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I. INTRODUCTION

This paper studies the time-delay problem as it occurs in three-body
séatteri‘z:g. 1 Roughly speaking, the time-delay effect is the advancement or
retardation of wavepacket motion due to the presence of interactions not contained
in the asymptotic Hamiltonians. In the following We first give a rigorous definition
of multichannel time delay. This definition is an extension to the multichannel
case of the one employed by Goldberger and Watson. 2 Using then Faddeev's3
results in time-dependent scattering theory, together with the primary singularity
structure4’ 2 of the exact stationary wavefunction, we construct an explicit solu-
tion of the time-delay problem by following an approach similar to Jauch and
Marchand's treatment6 of two-body time delay. Specifically we obtain a relation
between the time-delay operator and the different S-operators and their energy
derivatives, that is valid on the energy shell. It is the proof of this relation that
is the main objective of this paper.

The physical ini;erpretation of the time-delay operator we define is only
touched upon very briefly. Because of the controversy that clearly exists already
for two particle time-delay regarding the different definition, 2,6,7 which might
or might not be equivalent, 8 that are given in the literature, and because of the
length of the present paper, we like to discuss the physical aspects of the problem
elsewhere.

Thigs paper is organized into five sections. Section II introduces those
features of three-body ’gime—dependent scattering theory which are necessary in
this problem. In Section III we define a set of reduced S-operators which have an
explicit energy dependence because the solution of the time-delay problem cannot
be expressed directly in terms of the usual S-operators. In Section IV we

construct the time-delay operator starting from first principles and state the
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problem we want to solve. Section V gives the main body of the derivation of the
time-delay relation. Finally, Appendix A contains a discussion of the projection
dperatgrs and their momentum-space representations. Appendix B collects some
of the details needed in Section V. Appendix C discusses a class of terms which

vanish and do not contribute to the result derived in Section V.

T
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I. TIME-DEPENDENT SCATTERING THEORY
This section gives an outline of the aspects of three-body time-dependent
tlieory that are necessary in the analysis of our problem. The physical scatter-

ing problem is taken to be that studies by Faddeev, namely the scattering of three

L]

distinct nonrelativistic particles interacting via short range forces. Furthermore, o
the interaction in each two-body channel is assumed to be such that there is only
one two-body boundstate.
Let us briefly describe the coordinate systems we employ. After the center-
of-mass motion has been eliminated from our problem there remain six degrees
of freedom. In coordinate space we choose the Jacobi Variables9§a ,37& to
describe these. The variable —)?oz is the separation of particle ¢ from the center-
of-mass of the (By) cluster. The independent variable S;oz gives the vector
separation of the constituents of the o cluster namely the spatial separation of
particles g andy. The canonically conjugate momenta related to ;oz and ?oz are
denoted by f)'a and Ea‘ The momenta E’a describes the relative motion of particle
« and cluster . The kinetic energy of this motion is given by 52/ 2na where
n,=m, (mB+ my)/(ma+m3+ m,y) represents the reduced mass of particle a and
cluster «. The internal momentum of cluster ¢ is just Eoz' The kinetic energy
associated with this motion is ?fj/Zua where B, = Dpm /(m

By "B

reduced mass for particles g and vy relative to their own center-of-mass system.

+my) is now the

It is clear that we have three distinct (@ =1, 2, 3) Jacobi coordinate systems each
of which provides a complete description of the degrees of freedom.
The behavior of any physical system is determined by its Hamiltonian. The

free Hamiltonian related to the total kinetic energy is given by

72 g2
HO=-2-;10L+-2-‘19‘- , @=1,2,3 . @.1)
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We shall employ an abbreviated notation for these kinetic energies, viz.

p 2 qa 2
~2 o ~2 o

. p T emmeme— , q = evmer— (2. 2)
o 2na o 2“01

The right-hand side of Eq. (2.1) is independent of the index @. We shall take
notational advantage of this invariahce of H 0 by frequently omitting the « label.

