and FCGV1 + Fvpl when p# v . This bit 

of inelegance can be eliminated by observing that 

g vTp aCLav [tivi+ (i-6:) Fvlrjj = dpav Fpvi 

with the usual summation convention operating on the right-hand side. If we 

then interpret 

6 
6a a G. aaag+j Fop’ as Fpvi , 

PVl 

The Euler-Lagrange equation becomes 

Conserved Currents 

In order to keep the indices under control, we will restrict ourselves to 

Lagrangians which contain at most second derivatives of the fields. The stress- 

energy tensor is found by applying translation invariance in the usual way. 

a Tpv (x) =’ 0 
P c 

The momentum is i 

Pi-l = $ d3xTr(x) 

The subscript c is for canonical. 
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To study the effects of Lorentz invariance, consider a variation of the 

fields 
h 

*@Qi = x”aP -xpaa! +Fgp 
( 1 

$. . 
J 

The change in 9 is found to be 

Since Lorentz invariance is assumed, we infer 

fL(J . 

Translation invariance 

was used in deriving this expression for 62 . The equations of motion were 

not used. 

When the equations of motion are used to compute 62, we get 

The difference of these two expressions for 65% is then 

62 
+ 6ap 3v~i 

.-HgoP(x) is conserved 
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and the angular momentum is 

c, 

Symmeterization of TpV 

We have seen that 

with 

KP@ = -Kppa . 

Set 

TI-L’ = Tpv + 1 a _ I‘+%)” -K”Pp 
S C 2 P 1 

and 

Since the difference between Ts and Tc is the divergence of a term which is 

antisymmetri c in p and p , Ts and Tc will give the same momentum. Similarly, 

a little work will show that the difference between ,,&ds and ,Adc is a term 

which does not contribute to the angular momentum. Thus, Ts and &ls can 

be used to calculate P and M as well as Tc and &lc . It should be noted, 

however, that the local commutators such as 

, 
are not the same for Ts and T . 

C 

Now 

Tpv 
S 

_ Tip = T;” -TLp + ij Kp”’ . 
P 
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When the explicit form of K is used to calculate the right-hand side of this 

equation, we find an expression which is equal to Lpv. Since Lorentz invari- 
h 
ante required L to be zero, we conclude that Ts is the symmetric stress- 

energy tensor. 

Commutation Relations 

In order to avoid as many complications as possible in understanding the 

quantum mechanics of a field which has higher derivatives in the Lagrangian, 

we begin with a simple case. Consider a scalar field Cp with a Lagrangian 

.2= +(a2+)(a2@j . 

The equation of motion is 

a2a2@=o . 

In order to quantize this theory, we will propose a simple expression for 

which has the general properties usually found in this commutator. The 

crucial test will be confronted wheqthe commutators of P and M with @ which 

follow from this are evaluated. 

Since we are dealing with a free field, we expect the commutator to be a 

c-number which is Lorentz invariant and translation invariant. In addition, it 

should be a solution to the field equation which is odd in (x-y) and which 

vanishes for 

(x-y)2< 0 . 

We can satisfy these requirements by taking 

[C+(X), q(y)] = -d- s d4k e(k’) St(k2) emik’ (x-y) 
m3 

. 
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To check that the commutator vanishes for (x-Y)~ < 0, we can use its manifest 

Poincare invariance to choose a frame where 
- 

, y=o and x0=0 , 

Then 

[$(O,<), +(O)] = .A $ d4k e(k”) 6’(k2) e’iG’ 
@Jo3 

so 

Since 

[44x), NY)] = 0 for (X--Y)~ 5 0 . 

k2B (k2) = -6(k2) , 

it is easy to verify 

a2a2 Cm), MY)] = 0 . 

We should note at this point that we could have added to the commutator a 

piece proportional to A(x-y) ,13 However, since the Lagrangian tells us that @ is 

dimensionless, this would require introducing a dimensional constant. This 

seems unnatural. 

For the well known singular functions of field theory, we will use the A 
13 

notation of B jorken and Drell. For the singular functions associated with the 

a2a2 operator, we will use a D notation. Thus, 
, 

[NxL NY)] = i D&Y) t 

and 1 
D(x) = + a --+ 4% m2)~m2=o 

dm 

i =- 
(27d3 

s d4k e(k”) s’(k2) eeiksx . 
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The important equal time commutators can now be calculated. From the 

expression for D(x-y), we can prove a general relationship which is useful: * 

To calculate ‘an equal time commutator we proceed as follows: 

[+(x), go] = 2 --& sd4k e(k”) 6(k2-m2) eSik* (x-y) 1 
m2=0 

-1 * 
J 

d3k 
=- - (W3 4m3 1+ i 12 1 (x0-y') \ ewik’ 

tx-y) 
- c. c. 1 

= 0 . 

By the same method, we can get 

[$(t,<), $(t,3;,1= ia3(Z-y) 

[‘$‘(t,T), @(t,y)] = 2iV2S3(Z-7) . 

The stress energy tensor which results from the Lagrangian is 
14 

<" = (a2+)(d-kv+) - (;Sla2+)(av+) -+gpv(a2q)(a2@) , 

The commutation relations give 

so that 

i Pl”, e(x) = #G(x) . c 1 
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A little work gives 

i[Mup, $(xJ = xQaP@(x) - x~~c$(x) , 

i Mop, &e(x) = C ] (xa!ap- #a") a@ 

etc. The conclusion is that the operators P and M are a representation of the 

Poincare group which is carried by the field $. Thus, our quantization of the 

field has passed a crucial test. 

Particle Content 

We now have a quantum field theory for the field $. In order to find out 

what physical interpretation can be attached to the field, we will go over to 

momentum space. As is usually done, we will look for the particle content of 

the theory. The procedure will be to expand 4 in momentum space and demand 

that the commutation relations of the Fourier components be arranged to give 

back the correct commutation relations in coordinate space. 

The expansion of Cp will be 

@(x) = s d4k O(k”) S1(k2) [e(k) ewikSx + h. c.] 

When the relation 

k2d’(k2) = -d(k2) 

is used, it is easy to see that this expression for @ satisfies the field equation. 

The k” integration is done by pulling out the mass derivative: 

$(x) A” 
, am2 s 

d4k O(k”) d(k2-m2) Cp(k) emikVx -f- h. c. 
ll II m2=0 

= ,,;l [I1 -3 +)+iii;lx”@(k)}e-ik*x+h.c] 
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with k”= I’ifl. We have defined 

?m=M9-w 

$(k) = k”” G(k) 1 
ak” k’=ll;cl ’ 

Since $(k) appears only with k”= I? I , z/(k) is independent of Cp(k) . 

If we assume that 

we find that 

The result we want is 

[$(x),$(y)] = J--$& 3 {[l+ ilXl(x”-yo)j e-ik’(x-y) - cc.) . 

It is effected by taking 

[“Q, v&wJ = 0 

[q!@), &kld = q a3(F-F) 
(27d 

For later convefiience, note that 

[X(k), &f)j = - q S3(KJ?) 
Gw 
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At this point, the correct interpretation for the momentum space opera- 

tors is not evident. It will be helpful to write P@ in terms of these operators. 
c, 
The calculation is completely straightforward but rather tedious. The result 

is 

The momentum space commutators are used in a simple way to verify that 9 

is self-adjoint. It is also easy to show that 

i[P’, $(kd = -i l?@(k) 

and that 

These are (as they must be) the correct expressions to give 

i [P”, $(xJ = ap$(k) . 

