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ABSTRACT 

The method of moments is applied to pairs of linear permutable self- 

adjoint operators A and B in a Hilbert space 2?. An approximate expression 

for the diagonal matrix elements of the operator (1 -WA - zB)-l, where w,z 

are complex numbers, is taken as a guide to the definition of rational approxi- 

mants from general formal power series in two variables. Starting from an 

operator convergence theorem in a certain Hilbert space, we prove the 

convergence of our approximants to analytic functions of two complex variables 

with the integral representation G(w,z) = flm, under suitable restric- 

tions on the positive measure @(a!, p) . The same approximation scheme can 

also be applied to the diagonal matrix elements of the operator [(l-wA)(l-zB)]-‘, 

leading to a different rational approximant which we prove to converge to 

functions with the integral representation Qw,z) =sJ~(l-w~~~-~~l . In both 

cases the convergence is uniform on appropriate compact subsets of C2. The 
. 

extension to the n-dimensional case is straightforward for both approximants. 

The connections with a standard variational principle are also briefly discussed. 
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1. INTRODUCTION 

In the past few years the technique of Pad& Approximants (PAs)lw3 for the 

approximate summation of power series of one complex variable has been 

looked at with some interest by physicists as an effective tool for many quantum 

mechanical and field-theoretic models whose solutions are only available in the 

form of a perturbative series. We recall that, given the formal power series 

f(z) z c f zn, the [N/M] (z) PA is the rational function PN(z)/QM(z), where 
n n 

P,(z) and Q,(z) are polynomials of degree N and M respectively, such that 
N+M 

PN(z)/QM(z) = c f,z” + O(Z~+~+~ ). A simple closed expression is avail- 
n=O 

able for the [N/M](z) PA and it can be shown that the PAS have some significant 

formal properties; e. g. , if N=M they are invariant under homographical trans- 

formations both of the variable and of the function. The PAS converge uniformly 

on compacts to extended Stieltjes functions, i. e. , the functions g(z) of the form 

Hz) = Lo l&t 
* do(t} where cr(t) is a positive measure with finite moments 

Pn = ‘S -z tn do(t) not too fastly increasing with n; moreover, in a suitably 

4 generalized sense, they converge to meromorphic functions. Unfortunately, 

the extension to the multidimensional case is not straightforward. In fact, the 

simplest generalization of the usual definition of the PAS, even in the case of 

two variables only, does not, in general, determine uniquely a rational 

approximant: additional constraints must be provided. To this problem, very 

interesting alternative solutions have b88n recently proposed. In one of these, 596 

the constraints are chosen in such a way that the many variable approximants 

retain the main formal properties of the usual PAS. In spite of this, the study 

of the convergence properties is not easy and, up to now, only generalizations 

of de Montessus theorem are available. 7 For another kind of approximant8 
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the convergence to holomorphic functions has been proved under the stringent 

assumption of uniform boundedness of the approximants themselves. 

In this paper, we would like to indicate a different approach to the con- 

struction of many-variable rational approximants starting from the following 

remarks. Consider a linear self-adjoint operator A and a vector f on a Hilbert 
co 

space $6. Let c zn (f, An f) be the Neumann expansion (not necessarily 
n=O 

convergent) of the diagonal matrix element (f, (1-zA)-’ f). Then, for every 

N ~1 the [N-I/N](Z) PA for this series coincides a) with the matrix element 

(f, (I-zAN)-’ f) where AN is the N rank operator obtained at the N-th order in 

the approximation scheme known as the method of moments;” lo b) with the 

stationary value of an appropriate functional on a certain finite dimensional 
11 subspace of 36. Therefore, we suggest generalizing the PA to the multi- 

dimensional case by starting from the definition in terms of the method of 

moments rather than from the usual’ definition; more precisely, we suggest that 

the direct extension of the method of moments to the operator (1-WA-zB)-’ with 
_I A and B linear self-adjoint permutable operators should be taken as a guide 

to the definition and justification of two variable rational approximants. As a 

result, although some formal properties of the usual PAS are lacking, we still 

have the same connection with the method of moments (and i$e variational 

method). This enables us to give, for a relevant class of functions, a conver- 

gence proof which is both simple and of practical use since it involves only 

assumptions about the analytic properties of the functions to be approximated 

rather than about the behavior of the approximants themselves. Furthermore, 

our approximants have a simple explicit expression in any order of approxi- 

mation. 

