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ABSTRACT 

Dimensional scaling laws are developed as an approach to understanding 

the energy dependence of high energy scattering processes at fixed center-of- 

mass angle. Given a reasonable assumption on the short distance behavior of 

bound states, and the absence of an internal mass scale, we show that at 

large s and t, do/dt (AB -t CD) Q s -n-i-2 f(t/s); n is the total number of fields 

in A,B,C and D which carry a finite fraction of the momentum. A similar scaling 

law is obtained for large pI inclusive scattering. When the quark model is 

used to specify n, we find good agreement with experiments. For instance, 

this accounts naturally for the 2 -2 (q ) asymptotic behavior of the proton form 

factor. We examine in detail the field theoretic foundations of the scaling laws 

and the assumption which needs to be made about the short distance and infrared 

behavior of a bound state. 
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1. Introduction 

The dimensional scaling laws 1,2 

$ (AB + CD) Q s -n+2f(t/s) (1) 
-a 
i 

for the asymptotic behavior of fixed angle scattering appear to compactly 
Tj$$ 
:$ . 

summarize the results of a broad range of hadronic scattering, photoproduction, - 

and elastic form factor measurements. The integer n is given by the (minimum> 

total number of lepton, photon, and elementary quark fields carrying a finite 

fraction of the momentum in the particles A, B, C and D. The scaling laws 

represent, in the simplest possible manner, the connection between the degree 

of complexity of a hadronand its dynamical behavior. 

One of the most important consequences of Eq. (1) is its application to 

elastic electron-hadron scattering. This rule immediately connects the 

aymptotic dependence of the (spin-averaged) electromagnetic form factor 

to the minimum numbers of fields nB in the hadron: 

FHW ‘L t 
l-nE 

(2) 

Thus, using the quark model; we have F(t) 'L t -1 for mesons and Fl(t) % t -2 

for baryons. We also find (see Sec. II.B2) F2%t -3 , and thus GE Q, GN scaling. 

All of these results are consistent with the asymptotic dependence indicated 

by present experiments. In Section III of this article we survey present 

data which is relevant to testing the scaling law, Eq. (1). It fares very 

well, being consistent in all cases and accurately verified for yp + up and 

PP + PP* We predict dajdt +- s -7 and s-lo, respectively, at fixed cm angle! 

experimentgives s -7,3..+9. .4 and s-g*7 '"*3,v A catalog of predictions which 

can be tested in the future is also given in Section III. 
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In fact, dimensional analysis and some simple assumptions immediately 

lead to the scaling law of Eq. (1). Imagine that a hadron is a bound 

state of 9% constituents each of which carries a finite fraction of the 

total hadron momentum. The amplitude for the scattering of a system of 
--?a 

hadrons (see Fig. 1.) is therefore related to the amplitude for the & +J 

scattering of their constituents, integrated over possible constituent 

momenta with the constraint that the constituent momenta add up to the 

hadron momenta, If the total number of fields in the initial and final 

states fs n, the Feynman amplitude Mn has dimension [length] n-4 when the 

conventional normalization of states is chosen 
( <PIP'> = 2ES3(p-p'j) . If 

at large energy and momentum transfer G-l is the only length scale for 

the amplitude,M n 'L G> 4-n f(t/s). Now if each of the nH constituents of 

hadronH carries a finite fraction of the momentum, say in the hadron rest 

frame, integrating over the possible momenta of the constituents can never 

introdqce a dependence on s. Thus the amplitude, M, for the physical process 
.%. 

has the same asymptotic behavior as M n* Equation 1 then follows immediately 

since 

x, do 
dt% s2 1 /Ml2 . 

More generally for any exclusive process A + B -t H1 +.,..HM , 

do 
3 3 ‘LS 

dtl(d p2/E2)...(d P,~/E,_~) 

-n+2f(PiiPj) 

,,*' 

(3) 

for large s at fixed invariant ratios. Alternatively, using the quark model ._ 

we have simply the scaling law 

(4) 

for the exclusive cross section integrated over any fixed center-of-mass region 
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when the ratios of invariants stay finite. Here NM(NB) is the total 

number of mesons (baryons) in the initial and final state. 

The same model and dimensional counting rules may be applied to 

inclusive processes A + B + C +X where C is detected at large transverse 

momentum'). In this case only a subset N of the constituent fields need 

to participate in the large angle scattering process; the rest remain as 

"spectators", The result for s >> M2 , fixed invariant ratios, is 

do 
- =Lf(5$) =$j,4 fcm9 zj 
d3p/E SN-2 

_ (5) 

where M2 is the missing mass. The subset N which contributes to the scaling 

of a given hadronic process can be model dependent; we discuss this further 

in Section IV. Furthermore, as shown in Ref. 3, the dimensional rule allows 

one to predict the- threshold dependence at the exclusive boundary (i.e., 

> + 0 at fixed Bcm): 

do 

d3p/E 
(6) 

where ii is the total number of spectators in A, B, and C. Thus for example 

in deep inelastic e&p scattering N = 4 (for eq + eq) and fi = 2 (for the two 

spectator quarks in the proton) and we recover both scale-invariance for 

vW2 and the‘Drell-Yan-West behavior vW2 Q (l-x) 3 for x + 1. Possible spin 

modifications are reviewed by Ezawa, Ref. 4. As shown in Ref. 1, the .- 

inclusive-exclusive connection of Bjorken gives the relation n = N + P + 1, 

where n is the number of fields involved in the exclusive scattering (see 

Eq. 3%. 
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The above scaling .laws share a significant feature with the predictions 

of parton models: the cross section multiplied by a power of s becomes a 

universal scale-independent function, dependent only on ratios of invariants. 

In contrast, if hadrons were homogeneous objects, no elementary constituent 

would carry a findte fraction of the total momentum, and large transverse 

momentum hadron scattering would take place via the cumulative effect of an _ 

infinite number of soft interactions. Exponential damping in transverse 

momentum is therefore to be expected $n such a models. 

It is evident that more careful-reasoning is necessary in order to _ 

establish that Eqs. (1 -5') should be true. That is the purpose of Section II 

of this article. The principle issue of course is whether masses or binding 

energies could set the scale rather than s. In the deep inelastic case that 

seems not to happen when q2 and v become sufficiently large. We argue in 

Section II that for exclusive scattering when all kinematic variables are 

large it is likely that again only those large invariants set the scale. Of 

course purely dimensional reasoning cannot specify possible powers of loga- 

rithms. Hence all the scaling laws discussed above must be regarded by the 

reader as true "module logs .'I In Section II our analysis of renormalizable 

field theories will allow US to be more precise about logarithmic modifica- 

tions to canonical power-law scaling. 

The simple model of the hadron in which its momentum is partitioned 

among its constituents so that each quark has a finite fraction turns out 

to be very useful for a broad range of hadronic scattering calculations - ._ 

especially those involving multiquark states. An application to effective 

Regge trajectories and residue functions is given in Section II.B2. Section 

III is devoted to the experimental situation and Section IV briefly deals 

with inclusive reaction applications. Appendix A gives a detailed example 
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of a Born amplitude calculation. Finally Appendix B shows that the fixed 

angle unita'rity bound on the asymptotic behavior of scattering amplitudes 

is the same as the dimensional scaling law 1 Mn[,2 Q 94-n, 
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II, Exclusive Scaling Laws. 

The crucial steps in the dimensional analysis of the scaling laws 

given in the introduction are a) the effective replacement of the composite 

hadron by constituents carrying finite fractions of the hadronic momentum, 

and b) the absence of any mass scale in the amplitude Mn or binding corrections 
'3 
: 

9% 
to it. It is evident that a super- or a tfjn-Trenormalizable field theory could 4 _I!. 

not satisfy these condStAons since such theories contain a fundamental length - 

(in the coupling constant) which necessarily sets the scale. This is in con- 

trast to renormalizable perturbation theories in which mass scales enter 

through propagators and external masses. In fact the required conditions 

a) and b) are natural features of renormalizable field theories given certain 

dynamical assumptions concerning the nature of the Bethe-Salpeter wave 

function, the absence of infrared effects, and the accumulation of logarithms. 

In this section we shall systematically investigate the validity in 

renormalizable field theories of the dimensional argument and its underlying 

assumptions. In order to examine the effects of binding in bound state 

scattering &) , 
6 

we shall use the Bethe-Salpeter formalism.. T&b en&t%les~ 

one to separate the behavior of individual graphs from that due to the 

infinite summation required to form bound states, By definition the hadronic 

amplitude is given by the convolution of the hadronic wave functions and an 

n-particle amplitude Mn integrated over relative momenta kPi(see Fig. 2). 

M = Mn *BS *BS :d4ki . (15) 

We shall discuss b), the asymptotic behavior of Mn, by explicitly examining .. 

it in perturbation theory. We shall show that with the following three 

assumptions, the scaling laws (Eqs.l-:4) are correct (modulo logarithms) in 

any renormalizable:field theory: 



- _ 

-8- 

A) The physical mesons and baryons are s-wave Bethe-Salpeter bound 

states of quark-antiquark and three quark fields respectively, such 

that the wave functions are finite when the quarks have zero separation 

in coordinate space and vanish for large coordinate separation. Thus 

the large momentum components of the wave function are restricted: 

e.g., for the mesons we have 

Moreover,since the coordinate space extent of the wave function is 

bounded, the wave function is finf'te at every point in momentum space. 

B) The large momentum transfer interactions of the constituents are 

asymptotically scale invariant.. 

C) Multiple (L 2 2) scale-invariant interactions between the con- 

stituents of different hadrons can be neglected. 

Assumption A is necessary so that bindgng corrections are limited. Then 

the computation of.Mn involves the scattering amplitude obtained by replacing 

each hadron by a collection of quarks of the appropriate spin; each 

constituent carrying a finite fraction of the hadron's momentum. Note that 

if we turn off the binding adiabatically, the constituent momenta are 

Pi = (m,,$) in the rest system and pi = xipH, xi = mi/mB in a general frame. 

