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ABSTRACT 

We consider the Bjorken-Johnson-Low limit for the propagator in 

massless Yang-Mills theories. The significance of our result in terms 

of imposing an eigenvalue on the theory so as to render it finite is 

discussed. 
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I. INTBODUCTION 

Baker and Johnson’ have made ‘the observation that finite massless QED 

either has free electron and photon propagators or noncanonical commutation 

relations. For the sake of completeness we present their argument before 

discussing the Yang-Mills situation. For simplicity we first give the discussion 

for fields of zero spin, $(z, t ) which we suppose to be coupled in some fashion 

with a dimensionless, unrenormalized coupling constant go. The details of the 

coupling do not matter so long as the Bjorken-Johnson-Low2 limiting procedure 

is valid. We suppose, to begin with, that the (p(z, t ) have a mass m and then 

pass to the mass-zero limit. The object to be discussed is the unrenormalized 

@ propagator D(q2); 

D(q2) = -i s d4x <Ol($(z t)@(O))+iO> eiq*x 

(1) 

=d($, $,go)/q2+m2 

Our notation is as follows: 

q*x =-$z - got 

(A(j;; t)B(O))+ = e(t)A(j;; t) B(0) f 0(-t) B(0) A(-if, t) 

and is a Lore&z-scalar, dimensionless, form factor which is, 

in general, a function of the ultraviolet cutoff h (There may be an infrared 

cutoff whose dependence is not included explicitly since it does not alter the 

discussion.) We now pass to the BJL2 limit in Eq. (1) by taking 

-2 q = fixed 

and 
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with the appropriate analytic@ we can write 

D(q2) = _ i S ~OI~(~,O)In><nI~(0)10~ 

g0 

i NW- 
q0 S d3?? eiG ’ 

1 

~0 I [$(z, 0), $(O)] I O> 

=,- ‘2 4 -%O&,) (3) 
s, 

If the $ obeys canonical commutation relations at equal times we conclude 

that 

W=,0,g,) = 1 - (4) 

Now, in the massless case, m = 0, we have by dimensional ahalysis 

and if the theory is to be ultraviolet finite for some “eigen” go. say 

80 = g 

we have 

d= d(O,g) < co 

at the eigenvalue. Thus, as q 0 - + CL) 

Dtq2) - - + d(0, g) 
90 

(6) 

(7) 

(8) 



so the equal time commutation relation is given by3 

[+t% 01, ho)] = i W,g) S3tz) 

which is only canonical if 

(9) 

d(O,g) = 1 . 

This is the Baker-Johnson argument. 

(10) 

This discussion can be extended straight forwardly to the following cases: 

Spinor Fields coupled to: 

a) Massless Abelian vector mesons, or 

b) Massive Abelian vector mesons 

The massive non-Abelian case deserves a special discussion as a preliminary 

to. the work in the next section. We confine ourselves, for illustrative purposes, 

to the self-coupled SU(2) Yang-Mills case in which the vector meson 4(x) is an 

isotopic triplet. The key observation is that c(x) is e canonical to rP(x). 

Indeed if 

22?(x) = -1 
4 ax! ( 

-q(x) -LF(X) +go Fp(X) XEv(x) 
ax" p 1 

2 
-+m~$(x)~P(x) 

(11) 

then the canonical momenta are given by 

7ro(x) = 0 (12) 

and 

7((x) = $x) - goEi(x) xTo(x) + & Co(x) . 
i 

With canonical commutation relations among the sP and ??this leads to the 

following equal time commutation relations4 

bj(0)t 1 = 0 (14) 

(13) 
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and 

bj(OJ -4 $ & 
m. i j 

I 
s3t3 6,t 

4-i E 80 
s,k bitZt)r & ~~(2) 2 

j “0 

2 
80 -i- 2 ‘Sri ‘km bit’, O~bjtO)m a’(;;) l (15) 
"0 

Here, s and t are isotopic indices. We may ask, how does this set of commu- 

tation relations modify the discussion above ?5 Let us consider for i, j = 1,2,3 

. 
= -1 $ d4x -CO I (bi(z, o)~ bj(0)t )+ IO> eiqox 

9:. 
r- - ‘z 3 40 2 - 2 'SrQ e 

"0 "0 
trm s 

d3x eic*z &.) 

1 

<OIbi(T, O)g bj(0)m IO> 

1 
a (16) 

The key question is what is ~0 IbP(z, O)Q b,(y, O)m IO> ? On the grounds of 

positivity of the metric in Hilbert space and Lorentz covariance one may argue6 

that this vacuum expectation value must vanish; i. e. , from positivity it must be 

positive for all P=V, while from Lorentz covariance the p=v=O terms must have 

the opposite sign to p=z=i. Hence this infinite expression must be regulated in 

such a way that it vanishes. Thus for the massive non-Abelian case we still 

have 

d(-m,O,gO) = 1 . 
I 

(17) 
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We have been working in a formalism in which the m=O limit cannot be 

taken directly. But note that in the massless case there is no gauge in which 

positivity in the Hilbert space metric and Lore& covariance can be maintained 

simultaneously. This gives us a clue that the massless non-Abelian theory may 

yield something new. In fact, as we shall see, the Baker-Johnson argument 

no longer obtains. 