, I 
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We shall not study here any application of our approximation scheme, but 

let us just remark that a natural field of application should be the approximate 

summation of the perturbative solution of quantum mechanical and field 

theoretic models with more than one coupling constant. However, whether the 

physically interesting models fulfill all the requirements of our convergence 

theorem, is a question which requires further study. It is also worth men- 

tioning that there are classical special functions which, for a particular choice 

of some of the defining parameters, have the integral representation required 

in our convergence proofs, i. e. , the two-variable Appel hypergeometric 

functions and their n-variable generalizations, the Lauricella functions. l2 The 

numerical computation of such functions is therefore another possible applica- 

tion of our approximation procedure which, in this case, provides a direct 

generalization of the classical Jacobi continued fraction expansion of the Gauss 

hypergeometric function 2F 1( 1, p, y, z) . 

In Section II we consider the method of moments for a pair of self-adjoint 

permutable operators A and B and we give the tYapproximate’f expression for 

the matrix element (f, (l-WA-zB)-1 f) where f is a suitable vector of the 

Hilbert space. From this we obtain a rational expression which can be associ- 

ated with any double power series. In Section III we prove a convergence 

theorem for operators in a Hilbert space and we’use this result to state in 

Section IV a convergence theorem of our approximants to functions of two com- 

plex variables with a well defined analytic structure. In Section V we present 

the trivial extension to the n-dimensional case; the connection with a standard 

variational principle; and another kind of approximant, suggested by the 

application of fh8 method of moments to the operator [(l-wA)(l-zB)]-‘. 

, 
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11. THE METHOD OF MOMENTS 

Let A and B be two linear self-adjoint permutable operators with domains 

g(A) and g(B) in the Hilbert space 9’6’. Then there exists a dens8 subset 

9 of vectors of &’ which are quasi-analytic 13,14 for both A and B. Let 

fE.0 be such that 
I 

f = Ap-qBq f 
P-9, q 

p=o ,..., N; q=O ,..., p (1) 

are linearly independent vectors for any N. Then, the vectors {fr s) generate 
f 

a sequence of y -dimensional Hilbert spaces Z+VN C, 9Z’ and the r8ht8d 

orthogonal projection operators PN. Let us consider the equation 

(l-WA-zB)$ = f (2) 

where w and z are complex numbers. For any {w, z 1 such that the operator 

R(w, z) G (l-WA-zB)-1 exists and is bounded, the solution of Eq. (2) is 

I) = R(w,z)f . 

In order to obtain an approximate solution of Eq. (2) let us consider the following 

equation in the finite-dimensionai SUbSpaCe sN 

(l-wAN-zBN) $JN = f (4) 

where 

AN E PNAPN , BN SPNBPN . (5) 

The solution of Eq. (4) is 

for 

ZJN = (l-WA,-zB,)-’ f = RN(w,z) f (6) 

i t w, z such that R,(w, z) exists and is bounded. Since $N E XN we can 

also solve Eq. (4) explicitly by expanding $, on the complete set (fr st: 
, 

ZCI, =#f 
? 

p=o &Y-J “P, q fP-q, 4 ’ (7) 
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We obtain 

$$J = 5 5 $ 3 t”$)p q;r s Fr-s sApABqf ’ 63) 
p=O q=O r=O s=O I 9 , 

where 

F r-s s = (f, Ar-'B'f) 
, (9) 

(MN& q-r s f Fp+r-q-s q+s - wFp+r+l-q-s q+s - ZFp+r-q-s q-W+-1 9 ,, , I , 

p,r=O ,..., N; q=O ,..., p; s=O ,..., r 

If we project Eq. (8) on the vector f we obtain the simple expression 

NP? r 
.tf,$N) = tflRNtw’Z)f) = c I- ‘.’ c Fp-q,d”;‘)p q.r SFr-S,S =F;MilFN 

p=O q=O r=O s=O , 9 f 

with obvious definitions for the column matrix F T N, its transposed FN and the 

matrix MN. The corresponding matrix element of the operator R(w, z) has the 

integral representation 

where E(a, p) is the spectral family associated with the self-adjoint permutable 

operators A and B. 
. 