Assumption A $..mplPes that there are no elementary fields with the quantum 

numbers of' the hadrons. Because of assumption A, the d4ki integrations 

are convergent in Eq. (7), and it is easy to see that the scaling behavfor 

at fixed angle of M is given by the scaling behavior of $In multtplied by 

finite coefficients of order $(x=0). Note that in the case of non-zero 

orbital angular momentum, helicity constraints, or quantumnumber restrtctions, 

the amplitude M could fall by additional powers of s. 



Assumptions B and C are necessary to insure that Mn Q (&) 4-n . 

Assumption C serves to eliminate asymptotic contributions to Mn from 

disconnected graphs (see Fig. 3). Recently Landshoff has made the 

important observation that Nn $ (&>4'n if hadrons can scatter at large 

angles by successive independent, near mass shell elastic scatterings of 

each constituent of one off a constituent of the other (as in Fig. 3). 

In fact (see Sec. II.Bl and Appendix A) in this case Mn Q (&) 4-n, (&)L-l 

where L is the number of pairs of constituents from different hadrons 

which have a large angle scale invarkant interaction. (It should be noted 

that whether or not this process takes place in hadron-hadron scattering, 

there is no modification from such a phenomenon to form factors or. to 

fixed angle processes involving photons or leptons.) However there is 

both direct and indirect evidence that Landshoff's mechanism is not physi- 

cally important at least at present energies. The direct evidence is that 

inpp+pp:$ dajdt s s -9.7 F0.3 f(t/s)8 rather.than the s -8 as would be pre- 

dicted if L-3. More indirect but equally important is the fact that no-high 

energy, fixed angle scale 'invariant interaction between quarks of different 

hadrons seems to occur in nature. The best evidence of this is from high 

pi 
inclusive pion production (pp +- T +X). whose cross section falls much 

faster than the p;" at fixed p,/& predicted if such a scale invariant 

interaction between quarks of different hadrons did occur (see SectionIV 

for details). For these empirical reasons, then, assumption C is necessary. 

The organization of this section is as follows, We proceed by first 

(Section I1.A) giving the construction of an amplitude in terms of Bethe- 

Salpeter wave functions in the spinless constituent case, using the meson 

form factor as an example (II.AlI_. We show that with assumption A the 

asymptotic behavior of the full amplitude is the same as the behavior of 
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the dominant irreducible contribution, Mn. The extension of the analysis 

to spin-l/2 constituents is not difficult and is given in Section II,A2. We 

show that the meson form factor has the same behavior in the spin&l/i! as in 

the spinless case. This is an appropriate point to explain why, even though '.%a 

short distances are being probed, bound states of spin-0 fields (whose dimen- 3-t 
'* 

sion is IL]-') and spin-l/2 fields (dimension [L] -3'2) have the same behavior ." 

in large momentum transfer exclusive scattering. In Section II.A3 we confront 

the difficult question of the validity of our assumptions A and B. Not very 

much is known about the short distance and infrared behavior of.Bethe-Salpeter 

wave fundt$ons. We review what is known, give some plausibibity arguments in 

favor of our assumptions, and speculate on the situation in non-abelian gauge 

theories. Modifications in our:results when the wave function at short i 

d&stances is not finite are discussed. 

Having established that assumption A reduces the problem to the behavior I 
of irreducible graphs, we examine the lowest order irreducible (Born) graphs 

for a number of interesting processes in Section I1.B. We start (II.Bl) with 

the Landshoff diagrams and show why they violate the dimensional result. We 

present some speculative arguments in favor of assumption C, which allows us 

to neglect their contribution,, Next (II.B2) we show that the behavior of the 

Connected~Bcrn diagrams reproduces our scaling law independent of the spin of 

the constituents or the details of the interaction as long as the coupling 

constants are dimensionless. While discussing the Born diagrams we show 

that a model with spin-l/2 quarks gives GE/GM asymptotic scaling. We also 
._ 

obtain from general arguments the asymptotic Regge trajectories in gluon 

exchange and quark interchange models. Finally, in Section II.B3 we discuss 

the effects of higher order corrections to the Born diagrams. 
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II.Al Spinless Bethe-Salpeter Wave Function and the Meson Form Factor. 

The simplest example, which illustrates how to obtain the asymptotic 

behavior of an hadronic amplitude is the calculation of the form factor 

of a meson, taken as a bound state of two scalar fields. The full Bethe- 

Salpeter wave function satisfies6 (see Fig. 4) 

(k2-ma2)((p-k)2-mb2)$p(k) = 
s 

A K(k,a,p)$p(R) . 
(2n) 4 

(Note that the wave function Y, as conventionally defined, includes the 

propagators for the constituent legs.) This is the eigenvalue equation for 

the meson mass M2 = p2. TheFkernel K(k,R,p) is the sum of all two particle, 

irreducible diagrams. For illustration we first consider a generalized ladder 

approximat&on 

~(p,W = g2 I o(?)dh2 
(&-k)2 -A2+iE 

where we can choose the spectral function a(h2) such that for large R2, s(p,k,R) 

2 -6 scales as (!L ) . For a super-renormalizable theory 6 is positive; Ip3 theory 

corresponds to 6 = 1. For renormalizable theories, e.g., c$~, 6 = 0. We shall 

always compute with 6 > 0 as a regulator, and take the l&it 6 -+ PaC .Ghe. Wd 

of the calculation'. This is analogous to the generalized Feynman Pauli-Villars 

method Or dimensional regularizat$on in perturbatjron theory. Note. that for 

6 > 0, we have q,(k) Q [kl 
-4-6 and JI,(x=O) 4 =. @he m&-&mum condi:t$on for 

q~,(x=O) < 00 is $p(k) 'L 
2 If& 

[kl-4/[:log(k )I with E 4 a) 
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The form factor in ladder approximation is (see Fig. 5) 

Wk&(q2~= <p+qtJ%‘) h’> 

s Yd$k "r c. 
(zT)4 ?P+-4 

04 (2k+q) ’ [ (p-k) 2-%2 1 JI, 04 + (a-b > J (10) 

If additional kema&s are introduced wUch;eontain internal charged lines; 

then additional contributions to the current in Eq, (10) are obtained 

consistent with gauge-invariance. A comprehensive treatment of these 

contributions has been given by Mandelstam 6 . The loop corrections are non- 

leading f,or q2+ 03 if cj.> 0, and can give logarithmic corrections for each 

loop as 6 -t 0. We return to their contributions below. 

By assumption A the wave functions are bounded at every point in momentum 

space, SO that the asymptotic behavior of F(q2) is controlled by two regions 

4 of the d k integration: 

(a) k 'L xp; k2 Q O(m2), (p-U2 Q Ob2), (k+q>2 'L (l-ir>q2, 

(b) (k+q) Q x(p+q) ; (k+qj2 ‘L Ob2), (p-Q2 Q, O(m2), k2 'L (l-x)q2 

where x is finite. More precisely, integration region (a) corresponds to 

k= xpttc, where K is a spacelike vector orthogonal to p which is of bounded 

magnitude (by assumption A that the wave functllon is damped in large relative 

momenta). Thus k2 = x2m2 i- K 
i and k l p = xm2 are finite. (The variable x is 

similar to the variable used in the Sudakov and infinite momentum frame anaj.yses.) 

It is easily shown that, after the dk2 integration is done, only the regton 

0 5 x < 1 can contribute. Region (b) corresponds to k = (p+q) + ~~.'.with 

K' ' (p+q) = 0 and (K 12) bounded. 



-13- 

At this point we can relate the asymptotic fall-off of F(q2> to that 

of q2$(q2>, up to logarithms. However, for our purposes it will be con- 

venient to iterate the equation of motion wherever--large relative momentum 

is encountered. Thus we obtain for large q2 
% L. 

(2p+q)‘F(q2) $5 ]d!L ,$- (R)M;(p,q,U+4Jp(k) 
(2a)4 p+q IT 

with k = xp + ~2 and R = yp + K’, The integrations are limited to the 

2 dominant region of each wavefunction: K and K V2 = O(m2). ME is the five- 
- 

point connected scattering amplitude illustrated in Fig. 6. 

This is in fact the prototype of our general prodedure. We employ the 

equatPon of motion for the wave function wherever it involves large relative 

momentum. In this manner we generate the connected amplitude Mg which 

represents the scattering of the quark constituents, each with a finite fraction 

of the hadron momenta: P 1 =xP i H, 5: pi = 1. 
1 ._ 

Mg is of course exactly the 

connected amplitude which occurs when the'hadronic binding is turned 

off adiabatically, in which case x 
i + m / i"H* 

Let us now discuss the asymptotic behavior of F(q2) using Eq. (11). For 

large q2 one can readffly verSfy-that 

M1-I ,,, (2q+d 1 

5 (1-x)q2 I B-r]&-(X-Yh1216 

+ zy (p+q3 j&p 1 

w-Y>S2 1 ~l-y);2-(x-y)q2]6 

which is properly gauge invariant: q M' = 0. 
P5 Asymptotically, then, 

F(q2) (\I (+)1+6 log q2/m2 
4 

where the logarithm occurs because of the endpoint of the integration over 

(l-x) -I. -1 or (l-y) . This result for S > 0 agrees with those of Ref. 9. 
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More generally the higher order kernels modify this result by extra 

powers of (q2)+ for 6 > 0, and by possible logarithms for each additional 

loop if 6 = 0. However, if we assume that the true ultraviolet behavior 

of the theory is more convergent than indicated by elementary gluon exchange 

(as in asymptotically free theories, for example), then the proper. regulari- 

zation of the renormalizable theory is 6 = O+ and additional logarithmic 

modifications are suppressed. This is a consequence of our assumptions A 

and B, that the accumulation of logarithms affects neither the asymptotic 

behavior of the wavefunction.nor the-scale invariance of the connected - 

amplitude MF. We thus have the prediction for a bound state of two spin-0 

particles : 

F (q2> 2, + log q2/m2 . 
Q 

Tn the case of an n-field bound state, we have simply (neglecting logs) 

F(q2) -t (n 1 2 1-n (q2Yn ’ 

i.e., F(s2) 'L (q2)1-n in the renormalizable limit in agreement with Eq (2). 

A detailed discussion of this result when n = 3 has been given by Alabiso 

and Schierholz', Note that the powers of (q2)-l arise from each off-shell 

constituent line and the (q2)-" from each gluon line. 