There is a similar invariant quantity in coordinate space. If we define

~2 —2 ~2 —2

X, = 2na X, o Yo ° 2“01 Yo (2. 3a)
and »

~2 _ ~2 A2

p=X, + Yo (2. 3b)

then p is a coordinate space invariant for all .
The complete Hamiltonian is then obtained by adding to H 0 all the interactions

possible in the system. So for the system Faddeev studies we get
A% (2.4)

where Va is the potential acting between the particles g and y. The Hamiltonians
H and H0 are operators acting in the Hilbert space of square integrable functions
of our six degrees of freedom, i.e., LZGSQ, Tfa). We shall denote this Hilbert
space by #, the inner product related to # by ( , ) and the identity operator on

Z by E. Acting on #, H, and H are both self-adjoint operators. 3

0
We next want to consider the different kinds of asymptotic motion because
these will finally specify the solutions of the scattering problem. Because of the
short-range nature of the forces we may expect that as t —+« the three-body
problem is characterized by freely moving clusters. We have two distinct types

of cluster motion. First, there are three possible cases of motion involving two

clusters, each of which can be labeled by the index o, indicating the particle
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that moves in isolation. Secondly, there is a single motion involving three
clusters, labeled by the index =0, namely when all three particles move inde-
i)endeﬁtly. With each cluster description of the asymptotic motion there is an
associated asymptotic Hamiltonian, determined by including all the intra-
cluster potentialsvand omitting the inter-cluster ‘potentials. For the two-cluster
type of motion these Hamiltonians are given by

H,=H +V, . (2.5)

For the three-cluster motion the asymptotic Hamiltonian is clearly HO'
At this point we recall that each two-body interaction is capable of supporting

only one boundstate. We shall let Z’ba(EQ) be this unit normalized two-body

boundstate wavefunction in the space of square integrable functions of a.oz’ i.e.,

Lz(?fa). The corresponding boundstate energy is —XZ' So we have

~2 2 _
(q'OZ +VOZ)¢(I - —onl/)a/, 06—1,2,3 » (2-6)

The symbol A represents the potential found in the two-body problem involving
the particles § andy. As we know Voz and v, are integral operators in momentum

space whose kernels are related in the following way

V (PG Py Al) = Vo (4, 4" 6(B,-PY) (2.7)
Because of this fact that there is only one boundstate for a pair, each of the
different cluster geometries will specify a scattering channel. We now want to
describe the wavepackets that characterize the asymptotic channel motion. Let
us consider, e.g., the a channel (¢#0). The cluster (By) will be described by
the boundstate wavefunction z/)a(a'a). To describe the relative motion of @ and

the center-of-mass of the pair (3y) we shall need the appropriate wavepacket

indicated by foz(f;a)' In effect this function foz is like a two-particle wavepacket

-6 -
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expect that one of the particles is a cluster. So for foz to be an acceptable wave-
packet it must lie in the Hilbert space of square integrable function of 'Ea, i.e.,
'LZ(EO; which we denote By Aoz' The inner product for this space will be ( , )a
and Eoz will be the identity operator. So the a channel motion is described by
fa(ﬁa) zpa(?fo[) and since Yy is a known function,- all the nontrivial information
about this channel is given by foz' For the three free particle cluster we have
all six degrees of freedom present and the related wavepacket will have the form

fO(—I;’ _c.f). The space for fO will be Lz(f;, q) = #4,, its inner product ( , )0 and

0’

its identity EO' Of course, #4, is mathematically identical with 4.

0
It is useful now to construct Hamiltonians that act in those channel spaces
Aoz' These new Hamiltonians are suggested by utilizing Egs. (2.5), (2.6), and

(2.7) to get
H £,(5,)4,(T,) = GL+a+V ) £ (B,)0,(d,)

o2 2 — —
= (B, ~x2) 1,(B,) ¥,(d) >0 (2.8)
Eliminating the multiplicative factor Zpa(a»a) we are lead to define the channel

Hamiltonian ﬁoz by
Bt =(o-x)i,ch, . a>0 (2.9)

For the a=0 case the channel Hamiltonian ﬁo, does not differ from the asymptotic

Hamiltonian H 0 Thus

= 2, 2
Hofo = +q") fO € ﬁo . } (2. 10)
We then introduce a single Hilbert space to describe all these possible

asymptotic motions of the three-body system. This space, denoted by Z, must

clearly be the following product space

A:AO@41@42®A3 (2.11)
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The inner product of 4 will be ( , )., its identity will be E. This inner product

is given in terms of previous inner products as

-

(2.12)

3
' =
(£, )., O;O (1),

An important remark we have to make here is thét for multichannel scattering
this Hilbert space describing free asymptotic motion, namely Z, is different
from the Hilbert space describing the exact solution, namely 4. So, if the
channel functions fa are set in 4 by writing fazpa then the channels are not
orthogonal viz. (fazpa,szpﬁ) #0 (a,B>0).