II. THE MASSLESS NON-ABELIAN CASE 

In the canonical theory we still have Eq. (13) and Eq. (14) in the mo=O 

case. We must, however, recompute 

using Eq. (13). Since 

[ bit% 0)s’ ~jtO)t 1 
-i;. = 0 

0 (18) 

go is not a dynamical variable and must be eliminated. Hence one must solve 

the equations of motion in some gauge. It is convenient to do this in the 

.Coulomb gauge with 

aT(;r, t) = 0 (19) 

especially in view of the fact that in this gauge Schwinger7 has computed the 

commutator we are interested in, in a closed form. All we need to do is to 

expand Schwinger’s result to order gi. The details are straightforward but 

tedious, and we find 

‘j(O)t 1 = -i 6st 6:(3 

. 
-‘4n es&n ‘mtn i b ti;,O)Q $ l;3;l 

lx-- 
x “kj( x, “kcT;;‘9 O)n (20) 



-. -. ..-.- I..-.- -e--L .-.. -. -.. -..- - .^. .._.^ ^. -.. ._- .--.. -- . . ..-.. ._- . ..-..- -. -.--.- . ..- ..-- -- -.-- - _--.. _ 

-7- 

where 

k.k. 
6;(z) = -&J s dz eitT* ‘) 6ij - -$$ 

(270 [ 1 (21) 
lkl 

When tie take the Fourier transform of the vacuum expectation value of Eq. (20), 

which we call Oi j (<)st , the term of order gi diverges as log where 

A is an ultraviolet cutoff. Using rotational covariance and transversality we 

can write, 

(22) 

where n( I z I 2, is a dimensionless form factor. Thus* 

Hence our computation has given Z3 in the Coulomb gauge to order gi, i. e. , 

where ~1 is any lzl =p . 

In general 

i z3=z $g ( > 3P 0 
which at the eigenvalue, if there is one, will take the form 

z3 = Z,k) 

(25) 

W-9 

In the massless Yang-Mills theories we may have both an eigenvalue condition 

and canonical commutation relations. 
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III. DISCUSSION 

In this section we discuss the relation between the BJL limit for dc, given 

above, and the results of the same limit taken by means of the Callan-Symanzik 

equations. 9 
/ Since dc is gauge dependent we confine our remarks to the 

Coulomb gauge in which we have been working. The question is under what 

circumstances are these two analyses compatible? Recalling that manifest 

covariance is lost in the Coulomb gauge we write for the BJL limit. 

d+$, 9, g) lc12-‘ed F(-$$s) < cs, ; 

2 
90 -++cO 

(27) 

i.e., the entire s, dependence at infinity is in the -$ of the propagator which 

we have factored out. Now 
4 

dc(y, f, g).Z3($, g)=d@, $9 g) 
(28) 

with I 
3/2 

z3 g=- 
z1 go * (29) 

We have two CS equations; i. e. , 

and 

where 

(30) 

(31) 

(32) 



and 

Thus, solving, 

d c 
where 

and 

Letting 

we have 

7 =f log A2 

G = &, 7); ii@, 0) = g (36) 

Z,(h2A = Z3& ii> exp 

To make contact with the BJL limit we make the assumption that 

= lim d 
h-oo 

g)BJL=dc (+ g) 

(35) 

(37) 

(38) 

(39) 
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Now in our example, to order g2 

dc(+, g)- log(@) Azmm * (41) 

If this behavior persists to all orders: i.e., if dc+m there is nothing much to 

be said. However, if the logs sum to suitable powers so that 

;.dc(AF,g) <a j (43) 

for some range of values of g then we may draw some interesting conclusions. 

In this case we would have 

S 
7 

lim YGk,X)) dx < O3 (43) 
h--w 0 

. . . 

Le., 

0 < lim Z3(A2,g) < CO . (44) 
h--J 

But this is only possible if there exists a gr such that at gt 

and 

PW)=O (45) 

Y &‘I = 0 . (46) 

Hence for the analyses of the limit to be compatible p must have at least 

three zeros. The reason for this is that the zero of j? at gr must be associated 

with a negative slope for this to be a l’stagnation point**; i. e. , 

lim g = g’ 
h--J 

(47) 

so that 

lim Z3(l, 9) 
h--m 

- Z3(1,g’) < co . (43) 



‘.,,. 
I - .-. ..- .~ .--. -L.. ..d.i.. A”.. - -. - _ -.- _..... -.-,.. .--._ ..-. ,_A . ..-_-.-- ..-... ..-.. -..-. 

- ll- 

The zero of /3 at the origin is associated with a negative slope so the curve of 

p starts down and if there is a second zero it will be reached with a positive 

slope. It is the third zero, if there is one, which will have the desired nega- 

tive slope. The physical coupling constant need not be at this zero, only in the 

domain of attraction of this zero. 

We see, therefore, that the consistency of these two approaches to the 

BJL limit places very strong constraints on /3 and y. Since these functions have 

only been computed to very low orders in perturbation theory around the origin 

we do not know if the theory can meet these conditions, or if some proof can be 

found that they cannot be met. The introduction of fermions complicates the 

analysis still further. But we have seen that the self-coupled massless Yang- 

Mills theory in isolation is, already, a very intriguing, nontrivial situation. 
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