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ABSTRACT

The method of moments is applied to pairs of linear permutable self-
adjoint operators A and B in a Hilbert space <. An approximate expression
for the diagonal matrix elements of the operator (1 —wA—zB)—l; where w,z
are complex numbers, is taken as a guide to the definition of rational approxi-
mants from general formal power series in two variables. Starting from an
operator convergence theorem in a certain Hilbert space, we prove the
convergence of our approximants to analyﬁc functions of two complex variables
with the integral representation G(w,z) = ‘:f ﬁr-&i-é% , under suitable restric-
tions on the positive measure o(a, f). The same approximation scheme can
also be applied to the diagonal matrix elements of the operator [(l—WA) (l—zB)]"l,

leading to a different rational approximant which we prove to converge to
‘ do{a

-wa)(1-zp) °
cases the convergence is uniform on appropriate compact subsets of C 2. The

extension to the n-dimensional case is straightforward for both approximants.

functions with the integral representation a'(w, z) = f f a In both

The connections with a standard variational principle are also briefly discussed.
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I INTRODUCTION
In the past few years ‘the technique of Padé Appro:dmé.nts (PAs)l-3 for the

approximate summation of power series of one complex variable has been
looked at with some interest by physicists as an effective tool for many quantum
mechanical and field-theoretic models whose 'solutidns are only available in the
form of a perturbative series. We recall that, given the formal power series
f(z) ~ 2 f zn, the [N/M](z) PA is the rational function Py (2)/Qy(z), where

(z) and QM(Z) are polynonuals of degree N and M respectively, such that

N+M
N(z)/QM(z) E f z" + O(zI‘H'M'i'1 . A simple closed expression is avail-

able for the [N /M] (z) PA and it can be shown that the PAs have some significant
formal properties; e.g., if N=M they are invariant under homographical trans-
formations both of the variable and of /the function. The PAs converge uniformly
on compacts to extended Stieltjes functions, i.e., the functions g(z) of the form
g(z) = f o Toa t where o(t) is a positive measure with finite moments

= j; o ® do(t) not too fastly increasing with n; moreover, in a suitably
generalized sense, they converge to meromorphic functions. 4 Unfortunately,
the extension to the multidimensional case is not straightforward. In fact, the
simplest generalization of the usual definition of the PAs, even in the case of
two variables only, does not, in general, determine/ uniquely a rational
approximant: additional constraints must be provided. To this problem, very
interesting alternative solutions have béen recentiy proposed. In one of these,s’ 6
the constraints are chosen in such a way that the many variable approximants
retain the main formal properﬁes of the usual PAs. In spite of this, the study

of the convergence properties is not easy and, up to now, only generalizations

of de Montessus theorem are available. | For another kind of approximant8
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the convergence to holomorphic functions has been proved under the stringent
assumption of uniform boundedness of the approximants themselves.

In this paper, we would like to indicate a different approach to the con-

-struction of many-variable rational approximants starting from the following

remarks. Consider a linear self—-a-djoint yoperator A and a vector f on a Hilbert

[2e] .
space . Let Z z" (, Ant)' be the Neumann expansion (not necessarily
n=0 o
convergent) of the diagonal matrix element (f, (1—zA)"1 f). Then, for every

N > 1 the [N—I/N] (z) PA for this series coincides a) with the matrix element

(, (1--zAN)'1 f) where A is the N rank operator obtained at the N-th order in

9,10

N

the approximation scheme known as the method of moments; b) with the
stationary vé.lue of an appropriate functional on a certain finite dimensional
subspace of . 11 Therefore, we suggest generalizing the PA to the multi-
dimensional case by starting from the definition in terms of the method of
moments rather than from the usual definition; more precisely, we suggest that
the direct extension of the method of moments to the operator (l-wA--zB)"1 with
A and B linear self-adjoint. permutable operators should be taken as a guide |
to the definition and justification of two variable rational approximants. As a
result, although some formal properties of the usual PAs ére lacking, we still
have the same connection with the method of mbments (and the variational
method). This enables us to give, for a rele;raht class ofk functions, a conver-
gence proof which is both simple and of pracﬁcal use since it involves ohly
assumptions about the analytic propertiés of the functions to be approximated
rather than about the behavior of the approximants themselves. Furthermore,
our approximants have é simple explicit expression in any order of approxi-

mation.

