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subject of sum rules for the structure functions of forward current-hadron I 

s tattering . (Hereafter, we shall refer to Refs. 1 and 2 as A and B, respectively.) 

The principal concern of the present discussion will be the complete set of 

current algebra constraints on the Regge and asymptotic fixed hadronic mass3 

residues of the structure functions of inelastic (anti) neutrino nucleon scattering. 

For the sake of completeness and continuity, we shall begin by briefly reviewing 

the connection of the discussion here with that of A and B. 

In A, we introduced4 a method which in principle permits the systematic 

discussion of all equal-time current algebraic sum rules. However, there, for 

convenience, we made a convergence assumption about the states near 

x = -q2/2Mv = 0, -1. This assumption amounted to suppressing the possible 

presence of leading5 Regge poles and asymptotic fixed hadronic mass states. 

Of course, it is well known that such a suppression is of no effect insofar as 

convergent scaling and fixed -q2 sum rules are concerned. For divergent sum 

rules, such a suppression is understood to mean that the resulting expressions 

are only formal and require some kind of truncation6 in general. InB, we 
- 

showed that continuity in dynamics allows one to treat the states at x=0, -1 

systematically in the framework of A. By applying the resulting formalism to 

the spin independent Schwinger term sum rule, it was shown that the required 

truncations of formal expressions occur naturally. Moreover, it was shown 

that this formalism yields new surprising sum rules for the Regge and asymptotic 

fixed hadronic mass limit residues. Only the isospin symmetric, spin inde- 

pendent, O-i aspect of current algebra was considered in this latter connection 

in B. Here, as we have remarked above, we shall use the methods of A and B 



to discuss the entire set of residue sum rules following from equal-time 

current algebra taken together with continuity in dynamics. 

We should point out that theoretical prejudice would suggest that the fixed 

hadronic mass limit residues which will be under discussion are in fact trivial. 6 - f 
iii 

However, for the most part, this will not concern us here. For definiteness %j b! .a:. 

we shall presume a form for the behavior of the structure functions in the 

q2-% p2 = (p+ q)2 fixed limit which is general enough that the extension of 

our results to an arbitrary behavior will be immediate. The analogue of this 

last statement can be made about the form of Regge behavior which we shall - 

presume. 

Let us also remark that in the course of deriving our principal results 

(the residue sum rules) we shall naturally obtain the truncated (when necessary) 

versions of the conventional fixed -q2 and scaling sum rules (both spin independent 

and spin dependent). The spin independent (untruncated) results are of course 

well known whereas the (untruncated) spin dependent results are discussed in 

A, for example. We shall always record these (truncated) sum rules here 

mainly in the interest of completeness. 

It will be apparent in what follows that the residue sum rules presented 

here are very restrictive insofar as the form of the residue functions is con- 

cerned. This fact alone makes these results very interesting. They should 

.- 

prove very useful theoretically in constraining the parameters of detailed 

analytic models of forward current hadron scattering. However, the models 

of current hadron scattering which have appeared to date have not been 

constructed in sufficient detail to permit their serious consideration in what 

follows. A sufficiently detailed model is under investigation. 
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We shall not belabor the details of the method which we shall employ in 

deriving the residue sum rules, since this procedure is described in some 

detail in B. Of course, a few details will always appear-in the interest of 

completeness. 

The paper is organized as follows. In Section II, we briefly review the 

formalism developed in A and B. In Section III, we apply this formalism to 

all aspects of equal-time current algebra and obtain the complete set of residue 

sum rules. For clarity, we only list in III those results associated with the 

more familiar fixed -q2 and scaling sum rules. The remaining results are - 

relegated to Appendix II. Appendix I contains the forms we employ for the 

various asymptotic limits of the structure functions. Section IV contains some 

concluding remarks and an explicit statement of our interpretation of current 

algebra. 

II. PRELIMINARIES 

In this section we shall briefly review the method which we shall employ 

to discuss residue sum rules. As stated in the Introduction, a detailed 

description of this approach to sum rules may be found in B. We begin by setting 

the notation. 

