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1. INTRODUCTION 

The emphasis of the present work is on using final state properties as a 

guide to the selection of theories of deep inelastic scattering. An important 

result of our analysis is the introduction of two broad classifications defined as 

follows: Introduce the moments of the structure function F2( w, q2) = vW2, 

ccl 
F2(W, q2, 4 r(n) 

n + . . . . 
w 

for even n. The C, are constants and the y(n) are anomolous dimensions of 

the spin n operators in the operator product expansion of two currents. The 

restriction to pure power form or fixed point behavior in Eq. (I) is not essen- 

tial. The results of this paper hold for the more complicated form which 

arises from the Callan Symanzik equations 192 away from a fixed point, 

@3(g) # 0), including the case of asymptotic freedom. 3 We classify theories 

by the behavior of y(n) as n - CO. 

Class I: y(n) - const. as n - co 

Class II: Y@) - +w asn- 03 

No other possibilities are allowed by Nachtmann’s positivity analysis. 4 

Bjorken scaling requires y(n) = 0 for all n, so a theory with exact Bjorken 

scaling is in Class I. Asymptotically free theories have y(n) = O(g210gn) as 

n - to, so they are in Class II. 

The results of our analysis are that Class I behavior implies an unaccept- 

able jet structure for deep inelastic final states, whereas no such jet structure 

need be present for the Class II case. We therefore suggest that the correct 
I 

theory of deep inelastic scattering is of Class 11. Below we outline the method 
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of analysis and the characteristic experimental signals for Class II be- 

havior . 

II. CLASS I THEORIES 

Introducing the operator product expansion of two currents we write, 

T J,(x) JV(0) - i 
II 1 c On 

ti2 %l ap 

x2-o n Q@2°**tin 
(0) x bit;; sclv x 

x ap [ (-h!Fx2)fy(n) DF(X2( 

+ less singular terms, (2) 

where we will carry along explicitly only the operators which contribute to 

spin averaged matrix elements of F2 ( w, q2). The factors b(n), S @, and 

DF(x2) are given by 
PV 

b(n) = 2 r(n) I?@+& r(n))/r(l - 4r(n)), 

i . 
DF = 

47r2(x2 -ie) ’ 

The On(O) are local field operators of spin n and dimension n + 2 + y(n). Their 

spin averaged matrix elements are defined by 

n 
cp’ocq&2...pn 1P ’ = (i>* cn - 

-@- LP,Pfi l l l Pp - trace terms (3) 
2 V 1 

where C, is the same constant that appears in Eq. (1). 
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(a). y(n) = 0 

This is the case of exact Bjorken scaling, which corresponds to free field 

behavior near x2 = 0. There are no known explicit models which satisfy 

Bjorken scaling, except for the trivial case of a free field theory, so we must 

proceed by using general arguments. We first note that in the definition of the 

structure functions, 

wcsv = (-gpv+ y) WI+ --$ (P/.$q~(Pv-~Pv) W2 

= (27r)3 c <plJp(0)ln> S4(q +p -n) <nlJv(0)lp> (4) 
n 

only asymptotic states of on shell hadrons appear in the states In > . This 

remains true when a Fourier transform is introduced and the commutator 

[J, (x), Jv (O)] , and time ordered product T [JV(x) Jv (0)] are computed as 

Fourier transforms of the corresponding quantities in momentum space. 

Therefore only asymptotic states occur between JCL@) and Jv (0) in Eq. (2). 

Since the left -hand side of Eq. (2) involves only asymptotic st$es, so must 

the right side. The only straightforward way to interpret the factor DF(x2) is 

as the propagator of a finite mass hadron system, where the mass can be 

ignored in the asymptotic limit, This leads directly to a two jet structure for 

deep inelastic final states as shown in Fig. (1). 

FIG. 1 w = 
VV 

4 
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To maintain scaling, the damping in the momentum transfer k2 must be more 

rapid than ‘1 25 
t 1 z * The masses Ml and M2 must also be dominated by finite 

values. The essential point is that the systems Ml and M2 must be composed 

of hadron asymptotic states, since nonasymptotic states (quarks, partons) 

never come into the definitions of the structure functions or their Fourier 

transforms. Whether complicated, non two jet configurations of hadrons could 

build up the free field factor DF(x2) is not completely ruled out, but it would 

appear unlikely. 