The next step is to form linear combinations of @(k) and q(k) which have 

commutation relations close to those with which we are familiar from conven- 

tional theories. For this purpose, set 

a = x# + y$ and a’ = xl+ -I- y’$ 

and calculate 

[a, a”] = (xy’ + yx’ + Yy’) [z/b J] 
b II 1 7 t = (2xy + Y2) q, ,l,? [ 1 

il 1 ?a :r - I I 2 - (2x’y’ + y12) z/b, $ [ 1 
It will be nice to have 
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If y were zero, that would require x or yf to be zero. If x were zero, a would 

be zero. If y’ were zero, we would have 

aaa’ . 

Thus, we assume that y is not zero. We can then solve for x1 . 

xf = -y’(l+r) 

with 

r=X . 
Y 

We now have 

a = Y ijW+-$] 

a’ = y’[-(l+r) $+ $1 

Taking 

(1+2r) = 0 

is ruled out because that would give 

alaa . 

The choices 

or 1 

are equivalent. We take 

That gives 

1+2r> 0 

1+2r < 0 

1+2r>O . 

[ 1 
t a,a >O 
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I 

and 

c 1 a’,a’ t c 0 . 

Choosing a convenient normalization and renaming a and at to a+ and a , we 

get 

with 

These operators satisfy 

and 

[a+Q~a+ck’,3 = [a-@),a-(k’)] = [a+(k),al(k’)l = o 

[ 
a-(k),a-(kf) = -s3(i?-rf) . t 1 

Other expressions which will be useful later are 

a+- a- = N(1+2r)$ 

a++ a _ = ww) 

-L (a 1+2r +-"J 1 
,=LL 

N 1+2r (a+-a-) * 

With a bit of work the momentum can be expressed in terms of a+ and a . 

a+0 - a$) a-(k) + & 
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As usual we have dropped an infinite C-number. After studying this expres- 

sion for Pt-l for a moment,one can see that it will be useful to know that 
h 

c 
a+&) - a-4) , a@‘) - a$l)] = 0 , 

C 
a,@) +a-@) , a$‘) + a$1) 1 = 0 , 

I a+(k) + a-@:) 2 a$‘) r - at(kt) - 1 =2 s3(E-k) , 

and most importantly 

II = 0. 
The a+(k) operators have the same commutation relations as and appear in 

the momentum in the way that is usual for destruction and creation operators. 

We will choose a vacuum such that 

a+(k) IO > = 0. 

The operators aI@) and a+(k) will then create and destroy particles of momen- 

tum k in the usual way. 

For the a operators, there are two choices: 

(1) We interchange the roles of creation and destruction by defining 

b =a? and bt=a . 

The vacuum is given the property 

b(k)lo> =o. 

The b operators satisfy 

[b(k), b’(k,)-j = S3(k - kp) . 
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The bt and b operators will then create and destroy particles in the usual way. 

However, they appear in the momentum as 
-W. 

The theory then contains states with negative energy. Worse than that is the 

t ?-: appearance of a+b m the Hamiltonian. This shows that eigenstates of H will 

have an infinite number of particles. 

Rather than struggle with such difficulties, we prefer to deal with those 

which arise from the second option: 

(2) Here, we assume for the vacuum 

a-(k) 1 O> = 0 . 

The basis states of the theory are then 

a$,) 
“1 

a$,) 
ml 

a;@,) 
n2 

4k2) 
“2 

. ..lO> . 
JGyT Jq Jq &q . 

It is important to note that states with an odd number of ” -I’ particles 

have a negative norm. For instance 

< al( la!(k) IO> = < 0 I a-(k’)ar(k) IO > 

= 4[aJW&$ o> 

= -ij3(F$) . 

Another important observation which can easily be verified is that 

-a!$f)a$1) [&kg” I o> = m [a’(k,I” 10, s3(r- p) 
. 

i- 

The next step in our program will be to find the eigenstates of energy and 

momentum. Since the energy and momentum operators are just (continuous) 

sums of operators for each momentum, we can simplify matters by working 
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in the subspace corresponding to just one momentum k. We have 

with 

P’ = d3k pc”(k) s 

F(b) = I? a,tjk) a+*) - aTtk) 
II a-*) 1 

PO@) = hOr) = ho(k) + h’(k) 

ho(k) = 1 cl [a$‘W a+(k) - a$) a-@)] 

We have already calculated commutators which show that 

[c, ho]=[F, h’]=[ho,h;J=O . 

Now, since ho and h’ commute and ho and F are essentially the same, 

our problem reduces to finding simultaneous eigenstates of ho and h’. Since 

( 
t a+ a+ -a~a&J”(a’)“lo> =(n+m)(a,f)n(at)m 10, , 

all states 

are eigenstates of ho with non-negative energies. Linear combinations of 

these which mix states with the same n+ m are also eigenstates of ho. 

ho I$ ci(aI)N-i (aT)i IO> = N l&l 2 ci (al)N-i (ar)i I O> . 
i=O 

So much for the eigen$ates of ho. 

The next important observation is that ht leaves the subspace spanned by 

the 

{(aI)N-i(a’)ilO> i=O,1,2,...,N, Nfixed} 
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invariant. Attention is then restricted to this subspace. ’ Because a+ - a ’ and 

a.ya- commute 

( 1 '-at NIO> 
"t-t - 

is easily seen to be, an eigenstate of h1 with eigenvalue zero. Indeed 

-j$$- (a:- “!)(a+-a-) (a:- at)” I 0 > 

=g (a:-aT)(aI-aI)“(a+-a-)10> 

= 0 . 

We will now show that there are no other eigenstates of h’. First, observe 

that the states 

(al-a’)N-i (aI+aL)i IO> 

Also span the subspace characterized by a particular value of N. The commu- 

tation relations are used to verify that these N+l states are indeed linearly 

independent. Since the subspace is N+l dimensional they must span it. Next, 

we verify by direct calculation that 

For i equal zero, we have : 

O’ = 1+2r 
IFI 2i (aI- at)N-(i-l) (a~+a~)i-l10 > 

if0 

lready shown that the right-hand side is zero. Now 

consider the aqtion of h1 on an arbitrary state. Letting 

Ii> = (aI-a’)N-i (al+al)i IO> , 

we calculate 

h’l+=h’ 2 cili> =s ficili-1, . 
i=O i=l 
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If this is to be equal to h I Z) > , we must have 

A 'N-1 
2m 

= 1-t2rNcN 

A Cl = gg 2 c2 

If A is not zero, all the c’s must be zero. If A is zero, only co is allowed to 

be non-zero. This completes the demonstration. 

Let’s pause to review what we have discovered about the structure of the 

state space. The theory contains positive and negative norm particles. 

Because of the negative norm particles the state space is not a Hilbert space. 

And because of this, although the Hamiltonian is self-adjoint, it cannot be 

diagonalized. There is a subspace corresponding to each momentum. These 

subspaces are composed of subspaces characterized by specifying the total 

number of particles in a state. Within a subspace where all the states have 

N particles, there is only one direction which is an eigenstate of the Hamiltonian. 

For instance: corresponding to the momentum 

x=0 

there is a one dimensional subspace which is the constant multiples of the 

vacuum. The vacuum is an eigenstate of H. For 

N= 1 

there is a two dimensional space spanned by 

a$)) IO> and at(O) . 
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The direction 

II af (0) _ -at(O) IO> 1 
is an eigenstate of H. This is continued for higher N in an obvious way. 