We shall be concerned with the structure functions parametrizing forward 

current-hadron scattering 

current a + hadron Q! - current b I- hadron p , 

q P q P 

specializing always to the case where the hadron is a nucleon and the current is 

the full V-A weak current $ = Vi -AL , with a = l+ i2. (We take Cabbibo 

wle, Oc, to be zero without loss of generality. ) The corresponding hadronic 
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tensor ?a will be written in the convention of paper A, ignoring the possibility 

of time reversal violations: 

Jpb 2 
pv 2n S d4y eiq*yq,sl[t (y), ~$04 IP, S> 

= -(g/&y) vy-$ (Pp -y qJ(Pv -y qv) w2 

. 
-* Epvap paqpw3+=w4+ qpv + PvqJ 

w5 

~~,~~~~q~)~v-;:v)+~v-~~v)j.y-~q~),v~ - ~ 

- + (qpsv+qv s/J v3 + 3 gpv - 
( 1 

q/AJ 

s2 

v5 

-s.q 
M2v 

i -- 
Mq2 [ 

q2c PV~P 
SDpp f (q E 

/A v5p6 - qv E/.mp6 ) s5$hs I G2 

i -m 
Mq (’ 2 /A %pG - qv E/np6 ) so;rDq6 G4 (2.1) - 

where s is the nucleon spin, M the nucleon rest mass, and Wi, Vk, and Gj are 

functions only of q2 and v (we are suppressing U(3) labels). 

._ 
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We shall take a standard form for the equal-time commutation relations 

of the octet currents VF, AZ: 

(2.2a) 

A~~Y~xo~yo + ~(~1, ~~~xo=yo = 2i S3(z--jf) fkem AT(y) (2.2b) 

(2.2d) 

+ %s t d&m V:(y)] f (gradient terms) (2.2f) 

Here k, 1, m are U(3) labels ranging from 0 to 8; r, s, and t are spatial indices 

varying from 1 to 3. The objects S and E? are Schwinger terms. 

The residue sum rules, like the more familiar fixed -q2 and scaling sum 

rules, will be seen to follow from the familiar observation that, for <. F = 0, 

S 
ca dvMtib= 

PO I-tv s d3y e 
.- - 

-lqay <p,sl 
-co 

-o IP9 s’ 
0- 

(2.3) 
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. 

where C ab 
W 

is clearly determined by (2.2). Specifically, isolating the kine- 

matically independent parts of (2.3) yields in general identities of the form 

s 

cd 
dv I&i, P) = D (2.4) 

0 

where D is given by (212) and I is a linear combination of structure functions 

with coefficients determined by (2.1) as functions of q,p. As in B, in what 

follows, we shall augment (2.4) with the following assumptions: 

1. B jorken scaling in the form of (AI. 1). 

2. Regge and fixed hadronic mass limit behavior in the form (AI. 2) - 

and (AI. 3)) respectively, 

3. Continuity in dynamics. 

4. Commutativity of x-integration and lim 
bj 

in the region x < -1, 

where the scaling limits vanish. 

With these assumptions, it follows (see B, Eq. (2.10)) .from (2.4) that 
\ 

D = lim 

[ 

s 
77 -c ‘/277M 

dv lim I - S dx lim 
v-Ilq;‘xL P) 

q--a 0 pa-m -1 X 
PO -* 

i 

1 S 
2p$ ‘/77M 

+ lim !i%i 2 
PO -ca pO dP2 jy-+ 

PO 

-42 2 2 

-I- S 
q pa/r M 

dq” 
-c’(l -~2M2/~2p;) 

i I 

where H is the asymptotic v - -03, p2 = @+q)‘-fixed form of I 

I -H 
V-+-CO 

p2-fixed 

(2.5) 

(z-6) 
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and R is the Regge asymptotic form of poI. Thus, for D constant, the leading 

residue sum rules occur as the coefficients of p; , y > 0, in (2.5). The (truncated) 

fixed -q2 and scaling sum rules occur as the constant term (in PO) in equa- 

tions like (2.5)) with the contributions’ of J=O Regge poles and of terms constant “-a f 
sii 

in the limit (2.6) naturally included. 

Our forms (AI. 1 and AI. 2) for the Bjorken and Regge asymptotic behavior 

of the structure functions are standard. The form (AI. 3) for the fixed hadronic 

mass limit is as suggested by the DGS spectral representation. 6 Let us again 

point out that theoretical prejudice would suggest that the residue functions - 

g i, (l! which characterize the fixed hadronic mass limit are in fact trivial. ’ To , 
repeat, this will not concern us here. 