To conclude this part, we first define a projection operator Pa from 4 into
%4 by

Paf = fazpa € A a>0 (2.13)

The subspace associated with the range of Pa consists of all separable functions
in —f;oz and Eoz where the function of Tfa is zpa. Secondly we define an operator

I from 4 onto 4_ Dby
ol ol

1i=1 ¢4, - (2. 14)

We now turn to the discussion of the Moller operators US) which are the
basic elements of scattering theory. Faddeev's wo:r'k3 establishes that US) may
be constructed from the solutions of a Fredholm integral equation that contains
the same physics as the three-body time-independent Schrédinger equation, with
the supplementary advantage that the boundary conditions are built into the
structure of the equatic;n.

The U((j) operators which map /’oz into 4, have the following three properties:

M- ®

1°. USE)TUB g D g Ay, 2. 15)



3
hed N = | 't A R, .
2. ) Uo‘l’Ua =E-Py4 s h— A (2. 16)
a=(0
Y &) - g@) . 17
3. HUa —Ua Ha Dy (2.17)

We shall refer to these basic statements as the fundamental theorem. Property
1° is a statement of the channel orthogonality of the exact wavefunction solution,
when a=p it becomes a statement of probability conservation. Property 2% is

the asymptotic completeness of the exact scattering states. P d is the projection
operator onto the subspace spanned by the eigenfunctions of the discrete spec- _
trum of H. Property 3° is the intertwining property and states that the exact
wavefunction will have the same energy as the incident wavefunction, i.e., energy

conservation. Furthermore the function <3aa>a IUS) Iff&> has the following

structure:
<p,d lU(i)lp'> =9 (q )6(p,-pP!)-<p_ ¢ lK(i)lp'> (2. 18)
o T o o 04 o (84 (¢ o T a7 [e’] )

The first term on the right represents the unscattered portion of the wavefunction.

The second term is the scattered wave and can be written as

o q ® =
<p.q l&B"Ip!'>
= = &), TaeteToa fa
<paqa IKQ lpa>_ ~2+~2 ~'2+ 9 :]:10 (219)
p +q “Pa Xa
where
3 ¢ (9.)<p I-z’f( Ip!>
= = plE) =y = ) (= 'Yq'Y Y _ya "o
<pozqoz|‘730alpa> - Z <pozqozlgya 'pa>— ~2 2 e~ 2 2 (2. 20)
r=1 P, = X~ Py, + g, Fi0

)

Here the functions <p_ g I@( Ip! >, <p. L%’(i)l—*‘ > are the half-on-shell
a o Tye ta aya' Py

solutions of the well-known Faddeev integral equations10 viz.

— +),— - - ~2 2 .
<, W 15> = 5, (B B s By - x5 %10) (2.21)

Yo ove
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12 XZ:’:iO) (2. 22)

— ——b.—b"N
ya(Pyr 43P Py

q'ylm( )lp'>“@

The function ¢‘Y is the vertex function defined by ¢'y(a:y) = ( (33+ X?,) zpy(?q;/).

the same way, the wavefunction for three to three scattering is

<Pylq 1Ug "I P d),>=6(q,- o) 3(Py=Pg) - <P, d, 1Ky Ipd.> (2.23)

where the matrix elements of Kgi) are related to Faddeev's M operators?”5

ap

g Ik prgr .22 o ¢ 2. 24

<Pg Ky T1Ph44> " 5 vo? w2 o2, o 224
P, td,, ~Pp, ~dp i

3 3t 3 32+ 2.25

<Py, T 1DLaL>= Z M, B(p&,qa,paqa,pam i0) - (2. 25)

In concluding this section we recall that Faddeev proves the above described
results with the assumption that the two-body potentials satisfy a boundedness
property and a Holder continuity requirement. Using these assumptions, e.g.,

the half-on-shell two-body t-matrix satisfiesll

146

<T@ 5 >| < ¢/ + 1B-F) (2. 26)