"u i Lﬁ—ﬁ .
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We shall not study here any application of our approximation scheme, but
let us just remark that a natural field of application should be the approximate
summation of the perturbative solution of quantum mechanical and field
theoretic models with more than one coupling constant. However, whether the
physically interesting models fulfill all the requirements of our convergence
theorem, is a question which requires further study. It is also worth men-
tioning that there are classical special functions which, for a particular choice
of some of the defining parameters, have the integral representation required
in our convergence proofs, i.e., the two-variable Appel hypergeometric

12 The

functions and their n-variable generalizations, the Lauricella functions.
numerical computation of such functions is therefore another possible applica-
tion of our approximation préceduré which, in this case, provides a direct
generalization of the classical Jacobi continued fraction expansion of the Gauss
hypergeometric function 2F 1(1 »Bs Y, Z).

In Section II we consider the method of moments for a pair of self-adjoint
permutable operators A and B and Wé give the "approximate' expression for
the matrix element (f, (1-—WA-—ZB)-1 f) where fis a suitable vector of the
Hilbert space. From this we obtain a rational expression which can be associ-
ated with any double power series. In Section III we prove a convergence
theorem for operators in a Hilbert space and we use this result to state in
Section IV a éonvergence theorem of our approximants to functions of two com-
plex variables with a well defined analytic structure. In Section V we present
the trivial extension to the n-dimensional case; the connection with a standard

variational principle; and another kind of approximant, suggested by the

appliéation of the method of moments to the operator [(1—w’A)(1—zB)]_1.




II. THE METHOD OF MOMENTS
Let A and B be two linear self-adjoint permutable operators with domains

@D (A) and Z(B) in the Hilbert space . Then there exists a dense subset

13,14

2 of vectors of o which are quasi-analytic for both A and B. Let

fe2 be such that
f = A B*f p'—'O,...,N; q—O,.;.,p 1

are linearly independent vectors for any N. Then, the vectors {fr s} generate

3

a sequence of —1\—1-(-1\21":-12 -dimensional Hilbert spaces ¢;C & and the related

orthogonal projéction operators P Let us consider the equation

N
(l-wA-zB)y = f )
where w and z are complex numbers. For any {w,z} such that the operator
R(w,z) = (l—WA-ZB)_l exists a.nci is bounded, the solution of Eq. (2) is
Y = R(w,z)f |
In order to obtain an approximate solution of Eq. (2) let us consider the following

equation in the finite-dimensional subspace WN

(1-WA-ZB )y = £ . (4

where
AN = PNAPN s BN = PNBPN . | ()
The solution of Eq. (4) is

= (-wA 2B f =R (w,2) £ (®)

N

for {W, z} such that RN(W, z) exists and is bounded. Since Uy € JKN we can

also solve Eq. (4) expliciﬂy by expanding z/)N on the complete set {f T S}:

/N p

L,a  f
p=0 q';o p.4 P-q,9q

by , (7)

F":ri-qc 'Mﬁ?.‘ i U;'



We obtain
> 5 Ty P-ap4
N pz=:0 qz--:o rz=:0 o0 (MN>p,q;r,sFr-s,sA B, @)
Where
F =(f, A -SBSt) o)

r-8,8

I

(MN)p,q;r, s Fp+r—q—s,q+s - WFp+:t'+1—(;[‘—s,q+s - ZFp+1'—q-s,q+s+1
p,r=0,...,N; g=0,...,p; s'=0, R

If we project Eq. (8) on the vector f we obtain the simple expression

L Nz
(fgb ) = (£, R\ (W, z)f) = 2 Y F q(M __F =F M
N N =0 q~0 =0 &4 P9 p,q;r,s r-s,8§ N N N

with obvious definitions for the column matrix FN, its transposed Fg and the
matrix MN‘ The corresponding matrix element of the operator R(w, z) has the

integral representation

(f,R(W,zm:ffM | (1)

1-wa-z83
where E(a, B) is the spectral family associated with the self-adjoint permutable
operators A and B.
In Sééﬁon I we prove the strong convergence of R (W z) to R(w,z) in
a subspace of A for {w,z}ina suitable domain and, as a consequence, the
convergence of Z/)N to ¥ and of (1, sz) to (£, ¥). Smce in the latter case we
have a rational approximation converging to an analytic function of two complex

variables, we are naturally led to introduce for any formal double power series

G(w,z) = Z szn (m+n

= m ) m,n (12)