Thus,physically, one pays the penalty of one power of q2 for changing 

the direction of each constituent from along p to along p-tq. The spin indepen-: 

dence of this result is discussed in the next section. 
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II.A2 Spin-l/2 Constituents. 

The calculations of the asymptotic behavior of form factors become 

somewhat more complicated when the effects of spin are included. The 

results'in the renormalizable limit, however, are effectively the same as 

the spinless results. We begin with the example of the form factor of a 

meson which is a bound state of two spin-l/2 fields. We assume, for the 

present, zero orbital angular momentum. The Bethe-Salpeter wave function 

satisfies (see Fig. 4) s. 

s 4 
@-ma)(d-&mb)+p (k)== id K(k,R,p)&p (R) 

Cm4 
(12) 

where K is the full Bethe-Salpeter two-particle irreducible kernel. Again, 

as in the spinless case, we begin with the generalized ladder approximation 

form 

(13) 

The l'(a) and I'(b) represent the (momentum-independent) Dirac couplings of the 

gluons to constituent a and b respectively, Just as in the spinless case, we 

may choose o(h2) such that %(k2) Q (k2)'1-"(6 > 0, k2 + m), which gives 

assumption A: $(x=0) = f d4k qp(k) < a. Renarmalizable theories correspond to 

+ 6+-O, at least in the ladder approximation. This is discussed further in 

Section 11.A3. 

The form factor for the bound state using the kernel (Eq. (13)) is 

<Pfqj J,$O) 1 P> = (2pfq)VF(q2) 

-- 

=e id4:k 4 -. 
a (2n)4Qp+q('k+q)yu (a) 'g-lpl-y$ *, 04 (14) 

+ (a++@ . 
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Additional contributions required by gauge-invariance are necessary in the 

presence of the higher loop kernels, as in the spinless case (see Fig. 6). 

These are of the same order or are non-leading for q2 + co if 6 >o. 

As'in the spinless calculation, the important contributions for the 

asymptotic form factor occur when only one of the two wave functions is 

evaluated at large relative momentum. Again, it is convenient to iterate 

the wavefunction at large relative momentum using the equation of motion 

and we obtain 

d4ke 

s s 

d4R 
- 

@+qh(q2) Q -- 
(2Td4 G-4 

J, p+q (QM;:,rL,(k). (15) 

xg is the connected Feynman amplitude shown in Fig. 7. As in the spinless 

case the dominant contribution comes when the constituents carry finite 

fractions of the longitudinal momenta and small transverse momenta. Further? 

more, if only the leading q2 dependence of the form factor is desired, the 

spin structure of the wave function simplifies enormously. In general the 

structure is 

IJ, Ck) = [fla(P,k)g -t- f2a(P,khal[flb(P,k) (-Ed+%) + f2b(P,k)%l l (16) 

using the identities 

and . 

%g=- 1 v&s)&4 , 
spin 



Eq. (16) can be rewritten 10 in the form 

$p(k) = 

c 

u,(k);,(p-k)$;-(k) + va(k)-$p-k)$+(k) 

I 

-8, 

+ ua&>% (p-W$+O4 f va 04 ;b (p-k) 'i';- (k) , (17) 4 
_ ,.i 

with the appropriate spin projections understood. In the zero bindfng 1imT.t 

this structure must reduce to the product of two free spinors ua(k=xp)Gb(p-k=(l-x)p), 

hence for our purposeswemsyruse 

$, 04 ?i ua (k)vb (p-W;- 04 l (18) 

The terms thus neglected are at least linear in,k', (the "transversemomentum" 

which cannot become large) and give a non-leading contribution .to F(q2), 

That these terms are proportional to the binding energy and may be therefore 

legitimately neglected is easily seen 10:. in time-ordered perturbation theory: 

they arise from the presence in the wave function of an extra q< pa%r. 

With the simplificatton, Eq. (18), we find 

(2p+q)'F,(q2) s 1 d4k /d4Q Y 
+J :1-I 

W5 q;-(k) ) 
klxp fi=Y (p+4 > 

p+q 
(19) 

where 

= Ua[JT(p~)lvb[(l-y)(p+q~)]M~(k=xp,~=y(pfq)) . 

is the connected amplitude evaluated between on-shell spinors. Again note 

that for the connected tree graph we can neglect the K and K' components of k' 

and R', and except for particular helicity configurations we may drop all mass 
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terms in the asymptotic limit. This is explicitly evident in the Breit frame 

G2 _ = -q2) : 

P-= (ks 2 - $12) and 

pi-q =,(~z-zFz , + 32) ' 

where each component of p and p+q becomeslarge. Explicit calculation then 

shows that the behavior of ig for large q2 is (-q2j+", as dictated by 

dimensional counting 11 . Accordingly, as in the spinless calculation, we have 

FCq21 'L '(q 
2 -1-g ._ 2 .;.& / . . 

) Rn(q ./rn ) where the logar9thti results from the endp&$ 

of the x or y integration. The canonical renormalizable limit is 6 + Of. 

As in the spinless calculation a factor 2 -1 (q ) is associated with each off-shell 

fermion propagator, and a factor (q 2 -6 ) with each gluon carrying large q2 in 

the Born diagram. The overall scale of the form factor is determined by the 

value of $:(x=0) = p4k q;(k). As we have noted,++-(x=0) is finite for 

6 ' 0. 

Note that the wave function I$ r(k) plays the same role as the spinless 

Bethe-Salpeter wave function. The equivalence of asymptotic behavior with 

spin-0 or spin-l/2 constituents follows since * ;-(xl ( see below) has the 

same dimensions as the spinless Bethe-Salpeter wave function, $ ;pinless(x). _ 

For spinless constituents, the Bethe-Salpeter amplitude for a meson in position 

space is 

'4;pin1ess(x) 5 <O(T 4(x)$(@(p> 'L [L]-~ 

where we are using continuum normalization <p'/p' = 2 E S3(p_P,) and <O[O> = 1. . .., 

For the spinor case 

Tinor = <O(T JI(x)$(O)(p> 'L [Ll-2 



since the fermion field-operator Q(x) has dimensions L -3/2 . However, 

Q;-(x) Q lx1 
-1 since the explicit spin dependence of J, 

P 
is removed; 

accordingly the short distance behavior of q;(x) and $J, sca1ar(x) is the 

same. In the language of operator product expansions at short distance 

the point is this: The amplitude for the large q2 form factor of a meson 

composed of two quarks will involve an operator product suchC!%as 
: 

3, (x )J, (.y )J: (z)$t, (x )JI (~2) in a limit.such as ZCX,X~'ZZ ~2, A signifi- 
1 ,? 5 1 I-J 2 2 o2 

cant difference from say, the operator product expansion of two currents 

J,,(x)J,$W $(xhliJICd~~Oh v$CO) as x + 0 is that in the latter case the spin 

of the fields Ls summed leaving objects (,eurrents) whose entire angular momentum 

content is contained in the?indices JJ and v. Therefore the operator product 

expansion can be made in terms of Lorentz tensors such as 0 
W' 

The former 

case is more subtle: spinors are required to carry the spin content of the 

product of fields. This means that the number of degrees of freedom which 

determine the scaling behavior at short distances is the same as in the spin 

zero case. 

Multiparticle bound states can be treated by a generalization of the Bethe- 

Salpeter techniques for two particles. For instance, the proton wave function 

satisfies the relation shown in Fig. 8.. This time the necessary kernel for the 

equation is three-particle irreducible. Each aspect of the three-particle bound 

state analysis parallels the two-body analysis, The most important part of the 

spin structure of the wave:. function is that which reduces to a product of free 

quark sp&nors: 

Qp Ckl rk2) = ua(kl)ubCk2)uc@-kl-k2)$-?kl~k2) l cm. 

Projecting spins correctly, there are two contr$$ut&ons to the we &~2~$Qnt 

1) when a and b are in an s-state and 2) when b and c are in an s-state. The 

left-over quark has the helicity of the hadron. 
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II.AS Short Distance Behavior of the Bethe-Salpeter Wave Function 

The essential role of the finiteness condition on $(x = 0) for the 

derivation of the dimensional counting rules is clear. The condition allows us 

to compute the high momentum transfer limit of exclusive amplitudes by iterating 

the kernel once and computing a minimal connected graph; thus accounting for the 

effects of large momentum transfer being routed through the wavefunction. 

Further, the values of the $(x = 0) (which have dimensions Emass] n-l for n 

constituent fields) determine the normalization of the hadronic amplftude. In 

this section we will address the important question of whether the wavefunction 

condition is actually true in renormalizable field theories. In fact, a 

definitive answer has not yet been given and may well depend upon the theory. 

To see what is involved, consider the full Bcthe-Salpeter equation, e.g., for 

a pion in quark-vector gluon theory (Eq. (12) and Fig. 4). 

(X - m> (rh - It - m,,Np W = 

4 
=+ K(k,R,p)$.,.(R) 
(2~) P 

where K is the two-particle irreducible kernel. In ladder approximation to a 

theory with gluon mass M, I 

g2y (a>$-v 
K gadder = 

Fr '6) . 
(k-Q2 - M2+is 

If we suppose that KIadder gives the correct asymptotic limit, then the Bethe- 
L_ 

Salpeter equation is singular and the power falloff of $ depends on the coupling '- 

constant. 

However, in the weak binding (g2 + 0) case, when all components of the 

relative momentum rl become large, $ % n -4 modulo log n. This result was first 

obtained by Salpeter 10 for the instantaneous (coulomb) ladder approximation. 
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Serious objections can be raised to the use of the ladder approximation in 

the strong binding theory for determining the true asymptotic behavior of the 

Bethe-Salpeter wavefunctions: 

(1) The ladder approximation result for the asymptotic limit is unstable 

under the perturbation of adding additional kernels (e.g., the crossed-,graphs, 

vacuum polarization, vertex corrections, etc.). In each case the power depen- 

dence on the relative momentum is changed. 

(2) The behavior of $ at large relative momentum determined from ladder 

approximation is discontinuous as the dimensional regularization (4-d) for loop 

integrations is taken to zero. If it is argued that the physical solution for 

quantities such as the asymptotic behavior of F(q2) must be analytic as a function 

of 4-d, then the wave function at the origin is finite. 