<+ AT 1t 15 AT - T s < o/ 15T 0 [1aT 1Y + 14511
(2.27)
where |AD| <1, [Ap'l <1 andp may be taken as close to 1/2 as desired. In
our time-delay proof we shall have to construct derivatives of the half-on-shell
amplitudes with respect to the momentum arguments. It is clear that the esti-
mate (2.27) is not strbng enough to claim that <p | t(i) I P> is differentiable with
respect to p or p'. We have not investigated the necessary modifications needed

to ensure differentiability of t(i) and the other half-on-shell matrix elements
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:/(’S% , @f}? , T(i) . However it is likely that the original potential must be

differentiable and that this derivative of the potential must also satisfy a Holder

-

continuity requirement.
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III. REDUCED S-MATRIX ELEMENTS

In this section we describe the essential features of the S-matrix and intro-

-

duce the reduced S-matrix elements needed in our derivation. The S-matrix is
defined to be a mapping between the initial experimentally determined wavepacket =
foz and the observed post-scattering wavepackets f!,. We know3 that, in terms of

B

the Moller wave operators, this mapping looks like

= Ug’)TUé‘) £, (3.1)
So
So = Ug)TUO(;) hgy — g (3.2)

This S-matrix is even simpler when written down as an operator on the asymptotic

channel space AA In this case the information in Eq. (3.1) can be expressed as

fr = f D h— A (3. 3)

Let us now recall the basic properties of the S-matrix because it will turn
out that the time-delay operator has properties which parallel those of the
S-matrix. The first basic property of the S-matrix is that it is a unitary operator

when acting on the channel space 4 viz.
sls = ssT= & | (3. 4)
In component form the equivalent of Eq. (3.4) is
.
go sm SYB = Eﬁéaﬁ . ’ (3.5)

This unitarity is an immediate consequence of the statements 1° and 2° in the

fundamental theorem.
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The second basic property of S we want to stress is the intertwining prop-

erty with the channel Hamiltonians ﬁa’

- S H =HS . (3.6)
This intertwining feature is the direct consequence of statement 3° in the funda-
mental theorem.

We now shall turn to the definition of the reduced matrix elements of S. In
order to carry out this definition we first require the known4’ 0 representa-
tions of the kernels of S in terms of T( ) 7)’(3) d g f( ,[é introduced in Section

II. For a rearrangement scattering process one has,

- 3
aﬁ(p ,pB) saﬁé(p pB) Zmé(p x -p! +xﬁ)<p \H g1 B3> B.7)

The S matrices involving three free particles in either the initial or final state

are given by

T aT202 M2 20 e (4)
SoplP> A Pg) = -2l Ap+q pB+xB).<pql$06IpB ; (3.8)

and

A gl = o s 2 2_“’12 ~ 2 (+)
S0Py P> d") = -2m 0~ -p'“-a'%) <p 1B,/ 1D'q"> . (3.9)
The amplitude @’(-") is related to 93(-) b
a0 oa Y

l%’()lpq>—<pqle%’()lp S (3. 10)

The * indicates complex conjugation. Finally the three-to-three S-matrix is

—

Spo(B TFT) = 8(F - §T-07) - 2m 60+ b -3 B 1T 157G >
(3.11)
We want to construct S matrices related to the expression above but with the
energy delta function removed. We will use a lower case s to denote these new S

matrices. Consider, in the first instance, S__. Defining E = 52 —xz and

apf o ‘o

_13_



E' = p'B2 - XZ and employing the relation,

5(E-E") 6(p_-DL)
- /5 (3.12)

ap”tPap " Pap ngPp
we may write Eq. (3.7) in the form

S(E-EY
(0P, nGPY)

S (P By = 75 (3000 Py - 27 @R ongo % 5, 125 1515

(3.13)
In these expressions f) indicates the unit direction vector associated with 3
Thus we are lead to define Sy ,B(E) by - )
~ Al A A i 1/2 — +) =
<palsozﬁ(E) lpé> = 5a[35(poz—pé) - 27 (napaan'B) <P, l%aﬁ | pé> (3. 14)
The energy dependence E appears on the right-hand side of Eq. (3.14) by virtue

2)]1/ 2. The kernel

<§a ! S, B(E) If)é> represents an operator that will map square integrable func-

of the fact that P, = [Zna(E+ Xil)]l/2 and pﬁ = [ZnB(E+X

tions with respect to the measure dﬂf" , i.e., Lz(f)b), into Lz(f)a). When o=

B
the leading factor on the right of Eq. (3. 14) is the identity operator on the space

Lz(f)a). The energy dependence indicated on the left of Eq. (3.14) means that

for each Soz operator we have a one-parameter family of operators S, B(E).