Corresponding to some 

There is no one dimensional subspace. The 

N=l 

subspace is spanned by 

The state 

a:(k) IO> and at(k) . 

is an eigenstate of H with energy lk I. The two particle subspace is spanned 

a$k) a$) lo> , a!(k) af(k) IO> , and a’(k) at(k) IO> . 

The state 

has energy 2 Ii;‘1 . It is easy to continue this for higher numbers of particles. 

It should be clear that the eigenstates of H all have positive energy. 

Our final observation will be that, except for the vacuum, all these 

eigenstates have zero norm: 

<(al-a!)” Ol(af-s~)NIO> = <OI(a+-a-)N(aJ-a~)NIO> 

= <Ol aI-a! 
( 1 

N(a+-a )NIO> 

ZI 0 . 

For N#O. 
*r 
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Quantum Mechanics of a One Particle Subspace 

Studying the quantum mechanics of a one particle subspace gives some 
4 

insight into the peculiarities of this theory. We have 

ll,O> E ajlO> 

IO, l> = atlO> 

1, o> -I- IO, l>) 

H = Ho + H’ 

H1 = E & (a:-aI)(a+-a-) 

HOll>= Eli> 

Ho12>= El2> 

2E H’Il> = lt-2r l2> 

H’l2>= 0 

<l, 0 11, o> = 1 

<o, 1 IO, l> = -1 

1 

<ill> = <2)2>= 0 

<ll2> = 1 . 

Before solving the Schroedinger equation, it is important to note the form 

of the completeness sum in a theory which contains negative metric particles. 
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The more general form also applies to the usual theories. 

4\ 

l= r In><nln><nl 
n 

The sum runs over some complete set of states which satisfy 

<n’In> = *6 nn’ - 

For the special subspace we are now working in completeness becomes 

l= I1,0><1,0I - l0,1><0,1I 

= 11><21+ 12><ll . 

To solve the Schroedinger equation we write 

l+(t)> = al(t)ll>+ a,(t)I2> . 

The Schroedinger equation 

& 1$(t)>= -iHl+(t)> 

gives 
. 
“1 = -iEa 1 

i2= -iE(a2+g) 

The solution is 

alO = a,(O) e -i Et 

@ a,(t) = - iEt & 1 -i Et 
a,(O) e . 

Here we begin to see that there are going to be difficulties associated 

with giving the theory a physical interpretation. To begin with, there is an 

ambiguity in identifying P,(t), the probability that the system will be in the 
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state I2> attime t. Should we use 

h la,(t) I2 

‘or 

l<2l$(t)> I2 = Ial( ? 

When 

a,(O) = 0 

the system has simple behavior which suggests that we should take 

P,(t) = la,(t) I2 . 

However, when a,(O) is not zero, P2 grows like t2 and certainly cannot 

be a probability. Faced with this, we may wonder just exactly what states or 

combinations of states are actually physically relevant. This cannot be 

answered in the noninteracting theory that we are using. At this point, we are 

content to note that completeness guarantees that there is one combination of 

amplitudes which is well behaved: 

a: Wa2W + a; (WIO = la, 
f 

,(t) I2 - la,, l(t) I2 

= aI (0) a,(O) + a; (0) a,(O) 

= lal,O(0) I2 - la,, 1(O) I2 . 

The discussion of interactions will determine whether or not this can be given 

a physical interpret&ion. 

Remarks 

We will close this section with a couple of general remarks about theories 

with negative metric particles. We would like to emphasize that there is nothing 

inherently wrong with a theory which contains negative metric particles. The 
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I 

norm of a state is not an observable quantity. Only transition probabilities 

are obgervable . The only thing which is required is that the transition 

probabilities be non-negative and that probability be conserved. Thus, it is 

the form of the interactions which is important. For instance, there will be 

no problems with a theory in which the S-matrix does not connect positive 

and negative metric states. Gupta-Bleuler QED is a more complicated 

example. 

Finally, we will bring up a point which, although it is very simple, was 

not mentioned in the discussions of negative metric theories that we encountered. 

The point is that the diagonal matrix element of an observable looses its 

meaning as an expectation value when negative metric states are present. 

The correct generalization is easily derived. Suppose there exists a complete 

basis in which the self-adjoint observable A is diagonal. 

Aln> = AnIn> with <nlnY = $6 nn’ * 

The probability to observe the value A, in the state I I/J > is 

P(A,) = I -cnlz,b>12 

The expected value of A is then 

A = c Anl<nl$>12 = ’ <+ln> An<nI#z 
n n 

, = <+IAln> <nl$> 
n 
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If we define an operator q by 

c, 7-j In> = <nln> In-> , 

‘we get 

?i = <$IA c <nI-n>In> <nIn>-<nI$> 
n 

= <z,blA~/lII,> # +A’+> . 
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III, INTERACTIONS 

12 this section, we will investigate the properties of an interacting field 

. theory with higher derivatives in the Lagrangian. Our purpose will be to 

continue the formal development of the theory and to resolve the questions 

which appeared in the discussion of the free field. 

Scattering from a Classical Current 

As a means of easing into our subject, we will consider the scattering 

of the field + from a c-number source. If an interaction term 

YI = -e G(x) J(x) 

is added to the free Lagrangian that we have already studied, the Euler- 

Lagrange equation becomes 

#cl2 G(x) = e J(x) . 

The source J(x) is a given c-number function. We will assume that its support 

is restricted to a bounded region of space-time. 

The field equation can be solved by introducing the Green’s functions for 

the differential operator a2a2 . 

B2a2DR(x) = S4(x) a2a2DA(x) = 64(x) 

DR(x)=O forx2<0 DA(x)=0 forx2<0 

DR(x)=O forO<x’ D,(x) = 0 for x0 < 0 

These are related to the usual Green’s functions by 

D,(x) = 
A, 
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It is then easy to see that 

h DR@) - D,(x) = 2 pAtx) - +cxi)] 
m2=0 

= a 4x, m2) 1m2zo am2 
= D(x) . 

When the in and out fields are introduced in the usual way 

@in(X) = CPW - e s d4Y DR(X-Y) J(Y) 

@out@J = @lx) - e s d4Y DA&-y) J(Y) , 

we find that 

eouttx) = +intx) + e s d4y Dtx-Y) J(Y) . 

As usual, @ is quantized by assuming it has the same equal time commu- 

tation relations as the corresponding free field. By their definitions, we can 

see that the in and out fields are free and that they have the same equal time 

commutators as $. The in and out fields are then two copies of the free field 

that we have studied in detail. In particular, they will have the momentum 

space structure of the free field. The relationship between in and out fields 

in momentum space is then 

~outcx) = 9,or) + 27Ti e J(k) 

+ out(k) = @in(k) + hi e K(k) 

where 

and 

k” = l-m 

K(k) Eke” 
ak” J”~k”,iT;I * 
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We will now use this solution to continue the discussion of the one particle 

subspae that we began in Section II. Suppose that the initial state is the in 

vacuum IO in> . By using the solution to the field equation, we can expand 

the in vacuum in terms of out states. The result is 

IO in> = IO out> ~0 out10 in>+- Ilk out> N(1+2r) 2ni e J(k) ~0 out10 in> 
J3 

+ I2kout> K 
ITZ 

hi e [ZK(k) - J(k)] ~0 out IO in> 

-k . . . 