(3) The ladder approximation can only be valid in a limited range of 

coupling constants. When g2 becomes too large, the energy eigenvalue becomes 

imaginary, indicating a non-hermiticity of the equation. One can see this 

explicitly from the Salpeter equation. The situation is analogous to the 

familiar situation for the strong binding limit of the Dirac-Coulomb equation 

with V = - Zu/r. For the lowest eigenstate, we have 

* (rf) Qr -1+-,Jl - (Zd --.1--._ .._l. _ __ ..,- 
1s (for r i 0) . 

The singular equation has no physical solution for Za > 1: it is undefined. 

Regularization of the potential for r Q 0 is thus required. The standard 

procedure is to make V less singular than r -1 for a region around-zr % 0 (which 

of course occurs physically due to the finite mass of the source). Then sls is 

real and Qls(r = 0) is finite for all Za12. For very large Za a multiparticle 
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pair creation is required. 

There is reason to believe that in renormalizable theories the full kernel 

K is, in fact, more convergent asymptotically than KI,. As we conjectured in 

Ref. 1, asymptotically free theories are likely to give rise to a wavefunction 

whose singularity at x = 0 is at most a power of a logarithm. This is 

heuristically plausible since as the characteristic momenta in a graph become _ 

larger and larger relative to masses, the-: effective coupling constants become 

smaller and smaller, so that the weak binding result holds. If it is legitimate 

to imagine taking the limit q2 + CQ before summing the perturbation series then 

the wavefunction condition holds, modulo a power of a logarithm. Recently 

Appelquist and Poggio 13 have shown that in a $3 theory in six dimensions, which 

is asymptotically free, the renormalization group can be used to demonstrate 

that the wavefunction is finite at the origin up to a calculable logarithm. 

However, they emphasize that the infrared corrections to the interactions among 

constituents may lead to further logarithmic corrections. (See Sec. II.B3 for 

our discussion of this point.) 

Even in renormalizable theories which are not asymptotically free, the 

vertex and vacuum polarization corrections to the gluon exchange diagrams 

in the complete kernel may well damp the asymptotic behavior of K, as do the 

finite size corrections to the Coulomb potential. Thus there are both 

physical and mathematical reasons to believe that the full kernel is suf- 

1 ficently regular that the wavefunction at short distance is finite or at I 

worst logarithmically singular. Clearly this problem deserves further study. 

Suppose that the wavefunction is not finite at x = 0. There are two possi- 

bilities: it diverges or is zero. If the wavefunction diverges with a power 

6 it modifies the effective nh associated with that hadron, so, e.g., for a 

meson n = 2 - 6 rather than 2. Similarly if it diverges or vanishes logarith- 

mically it induces logarithmic deviations from perfect scaling. 
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If the wavefunction vanishes as a power at x = 0, the next-to-leading 

Born terms will determine the asymptotic behavior of the matrix element. 

This is the case when a bound state has non-zero orbital angular momentum 14 , 

at least if the wavefunction's dependence on energy and three-momentum factorizes -$I 
iii 

in the hadron rest frame. That is, if QB(q) can be written as $(qo)$(q), then %j 
N ,.'. 

4(z) Q rL times angular factors. Hence for a two-constituent bound state of _ 

orbital angular momentum L, $J(X 'L 0) % x L ; m-L when all components of x are 

proportional to each other and small. The result is to cause further damping 

of matrix elements. Hence the form fat-tor of an L = 1 state should have the 
2 1-n-L asymptotic behavior (q ) . Effects of orbital angular momentum have been 

considered in more detail by.Amati et al. 36 and Ciafaloni15. 

In addition to the finiteness of the wavefunction at the origin in coordinate 

space, assumption A included the requirement that it is bounded at every point 

in momentum space. Although this latter condition is difficult to prow directly 

by studying the Bethe-Salpeter equation 13 , there can be little doubt about its 

validity as long as quarks are not observed experimentally (because if the 

wavefunction is bounded everywhere in coordinate space but of finite "volume" 

then its Fourier transform is necessarily finite). 
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I1.B Irreducible Diagrams 

An important conclusion of Section 1I.A is that, given sufficient short 

distance smoothness of the wavefunction (assumption A), the irreducible 

amplitudes (the\!Mn) determine the high energy, fixed angle behavior of the 

full amplitude. This section is devoted to discussing the conditions under 

which the irreducible amplitudes obey naive dimensional scaling, i.e.@ 'L & 4-n 
n 

asymptotically. 

II.B.l. Landshoff Diagrams 

As mentioned in the introduction,to this section, Landshoff has 

recently emphasized a class of diagrams which, if present, would violate 

dimensional scaling. Such a diagram is shown in Fig. 9. It is characterized 

by having fewer off-shell fermions than standard diagrams for the same process 

such as shown in Fig. 10. In fact, for meson-meson and baryon-baryon scattering 

no fermion line need be far off shell. Physically, it corresponds to (say for 

meson-meson scattering) the independent, elastic, on-shell scattering of pairs 

of constituents such that the final momenta are properly aligned. Landshoff. 

calculated their asymptotic behavior and found, using a Sudakov parameterization, 

that for meson-meson scattering M- s -3/Z f(t/s) and for baryon-baryon scattering 

M* sa3f(t/s), in contrast to the dimensional result MN s -2 -4 and s respectively. 

We have verified his results using both Feynman parameterization 16 and infinite 

momentum frame perturbation theory (see ~~en@$x:;9;).' The kinematic configuration 

(see Fig. 11) which gives the pinch has all the quarks near mass shell so the two - 

elementary quark-quark scatterings at large momentum transfer are dimensionless 

since n = 4. The energy dependence of the full amplitude arises from the can- 

dition that the final momenta be aligned properly. Referring to Fig. 11 we can 
-3/Z see how s comes about; the center of mass frame of the two mesons is con- 

venient for this purpose. For definiteness, label the momenta of the quarks so 
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x1 and x2 are less than l/2. Examining Fig. lib, it is evident that in order 

for the final quarks to have nearly parallel momenta (so the transverse momenta 

of the quarks in the final mesons are finite as required by the wavefunatfon$> 

it is necessary that x 1 = x2 + O(i) where P is the magnitude of the meson 

3-momenta in the center of mass (P Q &). Assuming then that x1 M x2 we have 

the configuration shown in Fig. lib. Imagine that the quarks with fraction 

x1 M x2 scatter:,bysome- finite~+angl.e 8. Momentum conseava&ionmeans that..& ,.::. 

x;‘ ..F x 1 2=y1 = y2 within O(s). Let their plane of scattering define the x - z 

plane. Now consider the scattering of the quarks with fractions (l-xl) = (l-x2) 

+ o+. They in general scatter in some different direction having polar angle 

6' and azimuthal (relative to the xz plane) angle $. Since they carry a very 

large 3i;momentum (l-xl)P, they*will carryrllarge momentum transverse ,to the 

directgon defined....by the other set of quarks unless 4' = Cp + O(i). Thus there 

are three constraints on the kinematics, each requiring a parameter normally 

allowed some finite range to be restricted to a range O(_L>. Hence M Q s -3/Z 

do andz +s -5 (rath -6 $i 
er than s as given by Eq. (1)). 

Technically, the near-mass-shell diagrams have a stronger asymptotic behavior 

than the scaling law because of pinch&ingylarities that arise in the integrals 

over the constituent momenta. This gives rise to an anomalous dependence on 

the quark mass not present in diagrams whose leading behavior results from an 

end point singularity in the Feynman integral. That is,a linear infrared 

divergence in the quark mass serves to define a fundamental length scale; 1 . 
q 

To illustrate how this occurs in practice, we give in the Appendix Alan infinite .- 

momentum frame calculation of the Landshoff contr2bution to meson-meson scattering. 

As can be deduced from the above analysis, there will be no modification of naive 

scaling by such a mechanism for lepton-hadron scattering, Compton scattering or 

17 photoproduction . 
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This class of near-mass-shell scattering diagrams should evidently dominate 

the hadron scattering amplitudes in the asymptotic limit 
18 . Their existence 

implies a violation of Eq. (1) for meson-baryon and baryon-baryon scattering, 

giving instead "I 

do sL-l 
--'L - f(t/s) , dt! - ) sn-2 

_'X ,j 
where L is the number..of wide angle, on-shell quark scattering, 

(21) > 

e&g. , L = 2 for meson-baryon scattering and L = 3 for baryon-baryon scattering. 

Experiment (see Section III and Ref. 18) favors the dimensional scaling result 

of Eq. (1). From this we learn a striking fact about nature which is incor- 

porated in assumption C; multiple near-mass-shell scattering is not important 

for present experiments. 

The validity of assumption C is much more difficult to understand 

theoretically than the validity of A and B 'although their ultimate explanations 

may well be connected. Polkinghorne 19 has recently advocated adoption of a 

somewhat stronger version of C: that large angle scattering of near-mass-shell 

quarks is damped in energy. A possible mechanism for this damping is an accumu- 

lation of logarithms in the corrections to the quark-quark-gluon vertex when 

both quarks are near mass shell 20 . 

Another proposal, made earlier and for a different purpose by Blankenbecler, 

Brodsky and Gunion 21 , is that gluons cannot be exchanged between quarks of different 

hadrons, or else that the amplitude for gluon exchange is very small. Their 

analysis indicates that the con&ituentL-interchange picture gives a good des- 

cription of the angular dependence of exclusive scattering with no gluon exchange '- 

required (in this connection see our discussion of asymptotic Regge trajectories, 

Sec. II.B3). Since a field theory with quarks and gluons would in general have 

both quark interchange and gluon exchange, this indicates that gluon exchange is 

suppressed in nature. Further evidence for this proposal is given in Sections 
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II.B3 and IV. It should be emphasized however , that this is essentially a 

phenomenological rule: a consistent description of present wide'angle experiments 

can be made with no gluon exchange whatever. No compelling theoretical reason 

for this rL4.e has yet been advanced. -91 

Yet another possibility is that in a model with permanently confined quarks %?j 
;ty 

such near-mass-shell processes would be suppressed. It can be heuristically _ 

argued that, since this contribution is proportional to 5 , if the effective 
4 

quark mass were very large (perhaps comparable to &) it would be small. From 

the time-ordered perturbation theory calculation of the Appendix it can be-seen 

that the internal state with near-mass-shell quarks (which in a color SU(3) 

theoryf'has non-zero color systems propagating)exists for a finite time, long 

compared to s -l/2 . Such a state might be suppressed in the full amplitude. 