B
We consider next S matrices involving three free particles in the initial

or final state. The kinematic relation E = §i+ai suggests we define the angle

W, such that

pazJEcosf‘;a, qa:\/—Esinw , 0< w < (3. 15)

o o

] BS

Using this convention the six-dimension delta function appearing in (3. 11) may
be written

8(E-E") 6(w,,~w!,) 6(p,~D") 6(d,,~al)
172

5(P,~pL) 6(d, -q') = (3.16)

] 1]
paqapaqa(ua n,)
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Using then Eq. (3.11) we find that the reduced matrix operator s OO(E) is

<woPoly 1809 (E) lwgPpay> = olwg-wh) 5(0,,-PL) (d,,~ql)
3 — = @) T
- i 1 1 1
2 7 (1, VP, q,pLa!, <P d, 1TV I'pLdl,> (3.17)
Here the operator s O(E) takes a function from L (w ,q ,p ) into L (woz’ Aa,p ).
In this case the Hilbert space is defined relative to the measure
1 3/2 2 .2 AA . .
—2-(211012110[) cos” w,, sin- w, dwa dpadqa. This measure is independent of

o. From now on, we will denote this space by Lg and Li will indicate the space
2. . -
L°®,)-
The reduced S-operator related to S 08 and Soz o are defined in the same way,
e.g.,
<w D a | $04(E) l]f

(8’4
(3. 18)
/ 4p a (nﬁpﬁ)l/ 2

—_— —— :—», = _ "
Sop(Por9giPg) = O(E-EY
ko)

and, using Eq. (3.8)
<w p q'ylSOB(E)IpB -27 1(u n ) p,yq,y(nﬁpﬁ) <p,yqy L%( )lpB (3.19)

where P, and q, are the momenta determined by E.
The momentum and reduced mass factors are chosen such that the operator
relations S obeys on #4 are also valid for s(E) on a reduced space. To illustrate

this consider the kernel form of the unitarity Eq. (3.5) for a,58> 0
"o * g
6% (ByBY 60~ }: J 510 5% 8, (B 5y a5

+f80a(pgl,q'&;pa)* OB(p“ q“- Pp) dp" q" (3. 20)
If we now use

1/2 112 112

dp” dqn — (n “ ) dw" dp”dq” (3.21)

-15 -
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together with Eq. (3. 12) and we equate the coefficient of §(E-E') appearing on

both sides we obtain for Eq. (3.20)

Sap o6, -} = Zf<p"ls ()15, > <Py ls, o(B) Ipf> dpy

+f<wglpglq'o'lls0 (E)lp > <°’"p"q'o'z'sog(E)'5k> dw!t df)"& ar  (3.22)

This result is the kernel form of the operator equation

E S B B B(E) . (3.23)

A similar demonstration shows that this equation is valid for all values of @ and
B. The operator 1a stands for the identity operator on the space LZ, 10 is the
identity operator on L(Z).

Note that we can introduce a reduced channel space defined by

A~

.2 2 .2 2 :
4, =Ly @ LOL,OL; . (3.24)

Acting on this space, the Eq. (3.23) is the component form of the first part of

N

1 = sTE) s@® =s® s'® . (3. 25)

where 1r is the identity on ﬁAr. The second equality here is obtained in the same
way as the first. Clearly Eq. (3.25) is a one parameter family of operator rela-
tions on /;r which are equivalent to the relation (3.4) on the channel space 2 It

shall turn out that the three-body time-delay operator will also have two forms—

one on 4 and one on /'r'
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IV. DEFINITION OF TIME DELAY AND STATEMENT OF THE PROBLEM
Let us now describe the definition of the time-delay operator. Consider
the eXact wavepacket given by

-iHt

T = Ug)fa B € hgr o0 € 4 (4.1)

e AR
i

This is the wavepacket that evolves from the asymptotic channel wavepacket

foz . Likewise consider

v = e HE (=) g1 foe dy WL < 4

B B B~ 7B
/2

If we recall that S = (§i+§z)l is independent of @=1, 2,3 then we can use the
distance ,; to define the radius of a sphere in the six-dimensional space ;;oz’g;oz .
We will associate a projection operator §’(R) on # with this sphere,

211/25.