Having made these preliminary remarks, we shall now turn to the complete 

set of residue constraints. 

III. RESIDUE SUM RULES 

As we remarked above, in general residue sum rules may be obtained 

from each kinematically independent statement of the form (2.4). We shall now 

systematically discuss these results. Since the results are quite numerous, 

many of the them have been relegated to Appendix II in the interest of clarity. 

In this section we shall only list explicitly those residue sum rules which derive 

from consideration of the familiar sum rules of Adler, 8 Gross-Llewellyn Smith, ’ 

and B jorken 10 in the context of the formalism of Section II. 

We begin by considering the O-O aspect of (2.2)) which is a convenient 

starting point for the derivation of Adler’s sum rule for W2. We have from 

(2.1) and (2.3) 



- _ 

and 

s 

co 

0 
&,? $(po+$ +& (~a$)/V;-v+~ Vi-’ 

4 -2 
“3 _ ;’ ,, 

(3.2) 

where gv and gA are the vector and axial vector couplings, respectively. 
‘,I 

(Remember, we have set ec= 0.) From (2.5) we obtain,for q2 < 0, “,, ,’ 

s 

03 
dv W2 v-v 

I 
M2i;; 8’ ‘+ q4i;‘;” 

0 q2-fixed , 

^2,2,0 ^l,l,O 1 1 F-v I3 
‘g4,o + 2g5,0 = 4gv (3.3) 

q2-fixed 

2 

(a-1) M 

-_ = 

q2-fixed 

a!Ee%? (3; 4) 

’ + q4i&‘,’ + ;;9;S” + = 0 , , , 
PO q2-fixed 

O<Yde% (3.5) 
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S 
co 

dV (2v1+v6) 
v-v 

1 
1 

0 q2-fixed +m 
+ 2;;>;>~-q2&1;1 

, , 

4A0, 0,2 Al, 3,1 
+q g12,o +g13,0 + 2g14,0 

l3 

q2-fixed 
= 4gA (3.6) ib 

.i _ *:: Ir 

.__-._,r, - .---., _i- .,“-r,rT--.. .I <, ^” *so.” _-.... ., 
,.-.__- .- .-...- --..-.- -.-. --~ ..-..-.----- ._. .__.______-... / 

1 
(s) 

ZAO,.l, 1 
q2 -fixed 

and 

= 0 , o! E c%f (3.7) 

. 
+o 3 1 

- q 
2^0,1,1 

g11,y + q 
4A-1, 092 + g18,; 

g12,y q2-fixed 

= 0 2 O<Y da? P-8) 

where the ii h are defined in Appendix I, 95? is the set of all leading conlrib- 
I 

uting Regge trajectory intercepts, and we have introduced 

EC-V i, o1 (s) = c;$-; (s) - 0(-s) < c;;; (q2) , i = 2,7,12 
q 

(3.9) 

In obtaining (3.3)-(3.8) we have used the standard inequality 

max9Z cl 
.^ 

as well as the result 

v3 - vv8 = 0 1 
which follows from posit& and the scaling behavior (AI. 1). 
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The result (3.3), taken together with the apparent validity of Adler’s 

famous result8 for W2, implies that 

co 

s [ 
2 ti2 

V-V 

= 03 
@O 

_q2~2~~~~‘l+q4~~~~,2+~~~20)o+2~gl:~,o 1 f q2-fixed 2% 
:+ 

(3.10). 

We turn next to the i#j aspect of current algebra. Proceeding precisely as 

above we have, for q2 < 0, 

s 

1 

0 
dx F?“(x)+-& {i 9tt2 k;: :*O]“” lq2 fixe; = 2g;B+y 

(3.11) 

S 1 
dx Fz'fx) ++ 2B+Y 

0 
s; &.t2 (;:;;o;' +~~;"~o)'+v 1 

pO 
, t q2-fixed 

= %A 

f-3.14) 

Mf~~J+-$$q2~~~ 4; ds “c$;Js) (@)“-’ -I- M 4; d/J2 (&;&” f &p&“)$q2-fixed = 0 

o!Es? (3.15) 

co 2 
s ( 2 * 

Al,O,O 

pO 
g16,y 

A1ooy+v 
+ gli’,;, 1 1 

= 
q2-fixed 

0 3 

o< Y #wJ~ , (3.16) 
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1 
* + 3iiT 

*1 0 
- M gG, 6 

2B+Y 
=‘gA 

(3.18) 

Here, we have defined I i 

Er;+v i 
, 
Q! (s) = ck+,v 

, 
(s) - f;;a ; 

01 
e(s), i=3,16 

, ( ) 

E2(v, q2) = G2(v, 4’) - c C o1 Ez 17, oJ(q2)vrr-1 

and 

p&v,- “4-x) F;;v+ c ,Ftv x---l , 

CYES 17,a zQ! 