_ _ 

-28- 
. 

II.B2 The Irreducible Diagrams 

Typical Born diagrams for meson-baryon scattering and meson photoproduction 

are shown in Figs. 10 and 12. The heavy dots indicate which fermion propagators 

are far off mass shell. With scalar constituents having (p4 coupling, the wavy "~I 
i 

lines just reduce to a point interaction. By applying the mnemonic of Section '"‘q -4 . li 

IUAland II.AZ (s -1 for each off-shell fermion) the diagrams of Fig. 10 are 

immediately seen to have the asymptotic behavior M Q (&)4-n f(t/s) in the limit 
4 6+0. Hence they reproduce Eq. (1). The only process which needs special 

discussion is photoproduction (Fig. 12). 

According to dimensional counting, if the photon counts as one field the 

4-n photoproduction amplitude should 2, (&) .I.; .Figj 12 shows that three fermion 

propagators are large (as in the meson-baryon case of Fig. 10). However (as 

the reader can easily verify by direct calculation) the vector coupling of the 

photon introduces a numerator factor proportional to & resulting in the expected 

behavior M.p 2, s . -5/Z This is characteristic of the vector coupling, not the 

spin of the constituent and occurs for either spin-0 or -l/2 quarks. Had the 

quark anti-quark pair (looking in the photon channel) been constrained to have 

limited relative momenta, which a hadronic wave function would do, the photon 

coupling would not have generated a & so that Mw s . -3 This is the vector 

meson dominance contribution to photoproduction at large s and t. 

Fig. 13 shows typical Born diagrams for the proton form factor with spin l/2 

constituents. It is readily seen that for either scalar or vector gluon exchange 

(helicity flip or non-flip respectively in the zero-quark-mass limit) graphs of _ 

the kind shown in Fig. 13b'gfve a leading contribution 'L (q ) 2 -2 to F,(q')j. When 

q2 >> rni the diagram of Fig. 13a cannot contribute for scalar gluons. Explicit 
2 calculation shows that F (q ) is proportional to m 2 

2 so that in general a three- 
Q 

quark model of the proton form factor will give F2(q2) Q Fl(q2)/q2 when q2 becomes 

large. In terms of the commonly used form factors GE(q2) z F,(q2) + Iss_l F (4') 
4M2 ' 
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: 

and GM(q2) : Fl(q2) f icF2,(q2) where K is the anomalous magnetic moment, this 

corresponds to 23 constant GE/GM at large q2 as is indicated experimentally 

(Section III). 

We noted above that meson-baryon scattering or indeed any hadronic scattering, 
sii 

could take place either by gluon exchange between the hadrons or by quark inter- =! d ;: 

change (Fig. lob and 10~). Both give the same scaling behavior but in general _ 

they give rise to very different angular distributions (i.e., the function f(t/s) 

which we leave unspecified depends on the relative importance of the two types of 

diagrams). Although we do not attempt-here to deal with the problem of the com- 

plete angular distributions, we are able to make some statements about the 

kinematic region t- very large, s + 00. When t and s are both large we know the 

overall power dependence of da/dt 'L s -n-i-Z f(t/s) but not in general the function 

f(t/s) l However, if either gluon exchange or quark interchange is the dominant 

t channel process (see Fig. 14) we can specify the form of f(t/s). 

Using Regge terminology we write the amplitude as Mnr s -ceff(t)s(t). As 

is well known, a spin 1 or spin 0 gluon in the t channel gives rise to a constant 

a eff(t) = 1 or 0 respectively for all t. Multigluon exchanges only generate cut 

corrections. When quarks are interchanged there are two important regions in 

the integration over the intermediate quark momenta: k Q, xPC or k Q xPA. Consider 

the former. In this case the lower half of the diagram is purely a function of 

t = q2 (just as in a form factor calculation). In fact it has the same asymptotic 
-nC+l 

t dependence as the helicity non-flip form factor F(t) 'L t . The upper part 

of the diagram when s >> t'is also simple. It is essentially high energy, quark1 - 

+ A + quark2 + B a~atteriin'g,;-';:~~~explici~ !J; t dependence comes from that required 

by helicity considerations 24 :& 
1 X1+XA-h&A2 1 

. Hence for A = B = meson or 

A=B= baryon the leading behavior is t independent. On the other hand, for 

T photoproduction the upper blob Q, A. Thus we find that for meson-baryon 

scattering M Q s -3f(t/s) CL, s-cF(t): there are two terms (coming from 



k Q xPC and k Q xPA) proportional to Fp(t) and F*(t) respectively. The leading 

behavior in s comes from F so we have with ~-tMB=-l . 

BB-+BB Similarly aeff = -2 and I:::? 

quark interchange aeff 

= -125 . 

According to Ref. 26 the best fits to aeff are indicative that gluon exchange -3% ; 
4i 

is negligible. Since priori. 
-$a 

a counting coupling constants (e.g.,in Fig. 10) ? _ ‘: 

indicates that gluon exchange and quark interchange should be equally important, - 

this gives support to the proposal of the previous section that gluon exchange 

between quarks of different hadrons is additional ional 

support to our assumption C. 



-31- 

'> 

II.B3 Higher Order Corrections to the Born Diagrams 

In any given order of perturbation theory there will be logarithmic 

corrections to the behavior of the Born diagrams due to loop integrals. If 

these logarithms were to coherently combine they could conceivably alter the 

simple scaling behavior of the Born amplitude. For instance, in QED it has been 

shownz7 that infrared radiative corrections to fixed angle exclusive lepton 

and photon scattering amplitudes have the form 

e -o[!Ln(slX2)]2 , (22) 

where t is the momentum transfer and X an effective infrared cutoff. 

We are concerned with the possible exponentiation of logarithms due ~2 - 

strong interaction corrections to a bound state scattering amplitude. In a gauge 

theory it is the infrared region which is p.otentially dangerous in this respect. 

It is possible that they will introduce a modification to these amplitudes of 

the form of Eq.".(ZZ),.: Inthat. case theseaftering rules' (Eqs-.:(&4)) will just give 

the nominal oricanonical power law.reflecting the compositeness.of,the hadron; but ,_ 

which,;will be modified by.~soft interactions among..the constituents,, _r/ : : -. . . . ff::$&&fwda- 

mental; s~ro~g,intera~tion,~o~pling.4~ actually~.wea~,,~S,~~~jectured,~~~~,a nvmber of ,;* ,, .., ^ ,/ 
28 

people , such a ~yi$ic~$igp wqyld nqt be sqg ct+$ yery large t. 

On the other hand, arguments can be made that the infrared effects on a 

bound state scattering amplitude should be much milder than Eq.. (22.) for twe~rePsons: 
22 

First, in a theory such as a color non-abelian gauge theory'the physical states 

are neutral, i.e., color singlets, so that the infrared region is damped for 

momenta k < O(d -1 > where d is a length characteristic of the hadron. Second, 

in a bound state the constituents are generally off their mass shells and 

hence the infrared singularities are "shielded." 
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To illustrate the first point, consider an abelian gauge theory in which 

massless vector mesons couple to a conserved current. We shall take a hadron 

to be a neutral state, so that Q = C Qi = 0. Using Weinberg p : . : ; .: 
. s notation>the 

infrared region of the virtual gluoi corrections (X < lk,] < A) gives a correction '1 

factor to the scattering matrix element of the form exp[-A Rn.A/h] with 
6 sr;l. . 
p _I. A=-1 

8n2 c 

+f3 11, rl, Q, Q, Pii En e , r 1 nm 

where the summation is over all pairs (n,m) of external charged lines. For 

an outgoing (incoming) line n = -i- 1 (-1) and fi nm is the relative ve&ocity 

of particles n and m in the rest frame of either: 

Bnm : F = (p~~m)2]1’2 l 

(23) 

(24) 

Considering now an amplitude such as the form factor of a "meson," we must 

sum Eq. (23) over all pairs of external lines. It is readily checked that the 

only terms in the sum (23) which can introduce a leading t dependence are those 

involving one initial and one final particle. Let us label the two (say) initial 

particles a and b whose.momentapare pa = xpr+ K and pb x (1-x) pz# :-with i t: h 

K*P = 0 (as in Section II,Al). By our assumption A, K is bounded so that (as 

may be checked by explicit expansion of the logarithm in Eq. (23)) we may take 

'a = xp and pb = (l-x)p,with errors of only order l/s at fixed angle. Then 

B an and B bn are equal if n is not equal to a or b. Summing over a and b in Eq. (23) 

thus causes cancellation of the infrared corrections of order %n(t/m2> since -. 

Q, = - QB- 

The infrared behavior of non-abelian theories with massless vector gluons 

is generally expected to be much worse than in the abelian case. A central 

difficulty of such theories is that a soft gluon emitted from an external line can 

itself emit a pair of soft, colored massless gluons, ad infinitum. However, in 
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a bound state such catastrophic gluon emission may well be regulated by virtue of 

the gluon constituents of the hadrons being effectively off-mass-shell. 
22 Furthermore, in the case of a color theory as usually envisioned, color 

octet hadrons either are infinitely massive or at least not degenerate in mass “t? 
i 

with the usual hadrons which are color singlets. In this case the infrared 

contribution for k2 and p l k below rni - rn: is suppressed, giving corrections 
2 2 of order log fe(rn -m )]. 81 Moreover because the color emission changes quantum 

numbers and is not soft, there is no reason that such logarithms will exponentiate 

or cause large corrections to the scaling law 30 . 

Even if the logarithms found in perturbation theory do not exponentiate, 

as argued above, they can give logarithmic corrections to the scaling laws. 