In Section III we prove the strong convergence of RN(w, z) to R(w, z) in 

a subspace of 26 for (w, z) in a suitable domain and, as a consequence, the 

convergence of $ N to $ and of (f, zj N ) to (f, $). Since in the l.atter case we 

have a rational approximation converging to an analytic function of two complex 

variables, we are naturally led to introduce for any formal double power series 

G(w,z) = c wmzn 
m,n 

Gm n 
, (12) 

I 

’ ./ 
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the rational approximant GN(w, z) by the formula: 

GN(w, z) E G; Qil GN 

where G N, G$ and QN are a column matrix, its transposed and a matrix 

defined in terms of the coefficients Gm n by 
, 

(G$p , q = Gp-q , q 

(&N)p, q;r,s= Gp-W-q-s, 9fs - w$b+r+l-q-s, g+s - zGp+r-q-s, q+S+l (14) 

p,r=O ,..., N; q=O ,..., p; s=O ,..., r 

Let us write explicitly Gl(w, z) and G2(w, z): 

G1@A = G 
Go, oGo, 0 

090 -wG1, o-zGo, 1 ’ 

G2(w, =) = G0,0G1,0G0,1 Go,o-wG1,0-=Go,1 G1,0-WG2,0-ZG1,1 G0,1-wGl,1-ZG0,2 

G1,0-wG2,0-ZG1,1 G2,o -WG3,0 -=G2,1 G1,1-WG2,1-ZG1,2 

G0,1-WG1,1”G0,2 G1,l -WG2,1-ZG1,2 G0,2-wG1,2-ZG0,3 

-1 

(15) 

It is convenient to notice that this rational approximant has some obvious 

formal properties, e. g. , GN(w, z) is real analytic if G(w, z) is a real a.naIytic 

function of w and z and it is symmetric in w and z if G(w, z) is. One may also 

notice that the approximant to a factorized function does not in general factorize 

and that no simple analogue of the homographical covariance properties of the 

Pad& approximant seems to hold. 

Go, 0 

G1,O 

G 
091 



. . . : .--. .._, ..^. - ---. --..-. --.- ---.--.. 

-8- 

III. SOME RESULTS ON OPERATOR CONVERGENCE 

In this section we shall extend some results of Refs. 9 and 10 where the 

case of a single selfadjoint operator has been studied. Let if be the linear 

manifold of all finite linear combinations of the vectors (fr s } defined in 

Section II. ’ 16 The closure of JZf is a Hilbert space Yef c,YZ’ . Consider now 

the restrictions A’ and B’ of the operators A and B to &Zf and their closures 

Al and Bl. Since f is assumed to be a quasi-analytic vector for both A and B 

then, by the theorems 4 and 6 of Ref. 13, Al and B’ are still selfadjoint per- 

mutable operators on YZ’f, and from now on we shall simply call them A and B. 

These operators and the related ones AN = PNAPN and BN E PNBPN define in 

Ytf the operators T(w, z) E wA+zB, TN(w$ z) = PNT(w, z)PN, R{w, z) = (1-T(w, z))-‘, 

RN(w,z) 5 (1-TN(w,z))-1 where (w,zt E C2 is a pair of complex numbers. For 

simplicity we shall occasionally drop the { w, z ) dependence from our operators. 

Let us also stress that, throughout the paper, by operator convergence we shall 

always mean strong operator convergence. T is a normal maximal operator 

and, since it is closed, 18 it is the closure of the operator WA’+ zB’. TN is a 

bounded operator and, in general, it is not normal. 

In order to prove that RN(w, z) converges to R(w, z) on Xf we need some 

information on the behavior of TN(w, z) as N -03, which is given by the following 

Theorem 1. TN(w,z) -+ T(w, z), in 2f, uniformly with respect 

to {w, zt. 
M m 

Proof. Any vector g E ZZf can be written as g = c c a,,Am?Bnf, 
m=O n=O 

If N 2 M+l then TN(w:z)g =PN(wA+zB)PNg = (wA+zB)g = T(w,z)g. Of 

course the convergence is uniform with respect to {w, z). 
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Let us now recall that S(o), the closure of the numerical range 17 of a 

linear bounded operator 0 is a convex set containing the spectrum a(O) of 0. lg 

If 0 is a normal maximal operator (not necessarily bounded) e(o) is the convex 

hull of C(O), i. e. , 0) is the smallest closed convex set containing u(O). 2o 

Theorem 1 and the following theorem enable us to prove that RR(w, z) - R(w, z) 

in gf. 

Theorem 2. For all {w, z) such that the point 1 is at a positive distance 

d from @(T(w, z)) , R(w, z) and RN(w, z) exist as bounded operators and 

satisfy the bounds II R(w, z) II 5 d-l, IIRN(w,z)II 5 6-l where 

6 ‘3 max (l,d-It. 