The notation is 

Ilk out>= 1 
& [ 

a: Q +a: (k) IO out> 

out out 1 
12kout>= 2 ’ ~2 my, Jutw] IO out> 

’ 

The dots represent states of other momenta and more particles. This result 

shows that the source can create both I l> and I2> type states. Therefore, the 

problems that we touched on in Section II will not be avoided in any simple way. 

In that discussion, we also brought up the possibility of attaching physical 

significance only to, the well behaved combination of amplitudes 

<?)l1><2l?J> -I- <~12><ll?)> . 

Let’s explore this idea in more detail. The motivation for this suggestion is 

the need to find a interpretation of the theory which is consistent with the 

conservation of probability. In a Hilbert space of states, the conservation of 

probability follows from the completeness relation for the in and out states. 
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‘A+B = l<B outlA in>12 - 

I 

Consider 

c ‘A-B = c <A in/B out> <B outlA in> 
B B 

= <A.inlA in> 

I= 1 . 

In the theory we are dealing with, it is 

11><21+ '2><11= l1,0><1,0l - l0,1><0,1l 

which appears in the completeness relation. If we could find a consistent inter- 

pretation of this combination as a transition probability the conservation of 

probability would follow. This, of course, cannot be done by fiat. One must 

supply detailed physical arguments to show why 

< $ll,O> <1,013/> and <~lO,l><O,lI~> 

are not separately observable. Even before doing that, though, it will be 

necessary to show that 

<~I1><2Izc,>+-<qJ12><1'~> 

is positive. Let us check this for the case of scattering from a c-number 

source. We find that 

<O inll out> <2 out10 in> I- <O in12 out> <l out10 in> 

with 

= (27~)~ e2N2(l+2r) I<0 out10 in>12 X 

X(k) = J*(k) K(k) -I- K*(k) J(k) - J*(k) J(k) . 

Since the coefficient of X is positive, we are interested in whether or not X is 

positive. Using the definition of K, we find that 
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To show that this need not be positive, we will construct a simple counter- 

examtie. Suppose J(t, 2) is a product of a function of t and a function of ‘;;‘. 

*Then J(k”,c) will also be a product 

J(k,i;j = T(k’) SE) . 

This gives 

A(k”) - A(k”) 1 k”= I& 1 

with 

A(k’) = IT(k’) I 2 . 

Now assume that the function of time is a good function. This implies that 

A(k’) is a good function. In particular 

lim A(k”) = 0 . 
0 k --)oo 

A little fiddling around shows that 

XL 0 

implies 

A(k’)-- as k”-m . 

The conclusion is that for scattering from a c-number source, we cannot 

guarantee that 

< qJll> <21$> + <$12> <II $> 

is positive. 

This does not bode well for our theory. Our next task will be to determine 

whether or not similar unfortunate results are obtained in a fully interacting 

theory. 

Perturbation Theory in the Heisenberg Picture 

In this section, we will develop perturbation theory in the Heisenberg 

picture for a sample interacting theory. The goal of the discussion will be to 
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answer (within the context of perturbation theory) the questions about physical 

interpLetation which have come up in earlier sections. We have chosen to work 

in the Heisenberg picture so that our results cannot be questioned on the basis 

of certain technical difficulties which appear in the derivation of the Feynman 

diagrams. They will be discussed later. 

Let 21, be an ordinary scalar field, and consider the Lagrangian 

The field equations are 

a28G=e+3 

(a2+M2)# = e’@2J2 

with 

eT z -3e . 

Since our considerations will be restricted to the lowest order of perturbation 

theory, we will not need to know the wave function renormalization or the mass 

shift beyond zeroth order. It will simplify matters then to set 

z+=z#=l and 
6M@= aM+=o 

from the beginning. The in and out fields are then introduced in the usual way. 

+in (xl = W) - e s d4y DE@-Y) $J~CY) 
out A 

’ fin tx) = $tx) - e’ S d4y +(X-Y) $(Y) rc12(y) 
out A 

By applying the l’full’f ener’gy-momentum operator to these expressions we can 

verify that the in and out fields are Heisenberg operators 



I 

-c, 

i Pp, Gin (x) = aP$in (x) . r 1 out out 
‘From the properties of the Green’s functions it follows that 

a2a2gin (x) 7 0 

out 

( ) a2+M2 $in (x) = 0 

out 

These results are, of course, nothing novel. As is usually done, we will give 

the in and out fields the structure of the free fields that were studied in detail. 

The states which are created and destroyed by these fields are identified with 

the asymptotic scattering states. 

The first part of our program will be to calculate the nature of the $ 

particles that can be created in the collision of two J, particles with momenta 

p1 and p2. The state of the system is 1 plp2 in> which we will expand in 

terms of the out states to order e. This state is 

‘f IPIP in > = ain am(p,) IO> . 

The notation for the $ field is 

Ain 

$intx) = l3/2 
(270 ‘ 

s d4k 6(k2-M2) 8 (k’) bin(k) eeikSx-!-H. C. 1 
Ain = h s d3x eik’ x To +,(x) 

cw 
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Similar relationships hold for the out field. We then get 

I plp2 in>^ 
, 

TO’ 0 +intx,)iin(x2) IO > 
x1 x2 

To order e the field equations give 

~intx) “= ~out@~ + e’ S d4y A&-Y) 4,,(y) &&) 

When this approximation for qin is used and the integrals are carried out, we 

find that 

lplp2 in > G Ip,p, out > + 

x [&n(k) S(lc, +,/w- L’) 

- &(k) 6 (IT, +,/m - E) - &#) Ii? 16’ (Ii?1 -t dm- E I O> 

with 

p=cl+p and E= w1’w2 . 

It is important to notice that even though IpIp, in > contains I1 > type 

out states it is nevertheless an eigenstate of H. This can be verified by direct 

calculation with 
! 

H (#J 9 7-h ) = Houpout’ eout) * 

BY Hout (or Hin) 2 we mean’the Hamiltonian that results from the Lagrangian 

with the interaction term dropped. It is a sum of the free Hamiltonians for 

each field. 
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Now consider the final states 

llpk out> =a a’ 
43 

,,(P) (z +;,Jk) - @;,Jk) 1 O> 

For simplicity the parameter r has been set to zero. The matrix elements 

are 

<lpk out lp,p, in> = ie’ 1 1 1 

2(27r)2 d= f-$2 +M2)1’4 &%? 
s”@x-F) 

x [ti(lX,+&iib) - 2,&l 6’(If;l+Jm - Ejj 

‘~2 pk out I plp2 in> = ie’ 1 1 1 -- 
2(27r~~ ,/F; ($--2+M2)1’4 &= 

s3(<+‘iT-F) 

The two combinations which may have a physical interpretation are 

and 

1<2pk outlp1p2 in>l 2 

<p1p2 in I 2 pk out> ~1 pk out I p1p2 in> + <p1p2 in I 1 pk out> ~2 pk out IP,P, in> . 

The quantity 

I <lpk out lp1p2 in> I 
2 

is ruled out since we have not been able to define 

6’(x) CT’(x) . 