(b) y(n) # 0, y(n) j con&. 

Here much more explicit results can be obtained, since this case is 

realized in Lagrangian theories involving only spin zero and spin one half 

particles. The pure power behavior of the structure function moments in 

Eq. (1) is obtainable in two ways, either at a fixed point p(g,) = 0, or at gen- 

era1 values of the coupling constant g, if self energy and vertex insertions are 

omitted from all graphs. If the theory is near a fixed point, only qualitative 

changes are necessary. 

The important result y(n) - 2y for the class of Lagrangian theories zl) 

described above, was obtained by Callan and Gross ,6 following an earlier con- 

jecture by Parisi. 7 The quantity y+ is defined as the dimension of the funda- 

mental field in the theory with lowest dimension. The final state structure is 

shown in Fig. (2) 

FIG. 2 
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The dominance of this generalized handbag graph in the Bjorken limit was 

shown for the case of 44 theory by Parisi, 7 and can be justified for more 

general Yukawa theories by the same method, or by using the techniques of 

Cornwall and Tiktopoulos. 8 There are two differences as compared to the 

case of exact Bjorken scaling. The first is the presence of vertex functions -_ 

where the virtual photon enters. The second is that here the damping of the 

momentum transfer kt is weaker than 
( 

1 i2 
21 ' 

whereas the damping must be 

l2 
1 

stronger than 2 
( 1 

for the case of exact Bjorken scaling? The presence of 

kl 

jets in the final states remains. Two jet structure dominates as w - 1. As w 

increases, a multi-jet structure develops, as shown in Fig. (3). The masses 

of the systems IV+ remain dominated b 
kS 

finite values, but now the momentum 

transfers are allowed to be large, < -+> =const. , k22 

q 
( 1;” > =const. , etc. 

1 

FIG. 3 - 
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kl 
k2 

1M, 

kz 

kl 

I The presence of low mass systems produced strongly with large rapidity 

gaps and large amounts of high p I scattering seems unacceptable for final 

states of composite hadrons. This motivates the investigation of Class II 

theories. 
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III. CLASS II THEORIES 

In this section, we take up the case y(n) - co. A complete analysis of 

final state properties has not yet been carried out. Here we concentrate on 

the single particle inclusive spectrum in the target fragmentation region. We 

first introduce the useful observation that once the asymptotic region is 

reached, Mellin transform techniques can be used to calculate the structure 
29 function F2 at qi from its value at a smaller value, qI. We have 

(5) 

If y(n) = 0, Eq. (5) reduces to F2(u, qi) = F2(u, qt), which is just the state- 

ment of Bjorken scaling. 

We now apply the same method to the calculation of the single particle 

spectrum. We introduce a function ” 2 which describes the process 

q+p - p’ + missing mass. The functions g2 and F2 are related by 

(7) 

where <nr > is the average multiplicity of hadrons of the same type as p’. An 

average over the azimuthal angle of p’ is implied. We now apply the general- 

ized optical theorem to relate g2 to the discontinuity of the 3 -3 amplitude 

as shown in Fig. (4), where Ii!f = (q+p -p$ If the momenta p and p’ are 

fixed, we may also use the small x2 expansion. We use as variables 
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lF 2 =discM2 T 
x 33 

= 

P 

P’ 

# 

MX 
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P 4 

P’ 

P’ 
x=-,p’,o, 

p- 1 
q2, where the direction of the virtual photon defiles the +z 

axis. The same Mellin transform technique can be applied to Z?J2 as to the 

structure function itself. The transform, is taken in the variable z = 
Z&p’). q 

g= -q2 (s;; 
-cl2 

I 

related to the missing mass by - 1) + con&. The variable ‘23 is 

related to o by z = ~(1 - x). The formula for S2 analogous to Eq. (5) for 

F2 reads 

w 

g2 @, P; I w, q;, = *g2(x, P;. w’s s2,)kT (8) 

1 
l-x 

The lower limit & reflects the requirement that the missing mass MY x must 

be positive. 