Sy b W
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the rational approximant GN(W, z) by the formula:

It is convenient to notice that this rational approximant has some obvious

T -1
GN(w,z)-_— GNQN GN (13)
where GN’ Gl'l\; and QN are a column matrix, its transposed and a matrix
defined in terms of the coefficients G o by
G, = G
( N)p,q pP-q,9q
(QN)p,q;r,sEGwr-q—s, ats ~ WGp+r+1-q—s,q+s B ZGp+r—q-s, gts+l a4
p,r=0,...,N; q=0,...,p; s=0,...,r
Let us write explicitly Gl(w, z) and Gz(w, z):
G _
¢ w2 =g -“?éOGO’zOG' ’
0,071,070, 1
, -1
Go(W,2) = Gy Gy 4%0.1]%,0™%5%1,02%,1 G1,0™7C2,07%C1,1 G0,17%C1,172C0 2
Gy 07W0y 072G 1 G W03 ,072C5 1 Gy ,17WGg 172G 2
Gp,1~WGy 172Gy g G 17WGy 172Gy 5 Gg 27WGy 972Cg 3
(15)

formal properties, e.g., GN(W, z) is real analytic if G(w,z) is a real analytic

function of w and z and it is symmetric in w and z if G(w,z) is. One may also

notice that the approximant to a factorized function does not in general factorize

and that no simple analogue of the homographical covariance properties of the

Padé€ approximant seems to hold.

0,0

1,0

0,1
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III. SOME RESULTS ON OPERATOR CONVERGENCE
In this section we shall eﬁ:tend some results of Refs. 9 and 10 where the
case of a single selfadjoint operator has been studied. Let Qf be the linear

manifold of all finite linear combinations of the vectors {fr s} defined in

b

‘Section II. The closure of £ is a Hilbert space Hp SH . 16 Consider now

f
the restrictions A' and B! of the operators A and B to Qf and their closures

A'and B'. Since f is assumed to be a quasi-analytic vector for both A and B
then, by the theorems 4 and 6 of Ref. 13, A' and B! are still selfadjoint per-
mutable operators on Jff, and from now on we shall simply call them A and B.
These operators and the related ones AN = PNAPN and BN = PN‘BPN define in
J’tf the operators T(w,z)= wA+zB, TN(w,z):-=- PNT(W, z)PN, R(w, z) = (1-T(w, z))—l,
RN(w,z) = (1-TN(W,z))"1 where {w,z} € 02 is a pair of complex numbers, For
simplicity we shall occasionally drop the k{w, z} dependence from our operators.
Let us also stress that, throughout the paper, by operator convergence we shall
always mean strong operator convergence. T is a normal maximal operator

and, since it is closed, 18

it is the closure of the operator wA'+zB'. TN isa
bounded operator and, in general, it is not normal.
In order to prove that RN(w,z) converges to R(w, z) on Jff we need some

information on the behavior of TN(W,Z) as N—w, which is given by the following

Theorem 1. TN(W, z) — T(w,z) in Qf, uniformly with respect

to {w, z}.
M m m
Proof, Any vector g € &, canbe written as g = > X a A “ipf,
‘ m=0 n=0

If N> M+1 then TN(W,z)g EPN (WA+zB)PNg = (wA+zB)g = T(w,z)g. Of

course the convergence is uniform with respect to {W, z}.

R




|

L
]

17

Let us now recall that @ (O), the closure of the numerical range™' of a

linear bounded operator O is a convex set containing the spectrum o(0O) of O. 19
If O is a normal maximal operator (not necessarily bounded) ®(O) is the convex
hull of 0(0), i.e., © (O) is the smallest closed convex set containing 0(0Q). 20
Theorem 1 and the following theorem enable us to prove that RN(W,’ z) — R(w,z)
in Z.. ‘
Theorem 2. For all {w,z} such that the point 1 is at a positive distance
d from @(T(w,z)), R(w,z) and Ry (W, z) exist as bounded operators and
satisfy the bounds HR(W, z)ll < d—l, llRN(W,z) < 6-1 where