The expressions for the interesting combinations are 

I <2pk out Ip,p, in> I 
2 et2 1 

= 7 w1w2 &-.-& 41;13 &?+k-P)&o) 
4(2~) 
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Tplp2&n12pk out-><lpk outIplp2 in> + <plp2 inllpk out><2pk outIp1P2 in> 

et2 1 ZZ -- - fi3(o) s3i;;+s-?i;, ti(,?;i +Jw-E) 
ww 4 w1w2 

Although this last expression is unusual, it leads to a finite cross section when 

integrated over the acceptance of the counters. We will show how this is done 

when we discuss unitarity. 

The next part of the program is to calculate the e2 contribution to the 

scattering of two Z/ particles to two $ particles. In fact, we will only be 

interested in the part of the amplitude which has an imaginary part. To order 

e2 , we have 

+intx) = $,tW + e’ S d4Y 4X-Y) G,,,(Y) &JY) 

+ e’e S d4yl A(=q) s d4y D (Y -Y ) e3 (Y ) Q2 (Y ) 2 A 1 2 out 2 out 1 

+ e’ 2 S d4yl +tx-yl) ~,,,oi,) j- d4y A (Y -Y 1 Q, TV 1 q2 (Y ) zc) (Y ) 2 A 1 2 out 2 out 2 out 2 

+ e’ “s d4yl A(x-yl) lout $OutOT1) j- d4y# 6’ -37 ) Q, f~ ) Q2 (Y A 1 2 out 2 out 2 ) - 

This is substituted into the expression for the initial state Ip,p, in> in terms 

of ein that we used’before. The computations which follow are complicated and 

boring. We recommend the exercise to anyone who doubts that Feynman 

deserved the Nobel Prize for inventing the diagrammatic approach. The 
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result is 
- 

a 
<PlP2 out IPIP, in>1 = 4 2i + Sd4yl j-d4y2 

4 w1w2 521522 cw 

-i(P,+P,)- Y1 e i tP1+ P2) - Y2 
e 

x DA(Y1-Y2) AJY~-Y,) + 4e ’ 2 D+(Y 1-~2) a,(yl-y2$ 

In this expression, the momenta of the outgoing $ particles are PI and P2 with 

zeroth components SJ1 and Q2. The subscript I on the matrix element indicates 

that we have retained only the terms which contribute to the imaginary part in 

the kinematic region for the scattering process. The new singular function is 

D+(x) = - + A+(X,m2) /m2=o - 
am 

In momentum space this becomes 

ie’ 2 
<P1P2 out Ip,p, in>I = - 

1 

(22 J wp4gy2 
“4(Pl+P2-P1-p2) 

(-py-pi-k’) 6( [p1+p2+k12-m2) 0(p3pi+k”) 6([pl+p2+k12-M2) 

k2- M2- ik”c ’ - k2-m2 -ik2 E 1 m2=0 

To prepare for the discussion of the conservation of probability, the zeroth 

order contribution should be added on. 

<PIP2 out Ip,p, in>U = 63@$-i;,) 6”(F2-T2) -I- 63(jfFl-22) a3F2-Yl) + <P1P2 out IP,P, iy 
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When this is used to calculate the transition probability to order e2, we find 

! <P,P,&t Ip,p, iiDU I 2 = 263(o)63(o) 63(jTl-Pp3~2-T2) 

+ 2S3(0) 63(O) 63(q32) 63(~2--$1) 

+ ~3q-q *3(~2-~2)+*3~l-~2)63~2-~l;~4(o) ds w w1 ~ 52 M 
tzn) J 1 2 1 2 

with 

M = 2 $d4k 2ti [ZB (-py-pi-k’) 6([p1+p2+k12-m2) e(k”) S(k2-M2) 

- E ([p1+p2+k]2-m2 > 0 (-k”) S(k2-M2) 1 
This expression for M results from observing that 

1 1 = 27ri e(k’) S(k2-M2) . 
k2-M2-ik’e k2-M2+ik0 e 

A change of variables 

k - -k-pl-p2 

was also made in the second term. In the frame 

F = C1+F2 = 0 

the k integration is easy. After differentiating with respect to m2, setting 

m2 to zero and substituting back in to the formula for the probability we find 

that , 

I <P1P2 out I p 1p2 iiDU i 2 = 2S3(0) a3(o) 63+q fi3G2-TP2, 

+ 2fi3(0) S3(0) 63(;i;-‘;2, 6362-q 
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with 

h P2 = (pl+p2)2 . 

Now that the calculations are out of the way, we can think about the physi- 

cal interpretation of the results. To.simplify the notation, let P(P, p, k) stand 

for whichever expression 

or 

A(P,p,k) = I<2pk outlp1p2 in>12 

S(P,p,k) = cplp2in12pkout~<lpkoutlplp2in~ 

+ <p1p2 in I 1 pk out> ~2 pk out I p1p2 in> 

might be used to represent the probability for production of $I particles. In 

addition let 

The conservation of probability requires that 

l= CP(P-n) . 
n 

Assuming that this holds order by order in perturbation theory, a condition 

on the quantities that we have calculated results. 

~?(0)6~(0)+6~(0) C+(O) =$Sd3PlJd%2 E(P,P1,P2) +Sd3pSd3k P(P,p,k) . 

The delta functions on the left-hand side arise from the normalization conven- 

tions. 

lrlll = <plp2 inlplp2 in> = Jim lim 
Pi”P1 Pb-P2 

<Pipi in I p,p, in> 

= lim lim 
Pi-Pi “b-P2 

[*3Gl-q, 63G2-$2, + 6”G+p3G2-‘1;i)] 

= 63(o) a3(o) -I- S3(0) S3(0) . 
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The factor of l/2 appears to avoid the double counting of states when calcu- 

lating atotal cross section that has identical particles in the final state. 

After carrying out the pl and p2 integrals the conservation condition becomes 

d3k P(P,p,k) . 

This equation shows that we are in trouble already. The first term is 

positive which, if the condition is satisfied, requires the second term to be 

negative. However, the second term is supposed to be a transition proba- 

bility, which should be positive. Whether the sign of the first term can be 

changed by higher orders of perturbation theory or by other forms for the 

interaction is not known. Since A(P, p, k) is positive, it cannot possibly 

satisfy the condition, and there is no point in integrating it. 

The integration of S(P, p, k) is a bit tricky so we will indicate how it is 

done. The vector delta function is used to do the p integration and the k inte- 

gration is switched to polar coordinates. 

s s 
d3p 2 1 d3k S(P,p, k) = - a3(0) e’ - 

f3 cw 4 w1w2 

fi(k+ Jm-E)[6(k+ +j@&.&E)-2k#(k+~~-Ejl 

The first term is of the usual type and produces a 6(O) to go with d3(0). The 

second term presents us with the problem of defining an integral of the form 

1 = ‘ dx f(x) s(m) ~‘tfdx)) S - 
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We use the following method: 

1 = -.- 
2 S dx 6(g@)) 6(gtx)) 2%) 

With this the k integrations can be done (most easily in the P’= 0 frame). The 

result is 

s d3k sd3p SF’, p, k) = -S4V0 &3 & -$ ;;$ . 
. - 

As expected this satisfies the condition but has the wrong sign for a probability. 

The conclusion of this section is, then, that the theory we are using does 

not allow the usual sort of probability interpretation. To show that this unfor- 

tunate result holds for all orders of perturbation theory and in all theories with 

higher derivatives in the Lagrangian will require much theoretical labor. 