So far the analysis is general and can be applied to any theory with 

y(n) f 0. The characteristic feature of a theory with y(n) - co is that the func- 
2 

q1 tion g z, , 2 
( > 

of Eq. (6) will be strongly peaked around a value of w’ 
q2 

less than w, the amount by which it is less depending on the ratio qt/G. To 

illustrate, consider the case where y(n) grows linearly, which is the maximum 

allowed by Nachtmann’s positivity analysis. 4 Making the conventional assump- 

tion y(2) = 0, we take the form y(n) = cz(n-2). Equation (6) gives 
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2 
q1 

forg 3, 2 , ( ) q2 

The very strong suppression of the structure function near w = 1, character- 

istic of Class II behavior, here shows up as the vanishing of the structure 
2o! 

92 function F2(w, qi) for 1 cw c 2 
0 

. This literal vanishing is special to the 

q1 
case of linearly growing y(n). For any growth less than linear, say y(n) N nE , 

E < 1, the effect is smoothed out and F2 (w , qi) will decrease rapidly as 

qz/q21 increases, but will not actually vanish. 

With regard to the inclusive spectrum, g2, the lower limit of & in 

Eq. (8) causes strong suppression near the maximum allowed value of x, which 

corresponds to the smallest missing mass 2 x. It’the extreme case of linear 

growth for y(n), there is vanishing of *q2(x, pi , w, qz) for x > 1 - 

Again the effect is smoothed out for any growth rate less than linear for y(n). 

The region of phase space which is being suppressed here is the only region 

which does contribute for a theory which obeys Bjorken scaling, so the two 

behaviors are very different. 

It is easily checked that there is no simple factorization when the ratio 

g2/F2 is formed, so both Feynman scaling for the inclusive spectrum and 

Bjorken scaling for the structure functions are broken in an essential way. 

The experimental signals of Class II behavior are the following: 
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(a). Strong suppression of the w - 1 region, the suppression becoming 

stronger as G/q: increases. 

(b). If the assumption y(2) = 0 is valid, then there will be enhancement of 

the large 0 region, the enhancement growing as (qz/qf) increases. 

(c). Strong suppression of the inclusive spectrum near the region of 

maximum longitudinal momentum. Feynman scaling cannot be re- 

stored by drviding by F2 (w , qi). 

Qualitatively, the spectrum in longitudinal momentum for a Class II theory 

will be pushed toward the central region, in complete contrast to the case of a 

two jet picture for final states. This is the basis of our suggestion that the 

correct theory is likely to be a member of Class II. 

To gain further insight, it is essential to develop models. Without an 

explicit model, the analysis of final state properties will be limited to the tar- 

get fragmentation region as discussed above. We close with some speculation 

on models. 

Increasing anomolous dimensions are found in all Lagrangian field theories 

containing gauge fields. Calculations to lowest order in g2 show y(n) =O(g210g n), 

for any gauge theory, asymptotically free or not. 6 Gauge theories can then 

form an interesting laboratory for further investigation. However, it is likely 

that a simple theory in which the fundamental fields create and destroy asymp- 

totic states of particles, while it would have suppression of the o = 1, x = xrnm 

regions, would also suffer from having too much large pI production as in 

case (b) of Section II. An attractive conjecture is that a gauge theory in which 

the fundamental fields are confined and the hadrons are all composite would 

finally achieve the two desirable features of y(n) - CO, and damped large pI 

scattering. I 



There is nothing in the above analysis which particularly favors asymp- 

to tically free theories. In fact if phenomenologically a stronger increase than 

y(n) “log n, is indicated, there would be evidence against asymptotic freedom, 

since at finite coupling constant, a power increase for y(n) could come about 

by summing terms of the form (g210g n)m, but for the asymptotically free case 

the coupling constant is renormalized to zero and the lowest order result pre- 

vails . To conclude, we strongly suggest Class II behavior, but we regard the 

question of asymptotic freedom as quite open. 
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