571= max {1,a”1}. |

Proof. Since @(T(w,z)) is the closed convex hull of the spectrum of

a normal maximal operator, the point 1 is at least at a distance d

from the spectrum itself, and therefore the operator R(w,z) exists

and is bounded. If g#0 then R(w,z)g # 0 and we can consider the nor-

; _ R(w, z) .
malized vector h = TR(w. 2)gT * By assumption
0<d< I(hT(w,zh -1 = EEILg! __Igl

Therefore [R(w,z)ll < d_l, A similar result also obtains for

2 2
RN(W,Z) from the remark that [(h,RN(w,z)h) f< 1 Ri\I(W’ z) Il hN =+l h.L Il
where Ri\I(W’Z) is the restriction of Ry(W.2) tosf, bl =1,
hN :—:PNh, and h_L = (l-PN)h. Since @N(TN) C e(T), where @N(TN)
N In . then IR (w,2z)Il < d"l. Therefore

is the numerical range of T

IRy (w,2) Il < 5”1 = max {l,d-l}.
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Next lemma will be‘ used to extend the convergence from & £ to the whole

space c%f.

-Lemma 1. Let O(w,z) be a linear bounded operator defined on a
Hilbert space o# and depending on the two complex variables {W, z}.
Let {ON(W, z)} be a sequence of such operators, uniformly bounded
with respect to N. If, for a given {w,z},ON(w,z) — O(w,z) on
F(w,z) where H(w,z) is a dense subset of S, then ON(w,z) — O(w,2)
also on o#. If, for all {W,z} in a domain A C Cz, a) O(w,z) and
{ON(W, z)} are uniformly bounded, b) &= F(w,z) does not depend on
{W, z},- €) ON(W,Z) — O(w,z) on & unifermly in A, then

ON(w,z) - O(w,z) on & uniformly in A,

Proof. Consider a fixed {w,z}, then for all g € o there exists a

sequence {gn} € #P(w,z) such that g, 8- Therefore
[ Otw,2) - 0w, 2))gll < 10y (w,z)(g-g ) +
+ 10w, 2)@-g )1 + 1 Oy (w,2) ~O(w, 2)g, |l < 2M(w, ) lg-g, Il +
+ 11 Oy (w,2) -O(w, 2))g |

where O(w,z)l < M(w,z), | ON(W, z)l < M(w,z) forall N.
—_— Since
S IMw,z)

gn € F(w,z) and ON(W,Z) — O(w,z) in F(w,z), we can choose
€ _
N, (w,z) such that Il Oy(w,z) - O(w,z))g, II <= for all N> N_(w,2).

Let us fix n, in such a way that lg-g " I <
_ : c

2
Then the first part of the theorem follows. I, for {W, z} € A, the

operators are uniformly bounded, the set = $#(w, z) does not depend

t
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on {w,z} and the convergence is uniform on &, then M, n_ and N € do

€

not depend on {W, z} and the convergence is uniform on A,

i Before applying lemma 1 to our case we need the following

Lemma 2. If 1 € p(T(w,z)), where p(T(w,z)) is the resolvent set of
T(w, z), then ,?}(w,z) = (1-T(w, z)) Qf is a dense linear manifold of
. Moreover, for any finite {w, z} and {W', z'} such that

1€ p(T(w,z)) and 1 € p(T(w?,z"), F¢(w,z) coincides with eg’}(w‘,z‘).
Proof. By assumption (1-T(w, z))'l exists as a bounded operator on
Jff. Therefore any vector h ¢ gff can be written as'h = (1-T)g with
g= (1-T)_1h. Since Qf is dense in Jff and T is the closure of an
operator with domain Z’f, there exists a sequence g, ¢ with

g, € Z;such that h = (1-T)g, —h. The second part of the theorem
is proved by a direct check that any vector in yf(w, z) also belongs |

to 50f(w', z') and vice versa.
We can now state the main theorem

Theorem 3. Let Abe a domain of C2 such that the point 1 is at a
positive distance d from @(T(w,z)). Then, for {w,z} €A, R (W, z)
converges strongly to R(w,z) on &’{’f, uniformly on any bounded sub-

set I' C A.