Proof. Since @(T(w, z)) is the closed convex hull of the spectrum of 

a normal maximal operator, the point 1 is at least at a distance d 

from the spectrum itself, and therefore the operator R(w,z) exists 

and is bounded. If g#O then R(w, z)g # 0 and we can consider the nor- 

malized vector h = $@$$ . By assumption 
, 

0 < d 5 l(h,T(w,z)h) - 11 = ‘(R(w9z)gyg)’ g 
Ii R(w, z)g II 2 L II R/k, :)g II 

Therefore IIR(w, z) II 2 d-l* A similar result also obtains for 

RN(w, z) from the remark that I @, RN(w, z)h) I 5 II R$w, z) II II hN II 2+ II hl II 2 

where Rh(w, z) is the restriction of RN(w, z) to 3(eN, II hll = 1, 

hN EE P$, and hL E (1-PN)h. Since @@TN) s g(T), where @R(TN) 

is the numerical range of TN in &YN, then II R$w, z) II < d-l. Therefore 

t . II RN(w, z) II 5 6-l = max (1, d-l 
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Next lemma will be used to extend the convergence from 5Zf to the whole 

space 2Zf. 

Lemma 1. Let O(w, z) be a linear bounded operator defined on a 

Hilbert space X and depending on the two complex variables (w, zt. 

Let { ‘Nt w, z)) be a sequence of such operators, uniformly bounded 

with respect to N, If, for a given {w,zt,ON(w,z) - O(w,z) on 

Y(w, z) where 9(w, z) is a dense subset of 3?, then ON(w, z) - O(w, z) 

also on X. If, for all (w, zt in a domain A c C2, a) O(w, z) and 

(ON(w, z)) are uniformly bounded, b) 3’~ Y(w, z) does not depend on 

(w, zt, c) O,(w, z) - O(w, z) on 27 uniformly in A, then 

‘N(DcI’ ‘1 - O(w, z) on 36 uniformly in A. 

Proof. Consider a fixed {w, zt, then for all g E Z’ there exists a 

sequence (gn\ E ~(w,z) such that gn - g. Therefore 

II (“N(w’z) - o(w, z))gII I, il ON(w, z)(g-gn) 11 + 

+ 11 o(W, Z)(g-g,) 11 + iI (ON@, z) -o(w, z))g,II 5 2M(w, z) 11 g-g&l + 

+ 11 t”Ntw’ ‘) -‘lw, ‘)knll 

where II O(w, z) II 5 M(w, z), IION(w,z)II 5 M(w,z) for all N . 

Let us fix ne in such a way that II g-g, II 2 4MtG,, zj . Since 
E 

gl.l E P(w, z) and ON(w, z) - O(w,z) in 2%‘(w, z), we can choose 
E 

NE (w, z) such that II (ON(w, z) - O(w, z)) gn. II < $ for all N> N, (w, z). 
E 

Then the first part of the theorem follows. If, for (w,z) E A, the 

operators are uniformly bounded, the set .Yr 9’(w, z) does not depend 
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on {w,z] and the convergence is uniform on 9, then M, nE and N, do 

not depend on (wI z 1 and the convergence is uniform on A. 

Before applying lemma 1 to our case we need the following 

Lemma 2. If 1 E p(T(w, z)), where p(T(w, z)) is the resolvent set of 

T(w, z), then gf(w,z) = (1-T(w, z)) gf is a dense linear manifold of 

G%‘. Moreover, for any finite (w,z) and (w’,z’t such that 

1 E p(T(w,z)) and 1 E ~(T(w’,z’)), y?,(w,z) coincides with =9f(w’,z1). 

Proof. By assumption (1-T(w, z))-1 exists as a bounded operator on 

Xf. Therefore any vector h E sf can be written as h = (1-T)g with 

g = (1-T)-‘h. S’ mce 9 is dense in X and T is the closure of an f f 

operator with domain gf, there exists a sequence gn - g with 

gn E fZf such that hn = (1-T)g, - h. The second part of the theorem 

is proved by a direct check that any vector in Yf(w, z) also belongs 

to Yf(w’, zl) and vice versa. 

We can now state the main theorem 

Theorem 3. Let A be a domain of C2 such that the point 1 is at a 

positive distance d from @(T(w, z)). Then, for (w, z) EA, RN(w, z) 

converges strongly to R(w, z) on Zf, uniformly on any bounded sub- 

set I’ C A. 