(3.19) 

(3 L 20) 

(3.21) 

(3.22) -- 

(3.23) 

(3.24) - 

where the f. 
J9Q 

are given in (AI. 8) ; and, B(p) 6) is the Eulerian integral of the 

first kind. 
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In obtaining (3.11)-(3.20) we have invoked the standard Regge ideas l2 to 

conclude that the relevant sets 9?? of leading Regge singularities also satisfy 

ma.x8?<1 , 

just as for the isospin antisymmetric cases discussed above. 

The apparent validity of the sum rule of Gross and Llewellyn Smith implies h. _ ‘2 

(3.25) 

The polarization sum rules (3.14) and (3.18)) with El6 o, El7 o and the 
, , 

respective its set to zero, are recognized to be the familiar (formal) polariza- 

tion results of Bjorken 10 and Dicus, Jackiw, and Teplitz. 13 

Considering finally the i=j and O-i aspects of current algebra we obtain, 

for q2 < 0, the results in Appendix II in addition to 

1 
dx Fi-’ (x) I- $ s; a2 [g:: ;’ “]‘-’ lq2 fixed = 2;; (3.26) 

pO 

Mfi;; B(l-.,y)(-q’)++$ds 8;+(s) (@r-l + M(, #2[g;;$‘o]y-v/q2 fixed= Q 

ol$L%? (3.27) .- 

@P2[~yy-v~q2 fixed= 0 , O<Y B w ULR (3.28) 

(3.29) -- 

- 13 - 



00 

S N s-v 

0 
dv W3 xo dx -v-v 

q2-fixed - o xF3 S 

(3.30) 

S 
03 

q2 
ds C;;;(s) (@)o+‘+ MS; ~2~$$‘4”” = 0 , O< ac e B (3.31) 

pO 

(3.32) 

where x0 2 1 , 

- 

( 1 

o! 

%,a! 
(s) = Cl, J4 - e(s) f1 a + 9 

, 

, ots) = c3 o@) - e(-s) c3 ,(s2, - e(s) fg 0 9 , , , 
,i;-v 

$ F;-” = e(l-x) 3 x 
@I 

+c + f;-; x-o-l , 
o!~O 2 ’ 

(3.33) 

and 
2 

E3=w3- c c3 a(q2)va-1-e v+* c 
O<cYEa? ’ ( 1 0 

3,o(q2) v-l l .-’ 

Of course, (3.26) with gl o=O is Bjorken’s 
, 

lo sum rule for Fl and (3.30) 

is a properly truncated version of a formal sum rule for W3 first given by 

Adler. 8 

The reader will notice that throughout our discussion we have implicitly 

^a,b, c taken the respective functions gi y to fall off as ~1’ --c co fast enough that, 
9 



for ~20, 

(3.34) 

converges faster than l/P; as PO --c ~0 . The DGS representation6 taken 

together with the absence of terms like 

(1+x)-” , m>O, 

in the scaling limits for x- -1, for example, guarantees the validity of this 

assumption for if 1,16 whenever - 

a-b f (3.35) 

and for i= 1,16 whenever 

a-b + +c>2 (3.36) 

For all other cases, we make this assumption for convenience; it is trivial to 

relax. 