There is very little we can say about this (essentially about the validity of 

assumption B) except what we said in Ref. 1: if there are modifications of scaling 

in deep inelastic scattering, there will probably be similar modifications to 

these scaling laws 31 . 
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III. The Experimental Status-&f~?Exihlusive Stialing'. V.--s+,+. _I_ *Y ".. ,_ .". 
In this section we are concerned with tests of the scaling law (Eq.(l))in 

exclusive processes. Three questions are of particular importance: 1) Is our 

choice of quark model assignments for the number of fields in hadrons acceptable? -a ; 
& 

2) Are the scaling laws actually exact or are they perhaps modified by logarithmic 5% 
a _ ,T 

or "anomalous dimension" corrections? 3) Are there contributions from on-shell - 

scattering (which may change the scaling of Eq.(l))'? Of course, essential to 

the whole program is the self-consistency of the scheme. Once that is established 

for exclusive processes, we turn to the more difficult question of inclusive 

scattering. This section is quite detailed, in the hope of emphasizing (especially 

to experimentalists) the large amount of important work which needs to be done.in 

this field. 

The simplest applications of Eq. (1) are purely electrodynamic, e.g., e'e- + 

p+p- or e+e- +- -l-- -t e e , ye -f ye, e e + yy, etc. In each of these cases n = 4 unless 

we are wrong at a fundamental level, so that experimentally these should have the 

asymptotic behavior da/dt % s -2 f(t/s).' This is just the prediction of quantum 

electrodynamics (modulo logarithms from radiative corrections) so that to the 

extent that QED is correct at large s and t our predictions for the scaling be- 

havior of purely leptonic and photonic processes are correct with the assignment 

n = 1 for leptons and photons. Since QED is in agreement with experiment up to 

the highest available s and t (CEA32 and SPEAR33 +- +- +- results on e e -+vv,ee -+ 
+- 

ee, etc.) we may assume that n = 1 is correct for leptons. 

In one-photon exchange approximation, the differential cross section for 

eh + eh scattering at very large s and large t is given in terms of the hadron -. 

spin averaged electromagnetic form factor F(t) by 

(25) 
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so that we have (Eq. (2)) the general formula (modulo logarithms) 

F 
1-nh 

h (t) Q t , 

for asymptotic spacelike or timelike t. Thus using n = 2 and n = 3, we 
IT P 

contilude that for large q2, Fn(s2) 'L 
2 -1 

(4 > and Flp(q2) Q (q21s2 can be 

separately determined by studying the dependence of ep + ep scattering on q2. 

As remarked in Section II.BZ, given spin l/2 constituents with vector or scalar 

gluon exchange, one finds that F2(q2) % (q2)-3 2 at large q , so that we predict 

the asymptotic behavior GE Q l/q4 and GM 2, l/q 4 23 . Since a substantial range 

of large q2 is necessary to test these laws, the experiment of P. N. Kirk et al. 34 

covering the spacelike range 1.0 2 -q2 ( 25.0 GeV 2 , is most suitable for our 

purposes. Fig. 15 shows q4GM(q2) for that experiment. For -q2 > 4 GeV', 

q4GM(q2) is consistent with a constant within errors. This vindicates our choice 

nP 
= 3 as suggested by the naive quark model. Moreover the very fact that GM(qL) 

falls as a power of q2 is support for our scaling laws. (The data is not accurate 

enough to discuss the question of logarithms.) GE and GM have been separately 

determined only for -q2 <, 3.75 GeV2T5 They are found to be consistent with GE = 

GM/u within errors. The asymptotic falloff of the proton form factor has proved 

very difficult to account for up to now. Bound state models for simplicity have 

focused on two-particle bound states. Treating the proton as a spin-O, spin-l/2 

bound state with spin-0 exchange give?(modulo logs) GM Q (q2)-2 but GE % (q2>-? 

Separate determination of GE and GM at larger q2 will be useful to conclusively 

distinguish thg~~?m~del-from~~urs: However,;!-it'is,improbable that GE could have 

the behavior (q 2 -1 ) without that being evident from the q2 dependence of the 

ep + ep cross section 37 . 

Data on the pion form factor is not yet available for a q2 range comparable 

to that of the proton since it comes from e+e--annihilation. Presently data is 

available3* for timelike q2 < 9.0 GeV2. It is consistent with a p pole, so 
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that for q2 large, Fnki2) ,-t, 
2 -1 

(q > is an acceptable fit (see Fig. 16). However, 

it should be kept in mind that to conclusively test our picture, q 2 2 4 GeV2 

should be considered. If only that range is used, the data is not adequate to 

rule out other behavior. Improving and extending measurements of the pion "I 

form factor is one of the surest ways to verify or destroy our ideas. For the 

present we will continue to assume nlT = 2. In a ladder model in which the pion _ 

is a bound state of two spin-0 constituents with $3 interactions its form factor 

2 -2 would fall as (q ) . 

According to the dimensional scaling rules, if a photon behaves as a single 

field at short distances da , photoproduction at large s and t follows dt Q s -7 f(t/s). 

This is an especially interesting process because strict vector meson- dominance 

da -8 would say that yp + rp behaves like pp + ap and.hence - 2, s f(t/s). Of.,course dt t. 
if therphoson, when interacting with hadkons;~is..a~..-suparposPtian~~of.rap.vec~or:meson 

and an;elementa@*fPeld 39 , then in:ther*k&nematic region being studied here the 

latter state will dominate and result in da/dt s s -7f(t/s>. The highest energy 

data at 90' is that of R. L. Anderson et al. 40 which covers the range Ey between 

4 and 7.5 GeV. They find that da/dt (90") s s-7*3 ' Oo4, in agreement with our 

-7 prediction of s . Again, it is most desirable to extend the range of s, since 

at E 
Y 

= 4 GeV, 90" corresponds to a t of about 3 GeV2 which we expect is only 

barely in the scaling region. However, if that lowest energy point is dropped, 

little can be said about the s dependence of da/dt at 90". Thus our provisional 

conclusion is that photoproduction measurements support the prediction that 

da/dt (yN -t KN) Q s -7f (t/s>, with higher energy data of great importance. 

The present data on meson-baryon scattering, which we expect to behave 

as da/dt Q s-*f(t/s) at large s and t, is less conclusive for our purposes than 

photoproduction or pp stattefing experiments. This is partly because experiments 

to date have focused on obtaining the entire angular distribution at modest s 

values rather than choosing some small ecm range with enough sensitivity to go to 
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high values of s. This poses the usual problem of not having an adequate range 

of high enough s and t to check for scaling. A special problem in some of these 

meson-baryon scatterings is the existence of (resonance?) structure at quite 

high t values. For instance in IT-P + IT-P a dip in d$/dt is found at t = "1 ; 
i 

- 3.8(GeV/c) 
2 41 

and there is evidence that both $p have a dip at t = - 4.8 ceV/c)2 yi$ 

analysis, one needs for this process t and u >, 5(GeV/c)2 and For an unambiguous 

a large range of s 

nature of the wide 

! One experiment which has been analyzed to determine the 

angle energy dependence measures the 90' differential cross 

sections for Fop -t IT+A', K" + a+C" and incident momenta between 

1.0 and 7.5 GeV/c42. They find that their results can be equally well para- 

meterized by (da/dQ)goO Q smrn or (da/dfi)goo QJ's'~~ (see Fig. 17). If s and t 

are sufficiently large, da/da Q s da/dt f(t/s) so that we predict m = 7. They 

give for the three reactions m = 7.4 + 1.4, m = 8.12 1.4, and m = 8.5 + 1.2 

respectively. In short, our predictions are consistent with data on meson- 

baryon scattering, but it only demonstrates that we are not wildly'wrong. How- 

ever, results from experiments which only attempt to cover the large angle 

region, but with much higher sensitivity (so that a larger range of s can be 

studied) will be much more conclusive. It is enough to show that the cross 

section integrated over a fixed cm region falls with the power s 
-1 rather than 

another power or an exponential. 

Not surprisingly, pp + pp is the most thoroughly studied elastic process 

at large s and t. Landshoff and Polkinghorne' have plotted the data for 

s > 15 GeV2 and 0 cm between 38" and 90" (see Fig. 18). They find that it is well 

fit by the form da/dt 'L s -9.7 2 O.Sf@)* This is in very good agreement with 

our prediction da/dt 'L s -10 f(e), and $parently rules out a significant contri- 

bution to the amplitude by on-shell quark scattering 1% . 
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The experimental evidence on Eq. (1) is thus very encouraging. However 

with little difficulty it could be considerably improved. As indicated above, 

better data on meson-baryon scattering and e+e- +- +lrlT should be available 

fairly soon and will be a significant test of the scaling idea. We close this "xi 

section with a list of predictions of the scaling law of Eq. (1); other‘reactions y> 
i - 

whose asymptotic behavior is interesting, albeit difficult to measure: 

YP + YP da/dt Q sM6f(t/s> 

YP + PP da/dt Q sW7f(t/s> 

YY + Trv daldt 2, s-4f(t/s) 

(the photons need not have zero mass as long as their masses are kept fixed 

and are small compared with s and t) 

ey + ek’fy*y + a’) 

+- ee +.A; A; 

da/dt Q sB3f(t/s> 

FA (q2) s 
2 -2 

(4 > 
2 

(or any,-other L = 1 meson with non-vanishing form factor) 

ed +- ed Fd(n2) 2, 2 -5 (q > 

(this probably only scales for q2L8GeV2). Finally, the scaling law for multi- 

particle exclusive large angle scattering (Eq. (3)) can be tested. When nM = 2 

andn B = 3 it can be written in a compact form: Let ha be the invariant cross 

section integrated over some fixed cm angular region keeping all ratios PI'pj (i+j) _ 
S 

fixed. Then when s + = as the reader can easily verify (Eq. (4)) 

Aa 'L s 
-(+IM+2BB) 

where s and N B are, respectively, the total number of mesons and baryons. Thus 

for high energy BB -t MBBwhen all cm.angles are large (Er da/dt d3pT) Q s-12f(ei) 

which is equivalent to da/dRldQ2 Q s -10 . Data expected at SPEAR and DORIS 
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+- +-+- on the exclusive channels e e +lTlT-TTr and e+e- + 6 charged T'S with fixed 

angles will eventually provide a test of our predictions (Aa Q s -3 and Aa % s -5 

respectively). 
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IV. Inclusive Reactions at High Transverse Momentum 

Having developed in previous sections the rules for determining the power 

dependence of exclusive scatterings at large energy and momentum transfer, we 

wish to explore their implications for high p 44 
i 

inclusive scattering . It is “?1 

to be expected that, just as in the exclusive case, the power depsndence of 
& %ij + ,- 

inclusive high p 
1 

cross sections will depend on the number N of constituents 

participating in the high p1 reaction. Our task, then, is to see what can be 

said about this number N. 