Proof. For a fixed (w, z ) E A, let R(w, z) g be in &??f: 

11 @$(w, Z) - R(W, z))gII = II RN@, z)(T~(w, Z) - ‘I’@, Z)) R(w, z)g II 5 I 

2 II RN(w, Z) II II (TN&, Z) - T(w, z)) R(w, z)gII . 

I 
, / 

:.,& $4”. :.i 
I 
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From Theorem 1 we have that TN - T in .=Pf and from Theorem 2 that 

IIRN(~,~)ll 5 6 -1 . Therefore R,(w, z) - R(w, z) on Pf(w,z) = (l-T(w, z)) .ZZf. 

Since, by lemma 2, Y&w, z) is dense in Xf, it follows that RN(w, z) - R(w, z) 

on Xf. To prove uniform convergence let us remark that TN(w, z) - T(w, z) 

uniformly with respect to {w, z) and that, for {w, z) E I’ , LPf E 9(w, z) does not 

depend on {w, zt. It follows that RN(w, z) - R(w, z) in Pf, uniformly in I?. By 

lemma 1 we conclude that RN(w, z) 4 R(w, z) on the whole G4Yf, uniformly in I’. 

, 

I 

i,, .$.a: :.J 
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IV. CONVERGENCE OF APPROXIIvlANTS FOR DOUBLE POWER SERIES 

In Section II convergence theorems have been formulated for operators in 

an abstract Hilbert space. Let us now turn our attention to the approximant 

GN(w, z) defined by Eq. (13) starting from the formal double power series (12) 

associated to a function of two complex variables G(w, e). Under suitable 

hypotheses we can prove the convergence of GN(w, z) to G(w, z)) by reducing the 

problem to the Hilbert space problem considered in Section IIt. 

For this purpose let us restrict to the dass of functions with the following 

representation in some domain of C2 

cc) ds(a!, ,Y) 
G(w*z) = $$ l-WQd@ * (16) 

-to 

where (T((Y, p) is a bounded positive Radon measure in R2 and the formal (not 

necessarily convergent) double power series expansion 

G(w,z) 2 c wmzn G, n 07) 
n-9 , 

exists, i. e., the moments G, 
, 
n = ‘; cy”p” ckr(a, p) are finite. The class of 

functions with the integral representation (16) may be considered as one possible 

generalization of the extended Stieltjis functions to the case of two variables. 

Let us define the subset @o(t) of the complex t-plane 

6u(t)+=wo!+zp I (q3)E Iz} (18) 

where Z’cr is the convex hull of the support of (T(Q, 6) in R2. We can state now 

the following convergence theorem for the approximants GN(w, z) defined by 
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Eq. (13): 

Theorem 4. Let A be a domain of C2 such that the point 1 is at positive 

distance d from o,(t) . If >’ (G 
izo 2m, 0) 

- 1/2m 
=Q=J, fio(Go,2nl- 1’2n=m 

and (w, z 1 E A, then GN(w, z) converges to G(w, z) as N -. 03 . The con- 

vergence is uniform in any bounded subset I’ C A. 

Proof. Let g2(R2,c) be the Hilbert space of the functions on R2, 

square integrable with the measure CT (a!, fi) . Consider the multiplication 

operators i and 5 defined by kg@, p) = qW, P) and &(a, PI= Ma, PI. 

They are selfadjoint permutable operators in g2(R2, a) and the constant 

vector u((Y, p) = 1 is quasi-analytic for both 2 and i by assumption, since 

II &m$~ll; = ssa2”p2” &(a, p) = G2m 2n . Therefore the operators 
, 

;;( and 6 and the vector u(o, ,!3) satisfy the same hypotheses as A, B and f 

considered in Section RI. Clearly G(w,z) = (u, (l-wi-z$)-’ u)~ and 

GN(w, z) = (u, (~-w&~-z;~)-’ u),,where GN and iN are defined like AN 

and BN by Eq. (5). Furthermore it is easy to see that -. 
- “----’ 
et(t) E o(wG -t- z& and the theorem follows from Theorem 3. 

Instead of assuming the integral representation (16) we could as well start 

from the series (17). In this case sufficient conditions for the double sequence 

{ Gm ,I to be a determined moment double sequence have been given in 

Thedrem 10 of Ref. 13. { Gn,mt must satisfy a certain positivity condition and 

both the sequences {Gm, o\ and {G 
o. 04 

) must satisfy the Carleman criterion: 

E, (GZm, o)- 1’2m = 00 and c (Go 2n)- 1’2n = 00 . Since the positivity 
n=O ’ 

condition is necessary for {Gm n) to be a moment sequence, the two starting 
, 

points are equivalent. , 
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V. GENERALIZATIONS AND FINAL REMARKS 

The extension of our results to any number of selfadjoint permutable 

operators Al, A2, . . . ,Ap is straightforward. The operator T W = z1Al+z2A2+. . . 