We should also point out that in truncating the residues as in (3.27), we 

are taking, without loss of content, for example, 

Cl,p) - Jg go cn fn s-co s (3.37) __ 

with fo=fl o. This assures the appropriate convergence of the integrals over 
, 

This completes our derivation of residue sum rules. The results pre- 

sented above, taken together with those listed in Appendix II, represent a 

complete discussion of such constraints. 
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IV. DISCUSSION 

The analysis in III may be taken to represent a strict interpretation of 

equal time current algebra sum rules. To connect with the work of previous 

authors, we see that we must set the contributions of the gi o’s to zero, even 
, 

after subtracting the Regge contributions. Although theoretical prejudice would 

suggest that the gi Q! ‘s are all indeed trivial, we see that the residue sum rules . . 
, 

would clearly suggest otherwise in many cases. As we have pointed out above, 

the correctness of the famous sum rules such as Adler’s for W2 may be inter- 

preted as implying the triviality of integrals over the respective gi ol. Of - 
, 

course, this is well known. 6 

Throughout our discussion, we have for the most part only isolated the 

nonvanishing functions of (PO, 7) in the vicinity of (00, m) in the current algebra 

identities. However, in principle, all independent functions of these variables ” 

may be so isolated. Specifically, the current algebra identity, for z. c= 0, 

S 
00 

dvI=D , (2.4) 
0 

where D is a number, and takes the form , asP 0 -co, 

c Ty P; + I” log PO = D 
Y 

(4.1) - 

where the lYy and I” are independent of PO. (We are using (AI. l), (AI. Z), 

and (AI. 3). ) Thus, we may conclude 

PO=D , 

rl=o , (4.213) ^ 

ry=o , Y#O - 
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Equation (4.2a) is the (truncated) fixed-q2-scaling sum rule associated with 

(2.4). The results (4.2b) and (4.2~) are residue constraints. In the text 

above, we have only discussed the cases JY = 0 and I’ = 0 for y > 0. The 
Y 

results for y < 0 would in general yield relations involving the derivatives -a 31 
i 

of the structure functions and, therefore, would often times require additional 

dynamical assumptions. For this reason, we have not discussed such con, 

straints here, although they would be straightforward to consider. Indeed, at 

several points in III above we have already implicitly assumed (for convenience) 
I 

the structure functions to be Idifferentiable in q2 almost everywhere. 

The development presented here clearly provides a basis for confronting 

all aspects of equal-time current algebra with experiment, since it has 

naturally given truncated (finite) versions of all conventional divergent 

formal sum rules. Perhaps the prediction of our analysis which is easiest to 

v-v check experimentally is the constancy in q2 of the residues C3 o C-V 

, and ‘16,O 

for q2 < 0. Unfortunately, there appear to be no candidates for the implied 

trajectories. In view of the work of previous authors, in comparing the 

truncated fixed-q2 and scaling sum rules presented here with experiment, one 

should clearly interpret any violations as evidence against the trivially of all 

g. l,o!’ 

We end by re-emphasizing that the residue constraints discussed here, 

specialized to situations where &constant S-limit residues are 

trivial, are very restrictive insofar as the form of the Regge residues is 

concerned. To repeat, it is this fact that gives the results in III immediate 

applicability, even though they are experimentally somewhat intractable. The 

analytic models presently in the literature have not been constructed with 

such restrictions in mind and, in general, are not to be examined seriously 
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in this context. However, clearly, any detailed model of inelastic scattering 

satisfying equal-time current algebra and assumptions (l)-(4) in II above will 

be subject to these restrictions. Such detailed models are under investigation. 
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APPENDIX I: ASYMPTOTIC FORMS OF THE STRUCTURE FUNCTIONS 

In this appendix we shall for convenience list the forms we shall employ 

for the Bjorken, Regge and fixed-p2, Y - - a0 limits of the structure functions. 

For brevity, we shall occasionally refer to the latter of these limits as the 

constant S-limit. 6 We list first the scaling behavior, which is well known: In 

the limbj, 

M(W1, G1) - tF1’ F4 

v(W W V V V V V G G)-(F 2’ 3’ 1’ 3’ 5’ 6’ 8’ 2’ 4 2’ 3’ 7’ 9’ 11’ F12’ F14’ Fi7’F19) F F F F 

(~2/MW4>W5J7) - P4, F5s F13) (AI. la) 

For convenience, we also take each structure function T to have a Bjorken 

expansion of the form 

T+ 2 t,(x) P 
limbj n=O 

Let us note that (AI. la) deviates slightly from the convention of paper (A) for 

F16’ . . ..FZO. 