Diagrammatic Approach 

In this section, we will discuss the derivation of the Feynman rules for 

the sample the day we have been working with. We do not intend to present a 

complete detailed derivation. Rather, we will follow through the treatment in 

Bjorken and Drell”and sup$y the charges that are necessary for the theory 

we have. 
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The first step is the derivation of the reduction formulas. Recall that 

the one particle states are created by operating on the vacuum. 

Ilkin> =yT N (z&(k) + $&oi)) 10, 

12kin> =L +Tn&)lo> 
& 

Again we have set r to zero. Recall that the expansion of the field is 

c$~.Jx) = J d4k o’(k2) e(k’) [$in(k) eBik* x + H. C 1 . 

Operating with a2, we find a simple result 

a2$JintX) = $ d4k a(k2) e(k”) [$in(k) eeikSx + H. C. I 

which can be inverted in the usual way to get a formula for q5in(k) 

To get the formula for 2$(k) - #(k), we combine and operate until we get 

( 4ai -2taOa2- 3a2)+in(x) = S~[{2~O’)-mOr)te-ik’x+H.c. 1 
which inverts to 

2$(k) - $(k) = -!- s 
d3x eik’ x To - 2taOa2 - 3a2 1 e,(x) . 

(23-J” 

In reducing an in particle of type 1 l> from the initial state, we find a 

formula like * 

-i 

PJ?r)” 
S d3x e 

C 
48: - 2t aoa2 - 3a21 <A l[x~in(x) - +out(x) x] IB’ 

which we can write as 

d3x e <AIT[+(x)X]IB> . 
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This expression reveals the first difficulty with the derivation. The limits 

may not exist and the asymptotic condition may not be satisfied due to bad 

. behavior at large t. We will simply hope for the best and proceed. The 

standard manipulations then reduce this to 

1 i I- 
IJZ PO3 

S d4x e -2t aOd2 - 3a2 <AIT [$(x) X]IB> 1 
d4x e -ik’x (3+2ta0) a2S2<AlT[~(x)X],B> 

For the I2> particle the corresponding result is 

1 i -- 
& P-o3 

S d4x e -ik-x a2a2 <A lT[#(x)X] IB> . 

When all of the in and out particles have been reduced into the time ordered 

product, our attention is shifted to the tau functions 

7- (x,, 3’ - * .) = <OIT[~(X~)~(X~) . ..]lO> . 

The perturbation expansion for the tau functions is developed by intro- 

ducing the U matrix which has the property 

with similar expressions for (i,, ;p’, 4 ‘, zj , and 4 . The derivation of the 

properties of U proceeds smoothly. It is convenient to introduce the operator 

u(t, t’) = u(t) u-l(t’) . 

No problems are encountered in obtaining the usual expression for U(t, t’) in 

terms of the time order products of the interaction Hamiltonian. The next 

step is to use the U matrix to write the tau functions in terms of the in fields. 

7(x1x2. . . Xn) = ‘O IT ‘-lttl) ~intxl) ‘ttl, t2) #in (x2) ’ ’ . ‘ttn)] lo ’ [ 
= lim 

t-4-m 
tl) Gin(xl) U(t,, t2) $,(x2) . . . U(t,, -tjlU(-t) IO>. 
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The U operators outside of the time-ordered product are handled by showing 

that - 

lim U(t)lO> = A,IO> . 
t-d? ca 

The second technical difficulty is encountered when we attempt to verify this 

condition. Following Bjorken and Drell, we consider an in state which con- 

tains a + particle of momentum p plus anything else Q. Observe that 

N i <a!p inIU(t) IO> = - - 
h/i (27d3 

S d3x elp’ x To <a! I ibin (x)U(t) I O> . (4) 

The operator + is 

( 48:- 2 x"aoa2 -3a2 fin or 1 a2$intx) 

depending upon whether the state contains a I 1> or I2> type particle. Using 

the properties of U, calculate 

<c!plU(t) IO> = 2 -L 
’ s A? (2703 

d3x eipBx To <a! I U(x’) G(x) U-‘(x0) U(t) I o> 

N i =-- 
ti (2703 

<o! 1 U(xO) d3x eip’ x $ ip(x) 1 U-‘(x0) U(t) I O> 

N i 
+ -& 3 S d3xe ips x < o! I i.qx”) @(x) u-$x0) u(t) 

[ 

+ U(xO) a(x) @(x0) u(t) IO> 1 . 

Set x”=t and let t - - ~0. The first term will contain the quantities 

” I ‘(-“)~~intP) - ~in(P,l I O’ 

or 

co! I U(-00) g&p) IO> 
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which are zero. A little manipulation shows that the matrix element in the 

second term is 
c, 

lim <a! I 
t--L-m 

&,(t,?) U(t) IO, 1 
with 

If the original $ particle was a I l> type, ain contains $in and the commutator 

is not zero. The only way around this that we can see is to say that HI(t) should 

be interpreted to contain an adiabatic switching factor 

e-E ItI 

To understand this better,we can use lowest order perturbation theory to 

calculate the matrix element in Eq. ( 4 ) directly. 

lim <a!lpinIU(t)lO>= lim lim <a! lp inlU(t,t’) IO> . 
t-b-00 t- -co tp-+-co 

t E -i lim lim <a!lpinI 
t-w-co t’- -co S t v dtl HI(tl) 10’ 

t 
= -i e lim lim 

t- -co t’-LdxJ s s ’ 
t’ 

dtl d3x 
Ir2 PO3 

l/2 

(1- 2i IFIt,) eipax 

, 
x <al$3(x)lo> . 

If 

-32 I zj3(x) IO> - elqsx , 
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I 

The resulting integral will be of the form 

d3x (1 - 2i IsIt,) e i(p”+qo) t e-i(j7+y) CC 

Without a convergence factor, this integral is not defined if we intend to take 

the limit t’ --mfollowedby t--a. This shows again the need for the 

adiabatic switching factor in HI. Including this factor will modify the integral 

in Eq. ( 5 ) to 

dtI e 
[e+ i(p”+qo)Jt, 

I p”= IFI 

with t’ and t going to minus infinity this is certainly zero. The conclusion is 

that this part of the derivation of the Feynman rules requires that HI be 

interpreted with an adiabatic switching factor. 

No further problems are encountered in completing the derivation of the 

Feynman rules. The only work which is left for us to do is to examine the 

properties of the propagator 

For this discussion the designation “in” on the fields will not be indicated. 

Using the momentum space commutation relations, the time-ordered 

product is easily calculated. Since it is formed from , 

43 I @(x) $(x’ ) I o> and <OI$J(x’) q)(x) IO> , 
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we begin by looking at 

<Op$(x) $(x’) to> = - * <Ol~~(k)+i(i;( t$(k)[e-ik’x +H.C. 
41ia3 1 
x. x&l) -t- i\El t’ $(kf))e-ik’*’ +H. C.] IO> 

= J$!f!$ s-$$ h(k)+il-i;*l t+(k), x$k’) -ilf;il t’~~(k’)]e-ik’xe’ik”x’ 

Working out the commutators and using the resulting delta function to do the 

k’ integration gives 

<o I O(x) @(x’) IO> = - &J$ [l+iKl(t-t’)] e-**(x-x’) 

To get ~0 I +(x’) 4(x) I O> simply interchange x and x’ , After observing that 

a 
<o I $(x) $(x’) I o> = - am2 A+@--x’, m 2 ) I m2=0 

. 