Proof. For a fixed{w,z} ¢ A, let R(w,z)g be in Ly
TR y(w,2) - R(w,z))gll = IR(w, 2)(Ty(w, 2) - T(w,z)) R(w, z)gll <

f_ " RN(W’ Z) " " (TN(Ws Z) - T(W’ Z)) R(W: Z)g"
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From Theorem 1 we have that TN — T in & ¢ and from Theorem 2 that
IRy (w,2)Il < 67", Therefore RN(W;,Z) —~R(w,2) on F(w,2) = (1-T(w,2)) Z;.
Since, by .lemma 2, e¢f(w,z) is dense in J7,, it follows that RN(W,Z) — R(w, z)
on Jt’f “To prove uniform convergence let us remark that TN(W, z) — T(w,z)

uniformly with respect to {W, z} and that, for {W, z} eI, QSPf = J(w,z) does not
depend on {w,z}. It follows that R\(w,z) —R(w,z) in &, uniformly in I'. By

lemma 1 we conclude that RN(W, z) — R(w, z) on the whole Jff, uniformly in T,
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IV. CONVERGENCE OF APPROXIMANTS FOR DOUBLE POWER SERIES

In Section II convergence theorems h;we been formulated for operators in
an abstract Hilbert space. Let us now turn our attention to the approximant
GN(W, z) defined by Eq. (13) starting from the formal double power series (12)
associated to a function of twd complex variables G(w; z). Under suitable
hypotheses we can prove the convergence of GN(w,z) to G(w, z), by reducing the
problem to the Hilbert space problem considered in Section III.

For this purpose let us restrict to the class of functidns with the following

‘representation in some domain of ‘Cz
_do(a, B)
G(w, z) = ff 1-wa-z8 (16)

where o(a, B) is a bounded posiﬁve Radon measure in R2 and the formal (not

necessarily convergent) double power series expansion

G(w,z) ~ W Z 0 )Gm " (17)

exists, i.e., the moments Gm n= J amﬁn do(a, B) are finite. The class of
functions with the integral representation (16) may be considered as one possible
generahzatlon of the extended St1e1t]e‘s functions to the case of two variables.

Let us defme the subset @ (t) of the complex t-plane
@G(t).—-_{tzwanﬂ | {a,B}e 20} (18)

where EU is the convex hull of the support of (o, B) in Rz. We can state now

the following convergence theorem for the approximants GN(W, z) defined by
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Eq. (13):

Theorem 4. Let Abe a domain of Cz such that the point 1 is at positive

> o] (-]
- distance d from @G"‘"(t) L Y Gy 0)— 1/2m _ . Y@ -1/2n_

m=0 i n=0 0, 2n)
and {w,z} € A, then GN(W, z) converges to G(w,z) as N — « . The con-
vergence is uniform in any bounded subset I' C A.
Proof. Let 22(1?2,0') be the Hilbert space of the functions on Rz,
square integrable with the measure ¢ (@,f). Consider the multiplication
operators @ and B defined by ag(a,f) = ag(e, f) and fe(a, )= fe(a, f).
They are sellfadjoint permutable operatofs in Qz(li'z,cr) and the constant
vector u(cx, B) = 1 is quasi-analytic for both @ and Z?by assumption, since
I &ménullg. = f f QZmBZn dG(cg, B) = GZm, on Therefore the operators
@ and Z? and the vector u(w, B) satisfy the same hypotheses as A, B ‘and f
considered in Section OI. Clearly G(w,z) = (u, (1-w&—z/§)-1 u),. and

: A 5~ -1 A ~ . .
GN(W,z) = (u, (1—WozN-zBN) u) G,where ., and BN are defined like AN

N
and B by Eq. (5). Furthermore it is easy to see that

8, = @(wa + zf) and the theorem follows from Theorem 3.

Instead of assuming the integral representation (16) we could as well start
from the series (17). In this case sufficient conditions for the double sequence

{Gm n} to be a deterniined moment double sequence have been given in

Theorem 10 of Ref. 13. {G

n m} must satisfy a certain positivity condition and

both the sequences {G 1 and {G, } must satisfy the Carleman criterion:
m, 0 O,n
.- - 1/2m - -1/2n si o
HZIEO (GZm, o = and 220: (GO, on) = o . Since the positivity

condition is necessary for {G to be a moment sequence, the two starting
y m,n
?
i

points are equivalent.
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V. GENERALIZATIONS AND FINAL REMARKS

The extension of our results to any number of selfadjoint permutable

operators A_,A

8o ,Ap is straightforward. The operator T(p)

=z A +2_A_+...