We list next the presumed Regge asymptotic behavior, which is, of course, 

also familiar. In the Regge limit we have the standard forms - 

wi - C ‘i Q(S2) vQ! 
a>0 ’ 

3 i=l,4 

w2- o!>o c Cz,-Js2) IF2 

wi - C ‘i .(q2) V Or-l 
a>0 ’ 

i=3,5 

- 19 - 
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i=3,5,7 

i=l,6,8 

Gk -c 
COO 

‘Is+& $6 Ita-’ k=2,4 

In the fixed hadronic mass, Y - -to l&it, we first define6 

w1 - q 81 ,l?c2) Iv IY , 

wi - C gi y ~2) I Y Iy-l 
Y ’ 

wi - ,3 gi ,C2) IV ly-2 
Y ’ 

V j - Tgj+6,yM2) It~l’-’ 

G1 - g ‘16,yb2) Iv IT 
‘ 

i=2,3 

i=4,5 

j=l,3,5,6,8 

Gk - cg 
Y 

15+k,y N2) Iv I’-’ k=2,4 



For the derivation of the sum rules it is then convenient to introduce the functions 

( $‘T’ n@2, $2)) defined by 

(AI. 4) 

where P&h) is taken from (AI, 2): 

I 
3. , k=J, 16 

p (k,A) = h-l , k= 2,3,7,9,11,12,14,17,19 (AI. 5) 
h-2 ) k=4,5,13 

We shall also use on some occasions the functions g+. ’ A k m,n 
1,Y 

defined by 

In (AI. 3) we are taking <.c= 0 and qo, q2, and v are all on the qi-branch of 

q. (x9< PO) defined by 

q;(x,?ii PO) = [-x - (x2+c2/P;)1’2] PO 

Of course, we are presuming that (AI.4) and (AI.6) make sense. 

Finally, it is also convenient to introduce as q2 -00 

(AI. 7) 

- 

i= 1,3,9,11,16,17,19 

i=2,7,12,14 

‘i,a(q2) - fi o1 + 
al-1 

0 
p i=5,13 , 4 

(AI.8) 

C4,$12) -fq a + 
CYI-2 

- , 
0 4 
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APPEND= II: CURRENT ALGEBRA RESIDUE CONSTRAINTS 

In this appendix we list the complement of the residue contraints presented 

in Section III of the text. 

From the i-j aspect of (2.2) we have, for q2 < 0, 

q2 -fixed q2 -fixed 

(AIL 1) 

1 f- 
q2-fixed 2M 

-l,O,O 
12,l T M 

q2-fixed 

-/ 

1 
F-u $f F12 = 0 

0’ 
(AK 2) 

t M2 fy-,v (-q2)(1-01)‘2 
, 33(2-o!, a+) 

+ 2 
5 a 

LJ tq2) (g )@-w 

(~r-l)M~-~ ’ 

+M 
q2-fixed 

= o , 

i= 7,12 (AK 3) 

q2-fixed 

=. , 
O( Yk{l)Uiz (AII. 4) 
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q2-fixed= 
0, Og’k{l) u&3 (AIM) 

/ 

1 

2 dx F;iV (x) wL6) 
0 

a-’ + M fi;;u, B(l-a, + ) (q2)’ 
, 

where 

z5 Q-1 
C. 

I,@ = ‘i, (y(‘) - ’ (“) ‘i ,(S2)’ - ’ (‘) fi ~ (~) , i=7,12 , , 

(AIL 8) 

(AIL 9) 

-. 

(AIL 10) 

From the O-i aspect of current algebra we have the results in B and, in 

addition, 

(AIL 11) 
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- _ 

& /;2 J;2 [$ ~2,a(9) (+$)@-2 +M C5,$s)( y)@]‘-’ 

- w (-q2,2M2) “z ’ C;,-; (q2) 
-- 

--il 2 
i -sit 
_ >Y? 

= 0, crEei%, 
q2-fixed 

(AIL 12) 

ih = (j, 0 -c Y&3?, (AIL 13) 

where 

c 2,a@) = c2,(y(s) c and 

1 p(Ly-1)/2 
* 4(Q) = dP -1 ; 

0 <P-2? 
(AIL 14) 

fhJ 
11,o = O (An. 15) 

r” co 
V+v 

dv &(2Vl + 2x v3 + V6 - V8)lq2 fixd - 
0 0 - 

1 
+%a 

I 

(AIL 16) 
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where 

,i;+v 
6(1-x) 11 tx) x 

-2 (?C 
S2 

7,&s) * C12,(y(s)) :+ +f cg, Q(S) + 3 C14, Js) 

^-l,l,l F-W 
f g 14,a! 