It is no problem to show that 

4 lT[$(x) $J(x’)] I o> = (x-x’, m2) 1 
m2=0 

i 
s 

d4k .-ik* (x-x’) 1 =- 
WJ4 (k2+ie) 2 

This shows that the time ordered product solves the differential equation 

a2a2 ~0 IT[$(x) $(x1)] IO> = iS4(x-x’) . 
, 

By direct calculation one can verify that 

&2 1 

4(2~)~ 
Qn(-x2+ie) = ia4(x) . 
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Thus the propagator in coordinate space is 

<OIT[$(x) @(xt)]IO> = 1 
4(2~)~ 

+ C 

where C is a (perhaps infinite) constant. 

Equation (6 ) should be interpreted with some care. Considered as an 

ordinary integral the k integration diverges at k=O. (This is the same behavior 

that is found for the photon propagator two-dimensional QED.) Considered as 

a distribution the result depends on the method used to regulate the integral. 

It is also interesting to note that although the left-hand side of Eq. (6 ) is 

formally scale invariant the right-hand side is not. 

As an alternate way to calculate the propagator we can do a (trivial) 

spectral sum 

<o I W) Mx’) IO>= rd3k<OI+(x)[llk><2kI+ 12k><lkl]~(x’)lO> 
J 

A typical matrix element is 

<OI$(x) I lk> = <O I $(O) eBip’ x I lk> 

.rc -L 

= <Ol$(O)e 
-iHt, Ik, ei K- x 

Recall that 

H = Ho + H’ 

and 

(6) 

[ 1 HO,H’= 0 . 

Using 

and 

‘HOll‘iT> = IFI Ilk> 

2 Ii7 H’llr> = 1-t2r 12k> 
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and 

h H’I2k> = 0 

w6 find 

<Oj#(x)llk>= <01+(O) 
C 

21’Ifl I‘-&> e-ik*x . Ilk> -it- 
3 

This and similar results for the other matrix elements combine to give 

<01@(X) @(x’) IO> = S d3k .-ik. (x-x’) 
[<o I qb(o)[l lk> <2k I -t I2b dk I] $(O) I O> 

- & i 1k1 (t-t’)<0 I Q,(O) I%> <2k I G(O) I O>D (7) 

When the definitions of the states and the momentum space commutation rela- 

tions are used to calculate 

<Ol@(o)Ilk>= --&$- 

1 N <ol@(O)l2k>= --- 
cw3 45 

(1-I-W , 

Eq. ( 7 ) becomes 

~0 l+(x) @(x1) IO> = -1 S* e 
(27r)3 4 IIa 3 

-ik’ (x-x’) [l-f- i I&I (t-t’)] 

as before. 

We now turn to the relationship of the time ordered product to the normal 

ordered product. As usual, $ can be decomposed according to 

$) = $(-1-l + p 

with 
L 

d+)(x) IO> = 0 

<o I p(x) = 0 
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Using the definition of the normal ordered product we find that 

G(x) 4(x’) = :m cp@‘): - [d+kG, d-)(x’)] 

= :$(x) @(xl): - -co I@(x) @(x1) IO> 

since the commutator is a C-number. With the oorresponding expression for 

@(xl) 4(x) and the observation that 

:$(x) @(xl): = :@(x’) $J(x): 

we obtain 

T@(x) +(x’)] = :+(x) e(d): + <O lT[$(x) $(x’)]IO> . (8) 

With the properties of time ordered product known, we can return to the 

derivation of the Feynman rules. Equation ( 8 ) allows us to prove Wick’s 

theorem. The rest of the derivation presents no difficulties. The usual rules 

are modified by replacing the momentum space scalar propagator l/k2 by 1/k4. 

The other modification results from the form of the reduction formulas. The 

differential operator which serves to remove the external line propagators is 

becomes a2a2 for 12, type states and -(3+ 2ta,)a2a2 for I I> type states. As 

an example, we will recalculate the matrix element 

<pk 1 Ip,p,> . 

Use of the reduction formulas gives 

<pk 1 out I plp2 in> = 
) -[ST & [2w12:22J’2[$]1’2 

sd4x&+x2 px3 px4 

x-e 
-ipI* x1 e-ip2. x2 eip. x3 eik. x4 

(3 -I- 2ta0) a2$ (a2+M2)1(a2+M2)2(a2+M2)3 

(9) 
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In lowest order the tau function is 

7 (xF2x3x4) = -ie S d4y ‘0 I T[~in(Xl) fin fin $in(X4): Cp (Y) ~301):] I o> 

= -ie3! Jd”y iA#y-yl i++,-y) i A,+,--y) ~0 IT [$in(x4) +,(yd I O> 

Inserting this in Eq. ( 9’), letting the differential operators act, and carrying 

out the XI, x2, and x3 integrals we find that 

<pk 1 out Ip,p, in> = -ie 3 ! 
(1o) 

X 
s d4y e 

-i@,+p,-P)*Y S d4x eikax (3+2~~a~)6~(x,-y) 

After the x integral is done, the y integral we are left with is 

s d4y e 
-i@,+P,-PI* Y 

(l-2ijFly”) = (27ij4 S3($S-p’, 

x [6 (1x1 + J--E) - 21x1 cY(,-i;l - m-E>l 

When this is substituted in Eq. (10) the same expression that we obtained in 

the Heisenberg picture is reproduced. 

Infrared Problems 

As we have already seen, the l/k4 propagator presents some infrared 

difficulties. From a general point of view, this is a good feature which may 

lead to quark binding. However, in terms of perturbation theory calculations, 

it is a disaster. The radiative correlations to scattering processed cannot be 

rendered infrared finite as can be done in QED. To give an idea-of what can 

happen we will calculate the order e2 contribution to the fermion self-energy 

in the abelian vector meson version of the theory. By this we mean a theory 

like QED except that the l/k2 photon propagator is replaced by 1/k4. We 

choose this model so that comparison with the familiar results of QED will be 

-56 - 



facilitated. The coupling constant e then has units of mass. The gauge 

properties are not affected. It is interesting to note that because of this the 

Ward‘identity is also not affected. 

The self-energy insertion is 

C@, = -ia! s d4k cxz+:e)2 ‘Ye 
47r3 

ld -kfm2 Yn 
@-k)2 -m 

We will regulate this in the infrared by using the propagator 
1 

(k2 -h2+ie)2 
. 

A little y-algebra gives 

6m = C(p) 1 -icl! 1 = - S d4k 0-m 
$=m 47r3 (k2 -h2+ie)2 k2 - 2k.p 

(11) 

After parametrizing the denominators, shifting the origin in k-space, and 

doing the k integral, Eq. (11) becomes 

a am=-G -k’dxl &lb2 i’dx3 6(1 -x1 -x2 -x3) ,x2m2, (:f,:L _ i(l-x ) c] 
3 -3 3 

These integrals are elementary. The result is 

6mzE-k 
m2 

with 

l-2 ~~~~“’ [arctan j42Tk2 - arctan Jqklga 1 

2 
k=h . 

m2 

If this expression is carefully expanded in the k- 0 limit we find 
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In normal QED, 6m depends on the ultraviolet cutoff but not on the photon mass. 

A rnws shift which depends strongly on h suggests that the observed fermion 

* mass will depend on the size of the room in which it is measured. This 

should serve to illustrate the infrared problems in perturbation theory. If, 

in the full theory, the fermions were permanently bound into charge zero 

particles this infrared divergence would presumably be mitigated. 
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IV. SPECULATIONS 

The presentation of our results is now complete. However, the task of 
c, 

.elucidating the structure of our model is by no means complete. We will 

conclude the thesis by speculating on the sort of interesting possibilities that 

might be established in a more ambitious analysis. 