+ zpAp is still normal maximal and we can repeat all the considerations of 

Section III, ending up with convergence theorems which generalize Theorem 3. 

The structure of the matrix element (f, RN(zl, z2, . . . , zp) f) still suggests an 

approximation scheme which can be used for any function of p complex variables 

given by its formal multiple power series expansion 

WI, z2, . . ..zp)Z c “1 n2 “p 

i t n. 1 i ni! 
G 

nl,n2,...,np zl z2 .**zP (19) 

i=l 

In fact we can still write the expression 

T 
GN(Z1,Z2, - - - ,z,) = GN(QN) 

-1 
GN 

where the vector GN and the matrix QN are now defined by 

(20) 

lGN)n 1 , . . . , np s Gnl-n2, n2-n3, . . . , np l-np, np 

(&N)nl, . . . , np;ml, . . . , mp 
=G nl-n2+ml -m2, n2-n3-!-m2-m3, . . . , np+mp 

- &‘i Gn n 1- 2 +ml-m2+f?jil, n2-n3+m2-m3+ai2, . . . , ns-ns+l+m -ms+1+6is,. . . , np+mp+6ip S 

nl=O,...,N; n2=0,. . . , nl; n =0 
P ,...,np-li (21) 

ml=O,...,N; m2=0, . . . , ml; 
“P’O, - . . , mpal. 

Like in the p=2 case the convergence properties of GN(zl, z2, . . . , zp) to 

wp 3’ . . , , zp) can be obtained from the study of (f, RN(z 1, z2, . . . , zp) f). I 
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Since RN(w, z) converges strongly to R(w, z) on the Hilbert space Xf, we 

can also apply the method of moments to the equation 

(l-WA-zB)$=g (22) 

where g is any vector in Xf. Then 

kRN(WsZ)g) = i! k E 2 E;-s, s (MN);ls.p qEp q q = ET*M:E (23) 
r=O s=O p=O q=O , 9 , - ; 

where the matrix M is defined as in Eq. (10) in terms of the matrix elements 

(f, AmBnf) only, while the column matrix Em n n is 
- t 

E msn,n=Wm-nBng) (24) 

Although Eq. (23) does not seem relevant for the study of approximants to a ’ 

general power series, the freedom in the choice of the generating vector f can 

be used to improve the approximation in purely Hilbert space problems. In fact, 

a simple variational formulation is available for the approximation ‘procedure 

we have been discussing. More precisely, consider the functional 

J = &, 9) + ($‘,g) - (4’9 (I-WA-W $J) (25) 

and choose the following natural ansatz 

Am-n~n f 
m=() n=() mn 

(PI= $ 2 aLAmmnBnf 
m=O n=O 

(26) 

(26) 

Then the stationary value J of J with respect to the parameters { amnt and {ah) 

coincides with formula (23). J can still be made stationary even with respect 

to the choice of the vector f. (21) The extension of these considerations to the 

n-dimensional case is immediate. 
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In Section II, instead of starting from Eq. (2), we could as well start from 

the equation: 

f = (1-wA)(l-zB) 21, (27) 

All convergence theorems of Section III hold with obvious modifications for the 

normal maximal operator TN(w) z) = PN(wA+zB -wzAB)PN and a simple 

sufficient condition for 1 4 8 (y(w) z)) is in this case tiat both Im w # 0 and 

Im z # 0. Therefore, we are led to consider functions of two complex variables 

with the following integral representation: 

L wmznG 
m,n (28) 

m, n=O 

where, again, ~(a,,@ is a positive bounded Radon measure in R2 and Gm n are 
, 

its moments. For these functions we introduce the approximanks 

cN(w, z) I G’Ni$’ GN (29) 

which differ from the approximants GN(w, z) defined in Eq. (13) only for the 

matrix Q, which now reads: 

@N)p q-r s = Gp+r-q-s q+s - wGp+r-q-s+l q+S , 9 3 , , 

zGp+r-q-s, q+s+l + wzGp+r-q-s+l, q+s+l t30) 

If the Carleman condition is satisfied for both the sequences {Gm, ot and {Go n), 
, 

we can repeat the proof of Theorem 4 and conclude that g,(w, z) - %(w, z) at 

least for both Im w# 0 and Im z # 0. Again the convergence is uniform in compact 

sets of C2. 

Also for these approximants the extension to the n-dimensional case as 

well as the variational formulation are straightforward. 
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