I 
I 

= 
q2-fixed 

0, O<o!Es? (AIL 17) 

C+V 

I q2-fixed 
=o. , 

O<Y83% (AIL 18) 

q2-fixed 

(AIL 19) 
where 2 is the Schwinger term defined in Eq. (59) of paper A, for example, 

q2-fixed 

= o, 
0 < y , (AIL 20) 
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p+v =o 
19,o (AIL 21) 

co 

dv $+‘I 
q2-fixed 

s- 2 

cy c17,cl! - s c19 cb! Y I 

;I+lJ 

i 

co -V+V a0 

+ F19 
&---r- 

1 
+2M 

0 i [ 

2 cFG2 q2 P;,“:,“” _ ~i~y~yl~ v+v 
Y 

pO 
J 

(37 a - ts - q2) c Y 

q2-fixed 
=o, 

= o, 
q2-fixed 

O<Y +a 

where 

:- 
G2 = G2- c C 

acL?a 
17,Jq2) zF1 , 

and 
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(AII*-23) 

(AIL 24) 

0 "3 
q2-fixed= ‘4% 

* ..F 

(AIL 25 ) 

- 

(AIL 26 ) 

(AIL 27) 



h=O , (AII.28) 

where h is the Schwinger term defined in Eq. (74) of paper (A), for example, 

/ 
to 

q2 

ds C~&(s)(@ja-zi M21W w2 b:;;; 03;~’ lq2 fixed = 0 , 

pO 

o-co! EL?2 

f16,0 = -c16,0(q 
2 

) 

where x0 2 1 , 

“G =Gl- c C 
-1 cw>o 16,tdq2) ya - 'tv + q2i2-,) ‘16, Od) , 

p F;;’ = p-l , 

and 

(AIL 29) 

(AII.30) 

(AII.31) 

(AII.32) 

3 16, O@) = ‘16 Ots) - ‘6’) c16,0tq2) - e(s) f16 0 ; , , 

v-v 

I 1 

.- 
^O,l,l 
%l,l 

^O,l,l A-1,0,1 
- %3,1 - %4,1 

q2-fixed 
= 0 (AII.34) 
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co 

1 [ 

ds!z 
s s 

0 
G7 , Js) + Cl,, Js) S -- 

q2 
14, ,(s)PV +g ( > J- a-3 

s-q2 J--- 
a-1 

E v-v 
- (cll+cl3) 

( )I 
M 

O<o!EB (An. 35) 

*-l,O, 1 v-v 
- %4,y 1 I =O,j O<ye'L@ J{lt, 

q2-fixed 

(AII. 36) 

1 
5-U I 

7 a!@)+%2 , , a! , 
a(q2))F-v 

Cp (a) t-q2/2M212 + f;-&M2B(k$$) (-q2)’ 

(AIL 38) 
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=o, 
q2-fixed 

O<Y B (l)U@lII. 39) 

03 1 co .._ 
v-v dv Vl I & F9”-, + & ;;l;O, ‘+$, ;, 0 ‘-’ 13 

“a 1 I :. 
q2-fixed = , , 4gA 2, : 2% a, 

pO 

co 

J [ ds & 
a-3 

cl2 
MS 7, a@) +$ r-J GiJ 

a-l 
6-U 

-($$) c7, ,e12) W) (-s2/2M2) 

olEL%? (AIL 41) 

q2-fixed 
=o, O<y<B{lpJ@? (AIL 42) 

(AII. 43) - 

q2-fixed 
=o, owe? (AIL 44) 



where 

‘i, a(‘) = ‘i, (~(‘1 - e (S2/2 -S) 4J Ci, ,(q2) , i=7,12 
q 

‘i , (y(‘) = ‘i qts) - 8 (Cr2/2 -S) Ci, ,(q2) , , i = 7,12,14 

c,, &9 = cg op) - 0 w fg $)” , , 
E = 54 Js) - eta f14 

M a-l 
14, CL! , , ~ -g- ( > 

(AIL 45) 

and $(a) is defined in (AIL 14). 

The results listed in this appendix, liken together with those listed in 

Section III, represent a complete discussion of current algebra residue sum 

rules. 
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