The development that we have carried out so far will be referred to as 

naive perturbation theory. We have seen that it has some problems. The 

conservation of probability is violated by the production of negative metric 

states. In a finite order, the quark pole will not be eliminated, and the quarks 

will not be permanently bound. The radiative corrections are infrared diver- 

gent at the one loop level. (Presumably, this is related to the idea that the 

quarks actually cannot be asymptotically separated.) These problems are 

serious. They indicate a need to go beyond the unimaginative confines of naive 

perturbation theory. 

We will begin the discussion with some general remarks about the charge 

operator in the Abelian vector gluon version of the model that was introduced 

at the end of the last section. The “electromagnetic field” now satisfies a 

higher order field equation 

FpV is constructed from the vector potential in the usual way 

F =aA -aA 
PV VP PV’ 

In the Lorentz gauge ’ 

apAp =o , 
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the field equation becomes 

-h 8 8 A = ejP . 22 I-1 

This reveals a field equation of the type (although now for the vector case) that 

we have studied in detail. 

If Gauss’ law 

a2F. Z= ep 

is integrated to get the charge in a volume V with surface S, we find 

Qv=s d;. a2s . 
S 

This is to be compared with the usual result 

(12) 

Qv=Sd? 5 . 
S 

(13) 

In QED, vacuum polarization effects do not alter the q -2 behavior of the photon 

propagator at small q2. The exchange of these massless quanta gives an 

electric field which falls as r -2 . A finite contribution to Eq. (13) results even 

as the surface is moved to infinity. 

In the same way, if the vector propagator in the model maintains its q -4 

behavior, we will have 

A finite contribution to Eq. (12) will result. On the other hand, if the electric 

field goes to zero as r goes to infinity, there will be no contribution to Eq. (12) 

as the surface is expanded to’infinity. We then have Q = 0, and we must con- 

clude that only neutral states are allowed. However, the bare quarks are 

charged. As a consequence the physical states must be in the 

?J+?go> 
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channel and not in the 

c, 

channel. (IC, is the field for the spin-l/2 quark.) This is just what we mean 

by permanent quark binding. As a reflection of this, the single particle pole 

in the quark propagator should be eliminated. 

Now, the long-range structure of the “electric field” comes from the q -4 

singularity in the gluon propagator. It arises from the exchange of the unusual 

massless gluons we studied in Sections II and III. If the vacuum polarization 

modifies the q2 -) 0 behavior of the propagator to q -2 or some even weaker 

singularity, E’ will go to zero at infinity and the quarks will be bound. 

Now that we have focused on the importance of the vacuum polarization 

insertion, we will discuss various possibilities for its behavior. The first 

important point is that the Abelian vector version of our model has the same 
. - structure of coupled integral equations for the Green’s functions as QED except 

that the expression for the vector propagator is 

DbpII (4) = -gpzJ 
2 

[ 
2 

q q +ei rr(s2) 1 
+ gauge terms . 

When we restrict our attention to perturbation theory, there are two 

initially reasonable looking possibilities. In naive perturbation theory, we 

assume that we can begin the perturbation expansion with the initial estimates 
, v 

-g z 
= I-iv + gauge terms as q2 -+ 0 D>Y q4 . 
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Problems arise immediately when the one loop contribution to Lt(q2) is 

calcul&ed. This is the same as the usual QED calculation. II(O) is found to 

be an infinite constant. The basic structure of our D;F is then modified to q -2 

and we see that the initial q -4 guess was a poor one. Naive perturbation 

theory will be useful only if an infinite class of graphs can be summed. 

Another perturbation theory possibility is to renormalize the integral 

equations in the usual way and to assume the structure 

5’ 
-g 

- -E as q2 -+ 
flu q2 

The renormalized expression for the gluon propagator is 

(14) 

0 . 

“D’ = +$lV 

FPV q2 Z3q2 + e2 II(q2) 
[ 1 

-t gauge terms . 

The structure of Eq. (14) requires of Z3 

Z3 ei II(O) = e211(0) = 1 . (15) 

However, when we use this structure to calculate the one loop contribution to 

II(O) we find again that it is an infinite constant. Equation (15) then demands 

that 

e2=0 . 

Thus, if the renorm&lized theory is to be finite, it must be free. This possi- 

bility does not appear to be productive either. 

A need to go beyond this sort of unimaginative perturbation theory is 

indicated. All indications are that the vector propagator will not maintain the 

qe4 behavior. This means that the quarks will be permanently bound. This 
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should be reflected in our estimate for the quark propagator. In particular it 

should n,ot have the (fi - m)-l single particle pole. We do not know what struc- 

ture would be more appropriate as an initial estimate in a more sophisticated 

perturbation theory.. For the vacuum polarization which determines the vector 

propagator structure, we have already commented that II(q2) N q2 as q2 - 0 

seems unlikely. When the quark propagator is modified, lI(q2) - constant 

might be consistent. This would give a long-range “electric” field falling like 

rm2 and quark binding as discussed. Another interesting possibility would be 

that II(q2) would develop a pole as it does in two-dimensional QED. The result 

of that would be a gluon propagator with no singularity at q2 - 0 and only a 

short-range interaction remaining. 

It is worth noting that these changes could serve to cure the unitarity 

problems of naive perturbation theory. If, for instance, the vacuum polari- 

zation modified the gluon propagator to q -2 , a standard positivelmetric particle 

content would result. 
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APPENDIX 

As.we have seen, the field equation 

a2a2$ = J 

follows from a Lagrangian 

LZ= $ (a2W2M - J@ - 

This theory has been quantized in a natural way. The free case 

J=O 

(16) 

was completely solved in Chapter II. ’ 

It is interesting to note that the same results can be obtained by intro- 

ducing an auxiliary field rather than higher derivatives into the Lagrangian. 

Consider 

If the canonical quantization method is used, we find 

and 

We then require that 

kl(t,$ ~,(t:f;,l = [b,(tZ), $,(t,7)1 = -iS3tGh 

[ 7i2(t,T), rp,(t,3;) 11I = Q,tt,r;i, $,(t,3 1 = -i63G3 

(17) 

(18) 

with all other commutators zero. 
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The Euler-Lagrange equations are 

d2@2= -$J 

ij2el = -m2+2 . 

They imply that 

a2d2$, = mJ . 

The Hamiltonian density is 

CTYr = 7flf#$ + “242 - 2 

which becomes 

Commuting with el we find 
2 

as required. This method is, thus, an alternate formalism for obtaining a 

field equation of the type in which we are interested. 

It is easy to show that this theory is equivalent to the one which begins 

with the Lagrangian in Eq. (16) and which we discussed in Chapter II. 

Introduce 

, + E- lb1 * 

We then have 

(19) 
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and 

-h a2a2$ = J . 

The Lagrangian in Eq. (17) becomes 

LZ? = ; (a2 #) .(a2 @) - J$ 1 

Substituting in the commutation relations Eq. (18)) we find that 46 as given by 

Eq. (19) satisfies the same commutation relations as the $ of Eq. (16) which 

was discussed in Chapter II. The fact that the methods which start from 

Eq. (16) and Eq. (17) give the same results suggests that we are doing things 

correctly. 
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