In parton language, an exclusive process proceeds by the large momentum 

scattering of n constituents with the wee partons behaving as "spectators.." 

The condition on the bound state wave function at x = 0 serves two purposes: 

First, it fixes the minimum number of constituents hav&ng finite fraction of 

the total momentum (and hence n). Second, it‘ensures that the remaining "wees" 

are truly "spectatorsT1' that is, their interactions do not build up additional 

power dependence on momentum transfer. (This latter function is modified if 

the wave function in nature proves to have a logarithmic or power singularity 

at the origin). 

In inclusive scattering, constituents having finite fractions of the 'L 

momenta of the incident particles can be spectators. A good example of this 

is deep inelastic scattering in the parton model, shown in Fig. 199. In the 

absence of a requirement that no particles be found in the forward direction, 

it is renerget~oal?&.y~ favorable for those partons not deflected by the current 

to continue without large changes of their transverse or longitudinal momenta. 

In this case only the single parton with appropriate momentum fraction 

x = -q2/2mv need participate in a large momentum transfer collision. Hence 

n = 4 (2,lleptons and 2 quarks) so that the mat.rix element is dimensionless and 

-2 the differential cross section Eeda/d3pe 't s f(q2/s,M2/s) asymptotically 
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(M is the missing mass). In the one photon exchange approximation, this 

differential cross section may be written in terms of structure functions 

Wl and vW2 which are defined in such a way that they have no energy (v) 

dependence for fixed (q'/v) if the behavior of the differential cross section 

is l/s2 as argued above. The famous scaling behavior of vW2 seen at ST.&Z, 

if it persists at higher energies, is evidence for the validity of this 

argument. A logarithmic modffication of scaling as expected in asympto- 

tically free theories is not distressing:that is just the effect in such 

theories of the interactions of the !'spectators'." 

Motivated by the success of the scaling prediction in deep inelastic 

scattering, we abstract the notion that any inclusive amplitude factorizes 

into a part which involves only large momentum transfers and parts involving 

only low momentum transfers, That part depending on the large momentum 

transfers determines the overall power dependence of the amplitude. Of course 

the dependence of the cross section on invariant ratios, say ;i and "", is 
8 

in general dependent on the low as well as high momentumrparts of the 

scattering process. Thus we can immediately write down (Eq. (5)) the invariant 

cross section for high energy inclusive scattering at fixed t/s and H2/s: 

E da 2 -L f(-r,- ) - 'L 3-2 
d3p 

s 8 

with N defined as the minimum of fields in the large momentum transfer part 

of the amplitude. 

Evidently, in order to make predictions for innlusive scattering, one 

must make a dynamical statement which serves to specify the number of fields N, 

just as in the exclusive case a specification of the number of non-wee consti- 

tuents was required. The simplest ansatz for N is the one made by Berman, 
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Bjorken and Kogut4' in what was essentially the first parton model work on 

high transverse momentum inclusive processes. They observed that at order 

a2 hard parton-parton scattering must take place via exchange of a far off- 

shell photon just as lepton-parton scattering does in deep inelastic 1 

scattering (Fig. .19:). Presumably, hadronic final states would be generated 

from the quarks just as in the lepton scattering case, i.e., in a scale 

invariant manner. If the large momentum transfer process is qq + qq or qi + qi, 

N= 4, and in fact Berman, Bjorken, and Kogut predicted 

Eda 
2 4 _ "Lf(i,-) s 

d3p s2 

However, it was natural to imagine that such a qq + qq scattering at high pL 

could take place via the exchange of vector (or scalar) gluons as well as via a 

photon. In fact in perturbation theory it is hard to imagAne that gluons 

could be responsible for binding of quarks and yet not give rise to wide angle 

quark scattering, leading to the scaling behavior E da/d3p Q s -2 at a level 

well above that due to electromagnetism. 

In an alternative approach, Blankenbecler, Brodsky, and Gunion 46 explored 

a model in which hadrons scatter not by gluon exchange but by quark "interchange.'" 

They argue that the resulting angular distributions for w&de angle elastic 

scattering are in good agreement with data, with no gluon exchange necessary 

for their fit (see Section 1I.C). In their model, hard parton-parton scattering 

which takes place via gluon exchange is not allowed, The minimal large pI. ._ 

processes which can take place in this case involve quark-hadron scattering 

and thus N 2 6. In addition it makes quite detailed predictions on the 
2 

function f(i, 5 ) of Eq. (4). Thus the details of the model will be subject 

to many experimental checks. 
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Here rather than advocate any particular model we categorize and discuss 

the possibilities, Our principle contribution to this subject is merely the 

observation that the essential element of any model of high p inclusive 
L 

scattering, as far as the overall power of s goes, is the number of large p 
I -3 

participants. If the minimal large p reaction is qq + qq or qi + qi then & 
I "W .d _ ,: 

N- 4 as disc?ussed above. If for some reason that is not possible or is 

dominated by other processes-giving a large pLmeson, su&as q?'r -+ qr, qq + ?'rqq 

or qq -t aIT, then,N=6 ormore. If the process of interest is, say yp + VT + X 

then the high pI reaction might be q-+ y + T + q.or i + y + K +'s giving N = 5. 

For baryons observed in the final state, say pp+ p + X or np + p + X, 

there are several possible N > 4 reactions: qq +- pq'(Ng6), qp + qp(N=8), 

q4 + pp(N=*), etc. The lack of an N - 6 process with a p produced involving 

only quarks in the initial state would predict that the cross section for 

PP -t 5 + X should be much smaller than in pp + p + X at large p 
I-' 

away from 

the edge of phase space. This is only a sample of the rich phenomenology 

available when looking at inclusive processes from this point of view. 

The experimental results on large momentum transfer scattering 
47 have 

one remarkable feature in common. They are not consistent with the power 

-2 dependence E da/d3p Q s -4 at fixed p /& and 6 = 90', i.e., pL . Rather 

they favor much more rapid falloff in p 
i 

with a power between -8 and -11. 

The details of how their results are described in terms of the phenomenology 

outlined above is given in the references of 44. What is of greatest 

-4 importance here is that the absence of pL behavior fs strong phenomenological - ._ 
support for the absence of scale invarfant scattering between quarks of 

different hadrons and hence for our assumption C. 

Equation (5) suggests a new way of analyzfng the data on deep inelastic 

scattering. The standard method is to take the observed experAmenta1 cross 

section, assume that the one-photon-exchange approximation #s good (th$s has been 



-44- 
-. 

cross-checked), apply radiative corrections, and extract the structure functions 

vW2 and Wl (and W3 for v scattering). Scaling then implies that the structure 

functions are independent of any variables other than ,x = -q2/2mv. However 

Eq (:S) with N = 4 can be checked directly. Examining directly the dependence -24 

of E do/d3p o-n p for fixed ratios of invariants would be most 
%. -f 

I, 
interesting-, j ( Even though radiative corrections (and possibly strong inter- _ 

actions in the hadronic wave function) surely generate logarithmic modifications 

of perfect scaling., such an analyses would provide a useful direct test of scaling. 

Of course we find the parton model result that pp + p+u-+ X or - 

rp + u+u- + X can go via qi +- 
-tlJF! and hence is scale invariant. Similarly 

. 
if the parton version of e'e- annihilation is taken, that it goes via e'e- -t q;i -f 

hadrons, these counting rules give a scale invariant minimal scattering and hence 

+- 1 ee 
sTot Q, ; l 
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v. Summary and Conclusions 

In this paper we have examined the conditions under which the simple 
‘es 

dimensional analysis used to derive Eq. (1) can be valid in renormalizable field 

theories. The scaling laws are consistent with finite Bethe-Salpeter hadronic 

wavefunctions and the scaling behavior of simple planar Born diagrams for the - 

n-particle scattering amplitude, The question of the short distance regularity 

of the Bethe-Salpeter wavefunction has now been partially settled for asymptotic 

13 freedom theories by Appelquist and Poggio, . They show, as conjectured in Ref. (1) 

that the irreducible kernel is more convergent in the ultraviolet than indicated 

by simple ladder approximation. We have given arguments why such behavior can 

be expected even in abelian theories, and why infrared corrections to the scaling 

laws are likely to be unimportant for color singlet or "neutral" hadronic states. 

In a general renormalizable perturbation theory, the scaling laws can be 

violated by non-planar diagrams involving multiple on-shell quark-quark scattering. 

The fact that such diagrams do not seem to be important empirically, together 

with the absence of scale-invariant large transverse momentum inclusive reactions, 

plus the fact that effective Regge trajectories,&eff become negative at large t, 

evidently imply the suppression of scale-invariant (single or multiple) gluon 

exchange interactions between quarks of the scattering hadrons. This remarkable 

empirical fact has yet to be explained but undoubtedly has important implications 

for the detailed structure of the underlying quark theory. 

Our general approach is different from what has been done previously. 

Starting with Wu and Yang, a number of authors have observed that given the 

asymptotic falloff of the hadronic form factors , predictions can be made about 

the large s and t behavior of elastic scattering 48 . Born and Moshe 49 proposed 

that cross sections should have the form of Eq. (l), without specifying n, and 

showed that it provides a good fit to the data. In contrast, we look directly at 
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the underlying short distance structure which we abstract from perturbation theory. 