"1 7272

+ szp is still normal maximal and we can repeat all the considerations of

Section I, ending up with convergence theorems which generalize Theorem 3.

The structure of the matrix element (f, RN(zl, Zoy - ,zp) f) still suggests an -

approximation scheme which can be used for any function of p complex variables

given by its formal multiple power series expansion

p
(Z 'ni)" n, n n
~ i=1 ) 1 72 P
G(zl,zz,...,zp) nz —-——-———-p Gnl’nz""’n Zy Zg ...zp {19)
{ i} 7 n'! b
; i
i=1
In fact we can still write the expressioh
GAz,,2 z)=GoQu G (20)
N¥'1°72’""""p N'*N N
where the vector GN and the maftrix QN are now defined by
(G, =G _ _ _
N nl, e ,np _ nl nz,n2 n3, . ,np_1 np,np
Q) =G _3 - -
N Nypeee, sy, .., mp n, 112+m1 m,,n, n3+m2 1@3, e ,np+mp
- Z,
£171 0y gtmy S, Ny Mgk My MgtSyg, - - - DR PG 1+
n1=0, ..., N; n2=0, ceea g np=0, .. ’np—l; (21)
m1=0, ..., N; m2=0, R mp=0, e mp—l'
Like in the p=2 case the convergence properties of GN(Zl’ Zos e zp) to
G(ZI’ZZ’ cees zp) can be obtained from the study of (f, RN(Z 12%gr e zp) f).

...,n 4m +
p

p

0

ip
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Since RN(W, z) converges strongly to R(w,z) on the Hilbert space Jff, we
can also apply the method of moments to the equation
(1-wA-zB)p =g | | (22)
where g is any vector in Jff. Then
= AR | _ T 1
®, Ry(w, 2)g) = I_Z%) SZO 5—:’ qgo Er s,s( N)r,S;P,qEP-q,'q:E My E @3)
where the matrix M is defined as in Eq. (10) in terms of the matrix elements

(£, Aman) only, while the column matrix Em-n n is

Epnn=EA" "B) (24)

Although Eq. (23) does not seem relevant for the study of approximants to a
general power series, the freedom in the choice of the generating vector { can
be used to improve the approximation in purely Hilbert space problems. In fact,
a simple variational formulation is available for the approximation \procedure

we have been discussing. More precisely, consider the functional
J=(g,¢)+ (¢*,8) - (¢', (1-wA-zB) ¢) (25)
and choose the following natural ansatz

Al-nphy | 26
ng-:o 1?:—:0 *mn (26)
(26)

Z Z al ATghy

m=0 n=0
Then the stationary value J of J with respect to the parameters {apn} 2nd {a;nn}
coincides with formula (23). J can still be made stationary even with respect
to the choice of the vector f. 1) The extension of these considerations to the

n-dimensional case is immediate.

Sug A ol
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In Section II, instead of starting from Eq. (2), we could as well start from

the equation:
f= (1-wA)(1-2zB) (27)

All convergence theorems of Section 11 hold with pbvious modifications for the
normal maximal operator TN(W, z) = PN(WA+zB -WZA_B)PN and a simple
sufficient condition for 1 ¢ @(T(w,z)) is in this case that both Im w#0 and
Im z#0. Therefore, we are led to consider functions of two complex'variables
with the following integral representation: |

«©
- m n
2., W z G

G(W z) = m.n
m, n=0 ?

I s (l-woz)(l-zﬁ) = (28)

where, again, o(o,p) is a positive bounded Radon measure in R2 and Gm q 2T

2

its moments. For these functions we introduce the approximants
~ R APV |

which differ from the approximants GN(W,z) defined in Eq. (13) only for the

matrix Q " which now reads:

(QN)p’ q;r, s = G‘p_'_r_q_s, a+s - WGP_"'I'-q—S'l'l, ats
ZGp"'r—q—S, g+s+1 + WZGp+r_q_s+1 q+S+l (30)
If the Carleman condition is satisfied for both the sequences {Gm, 0} and {GO,, n}’

we can repeat the proof of Theorem 4 and conclude that éN(W, z) — 'é(w, z) at
least for both Im w#0 and Imz#0. Again the convergence is uniform in compact
sets of 02.

Also for these approximants the extension to the n-dimensional case as

well as the variational formulation are straightforward.

:‘:.a‘ & hé&ﬁ s ifﬁ{
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