This enables us to predict the behavior of the form factor (and automatically 

gives the relations between form factor and wide angle scattering obtained by 

48,50 "54 
previous authors) . On the other hand, without making more detailed dynamical i 

4 
assumptions we cannot make the predictions that they make on the angular behavior 

of 2 -t 2 scattering. The next logical step is to choose a theory which may 

actually be correct (e.g., a color gauge theory) and see whether qualitative 

features such as the angular dependence, the minimal high p1 part of an inclusive 

scattering, etc., can be obtained without actually solving the theory. The 

_ ,T 

techniques used in this paper, especially the simplified approach to bound state 

scattering which circumvents the complexities of the full Bethe-Salpeter 

analyses, should be very useful toward this goal. 

In summary,' the dimensional scaling laws for fixed angle scattering as s + ~0 

+ CtD) -f s 
2-nA-nB-nC-nD 

fAwD (t/s>, 

give a fundamental connection between the'degree of complexity of hadrons and 

the power..law behavior of cross sections and form factors. Although much more 

experimental information is required, the present results support a composite 

representation of the hadrons based on quark degrees of freedom. Thus hadron 

scattering at large transverse momenta implies something of fundamental importance: 

Quarks not only have a mathematical existence, giving current algebra, Bjorken 

scaling, and the hadron spectrum, but a dynamical existence as well. That is - 

not to say that quarks must be observed as free particles. However, bound state '- 

models should be built from quarks to incorporate the correct short distance 

structure of hadrons. 
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Appendix A 

Double-Scattering Graphs Using the Infinite-Momentum Method 

The physics of the Landshoff multiple-scattering diagrams turns out to be 

particularly transparent using time-ordered perturbation theory in the infinite 

momentum frame. A full description of this method may be found in Ref. 51. 

The prototype calculation which most simply contains the Landshoff contri- 

bution is given in the case of IT-IT scattering where we take a f$4 theory for the 

constituents and g+ 3 vertices to represent the bound states. Generalizations to 

other cases will be straightforward. 

We choose the following reference frame 

with 

Q =- +- ( 2P'Q' -% 1 

rzzz,:L ( 
-y’p, 

2P 1 ' 2P 

Note that t = q2 = - “; +2 , and u = r2 = - rl . 

We also have & l g~ = 0 if Mi + M2 B =M;+%. 

The contributing time-ordered diagrams which are equivalent to the Feynman 

graph, Fig. 21a, are shown in Fig. 21b-e. All other time-orderings vanish in the 

P -+ Q) frame. It is easy to check that diagrams (d) and (e) do not contribute to 

leading order in the asymptotic fixed angle limit. Diagrams (b) and (c) include .- , 

the summation over time-orderings-in which the vertex A occurs before and after 

B, and C occurs before and after D. The total amplitude for M(b) and M(c) is 

then given by the following three-loop expression .from time-ordered perturbation 

theory: 
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M= 
d2kidx. 

. ;? ..? 
2xi(I-xi)(23T)3 1 6 (Xa+x.g-x~-xd> 

Three momentum is conserved at each vertex. The range of the x 
i is Otol.- The 

amplitudes M(lj and M(2j are the scattering amplitudes for a + b + c + d and 

a' + b' +- c' + d', respectively. In the f$4 theory M 
(1) = Mw = f* The 

energy denominators for diagrams (b) and (c) are 

DW =EAfEB-E -E -E -E 
C a' d b' + ie 

Dw ='EA+EB-E 
c' -E -E a d' - Eb + is 

where the Ei are the relativistic "kinetic energies" 

Ei = 
ii& + rdf 

X. 3 
1 

In addition there are two energy denominators coming before the scatterings 

Ml and M2 and two afterward. When these are summed over the orderings A before - 

and after B, C before and after D, they generate the product of wavefunctions: -_ 

a a 
etc. Notice that because of the choice of?variables 9, = xa ($+:j-;> + XL,) 

the wavefunctions do not depend explicitly on q or r.. The natural domain of 

the wavefunction is thus $Aa finite. 
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Dropping terms of order E2 temporarily we have 

DW 
g (;4;)2 - x,:I" - (1-xa)&)2 +-2 - Xdq 

- qc l $ + 2Zia l (i$:) - 2Zid l ;I 

-3-2:: +2 +2 +2 
kJ.c kLa kLd kLb -v------ 

X 
C 

1-xa Xd l-xb l ' 

If we introduce the scaled variables 

orn :E (xa-xd) 

Bm E (x amXc) 

then for cx and g of order 1 and kf kfb and kfc 2 
a' of order m , we have 

DW = cxl$l + Bli![ + O(m) + is . 

Changing variables from xd and x 
C 

to a and B thus gives for diagram (b) 

M(b) 'L 
1 

J 
dcidf3 

43 13 cxl;j + /3liSl + O(m) + is 
WI 

multiplied by a finite integral over dx a, d2kla, d2k+ d2kkd which is independent 

of s, t and u. The imaginary part of (A2) gives 

i 
M(b) rl, - 

m&K 
(A3) 

(as easily seen in polar coordinates) and the real part cancels against M 
cc> l 

We should note the following at this point. The ITT-~ amplitude is 

imaginary ) reflecting the Glauber-like real pole intermediate states which con- 

tribute. The constituent scattering amplitudes M 
(1) and M(2> in (A3) correspond 

to - near -mass-shell scatterings of the constituents of different hadrons with 
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fractional momenta x a and l-x , a respectively. Note that the wavefunction 

dependence is not relevant as long as the d2k integrals converge because 
I 

if the Mi(x) are scale invariant they are actually independent of x, e.g., 

for vector gluon exchange M(x) Q 7 = 7 . The generalization to more -+i 
4 

realistic scatterings is immediate. Each additional pair beyond the first 3 ;: 

two givesa factor in the amplitude of order 

thus giving the result16Eq. (21) of Section II .Bl. 
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Appendix B 

Fixed Angle Unitarity 

It is interesting that the behavior 
-a 

1Mn12 Q, s4-n 
(Bl) i 

4 
;t: 

is actually the fixed angle unitarity bound for n particles in the external state 

when the square of the amplitude is averaged over a fixed angular region in the 

center of mass. A convenient proof has been given by Bardeen 52 as follows: 

Consider a two-particle state with continuum normalization 

(21 mcrn = 2Ea &3(;a-$a"2Eb 63(;,,-$,') 

=- 
P 

6(n-i?a')64(pa+pb - Pa'-Pb') ' 
cm 

By smearing with an angular function 

(2) = Jl2)an f(n), 1 [f(C)12dQ = 1 

we have 

s4(pati,, - P,’ -pb’) l 

Unitarity then gives 
N 3 

(z[Z') = 
d Pi 

(Zls%l2) = ~j(@lN) fiz, (Nlsl~') 

N i=l i 

and hence 

4& N d3p. 
-= 
P 

1 (ZITIN)(~~~ e (21~1~ 64(Patib - fpn) 
l 

cm N i=l i i-1 

Averaging IN) over cm angles thus gives in the high energy limit 

J daj(~\TjN)j2 2 CN s2-N 

where N is the number of particles in the final state. By crossing, the 
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proof holds for any number of initial particles and (Bl) follows. 

The bound (Bl) is also often imposed on amplitudes in each order of 

perturbation theory as a necessary condition for renormalizability. 

In our work we show that the bound (Bl) for the fixed angle amplitude 

is saturated in any theory without an inherent short distance scale. A crucial 

point must be-noted, however. In the hadronic amplitude, the constituent 

particles for each hadron are not at fixed angles relative to each other; thus 

the bound (Bl) for the required amplitude Mn can,.jin principle, fail due to 

singular behavior when the external lines become parallel. This is in fact-what 

occurs in the multiscattering diagram considered by Landshoff. (See Sec. II.131 

and Appendix A.) 
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Figure:Captions: 

1. n-point "decomposition" of AB + CD (in this example n = 10). 

2. Schematic representation of the full meson-meson scattering amplitude in 

3. 

terms of Bethe-Salpeter wave functions I/I and the irreducible amplitude M . & n 3 

Example of a disconnected or non-planar diagram for pp + pp wide angle 
: 

: _ 

scattering. 

4. Schematic representation of the Bethe-Salpeter equation for a twozparticle 

bound state. 

5. 

6. 

The meson form factor in ladder approximation to the Bethe-Salpeter equation. 

Examples of non-ladder kernels for the Bethe-Salpeter equation and the 

irreducible contributions to the current matrix element they engender by 

gauge invariance. 

7. 

8. 

Born diagram (5 point connected amplitude\MI)'for the meson form factor. 

Schematic representation of the Bethe-Salpeter equation for a three-particle 

bound state. 

9. 

10. 

11. 

12. 

13. 

14. 

Diagram for meson baryon scattering with multiple scattering of near-mass-shell 

quarks of different hadrons. 

Typical Born diagrams for meson-baryon scattering via (a) gluon exchange and 

(b) quark exchange. The dots label quark lines which are far:off mass shell. 

All gluons shown are far off mass shell. 

The pinch in meson-meson scattering (a) Feynman graph and (b) momentum space 

picture of the scatterings. 

Born diagram for photoproduction. The heavy dots represent far off shell 

quark lines. All gluon lines shown are far off shell. 
. 

Typical Born diagrams for baryon form factors. 

Hadron scattering for t large, s + ~0 if (a) gluon exchange or (b) quark 

interchange is dominant in the t channel. 
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34 
15. (q2)2GM(q2)/p for the proton versus -q2; data from P. N. Kirk et al. 

16. q2Fn (q2 for the pion versus q2; data from M. Bernardini et al. 
38 

17. do/dQ (90' c.m.) versus s for several meson-baryon scattering reactions. 

This figure is from Ref. 42. 

18. Log (do/dt) for pp -t pp versus log s at various c.m. angles. Only data for 

B > 15 GeV2 and ItI >2.5 GeV2 are included. This figure is from Ref. 8. - 

19. Parton model picture for (a) the one-photon-exchange deep inelastic 

scattering and (b) the colored gluon exchange contribution to high pi 

inclusive scattering, showing the color index i(j) of the quarks. The - 

notation -i(-j) refers to the color of the rest of the hadron. 

20. Possible minimal large pi scatterings if gluon exchange is not allowed: I 
(a) q"x" + qx and (b) qq + nqq. 

21. .(a) A Feynman diagram for ITIT -t ITIT and (b)-(e) time-ordered diagrams 

corresponding to it. 
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