_— — — _ — — . ~2 ~
'@(R) f(Xa,ya) - f(XOZ’yCK) 1f IXCE+yOZ R
=0 . if |§2+§2|1/2>R (4.2)
o ‘o ) )

The inner product ( \Ira(t), PR) ﬁfa(t)) is the likelihood of finding the state ¥,

inside the sphere of radius R at time t. Now if we form the integral

t —
[ 2w, 2@ v 0 a (4.3)

0

its physical interpretation is the fraction of time between -t and tO that the

0

state \Ifa spends inside the sphere of radius R. If we perform the limit tO — o0
then the integral represents the fotal time \I'a spends inside the sphere. In
association with the integral above we can form the more general integral which

gives the overlap within the sphere of two distinct states \Ifa and ¥ . We define

B

t
T pB,t) = I tO o0, P®) ¥y 0) d (4.4)
0

~17 -



In the notation for the complex number T}OE[ we have indicated some but not all

B

the factors that it depends on. For example the value of Tg will depend on

B
f andf' aswellas Randt . In the circumstance o= and £ =f' then TE
« B 0 a o af

is real and has the interpretation we have given for the expression (4.3). Our

notation for Tg carries a superscript E in order to specify that the times

B

associated with T]‘i relate to the exact wavefunctions ¥ (t).

B

We may also write down similar definitions that pertain to the evolution of the

asymptotic solutions in the absence of the intercluster potentials. For example

these wavepackets are given by ) -

-HE

3, =e 1, f,o€ by, B0 €k (4.5)
-iHgE

(1) = e Tty fhe hg, @) ch  (4.6)

The absence of the intercluster potentials means thatthe corresponding evolution
. may be thought of as 'free' since the interaction between the target and the
incident wave has no effect on the evolution of the wavepacket. The 'free’

equivalent of the integral (4. 3) is

. |
[? @,0,7@ 0,0 (@1
_to

This gives the fraction of the time interval (—to, to) that the 'free' system spends
in the sphere. The numerical value of the 'free' integral will differ from that
of the integral for the exact wavepacket. This time difference is entirely due
to the effect of the intércluster interaction on the evolution of the wavepacket.

As above we write down a general matrix element that has the form (4.7) as its

-18 .
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diagonal element.
t —
TRt = 05 f_to(%“)’ P®) 8, dt (4.8)

The Kronecker delta function appears in the definition (4.8) of the free transit
time for the following reason. In the o channel free scattering there is no
interaction between the target cluster and the incident particle. Thus any scat-
tering which begins in the a-channel must remain in the a-channel. Since the
asymptotic forms @a (t) and @é(t) are not orthogonal, the Kronecker delta is
necessary to preserve the diagonality of the free scattering. Taking the s
and Tg

difference of Tg gives us the time-delay for the time interval (-tO, tO)

B

and a sphere of radius R.

B

Now we would like to construct an operator whose expectation value gives

us the time-difference described above. We define

E F )
1 = -
(fOl’QOZB(R’tO) fB) - TO{B(R’tO) TOZB(R,tO) (4'9)
For each f and f! the quantities TE and TF have unique values so that
a B ap ap

QOK.B(R’ to) is defined by Eq. (4.9). Itis useful to have an explicit form for Qa,B'

This may be obtained as follows. One can write Tg as

B

TF
o’

t (—iH t -iH t
_ o, ety 3 8 T,>
B(R,to) 5a6Ito e Iafa, PR) e IBfB dt

t Y -t
_ 0.1 o = T B ,) 1
%BLO (Iae t,, P®) IBe fB qt (4. 10)

fto it _ -iff g )
— 1
=644 / (fa, e 7, ®R) e ) at

where the operator joz(R) is
_ _ 5 T .
ga(R) = Ia ZR) Ioz A, b 4.11)

- 19 -
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From the definition (4. 11) it at once follows that @a(R) is a bounded self-
adjoint operator. It is however not a projection operator since the idempotent
property is not valid. This is seen from
-1-2 = P T 7 T . —_ g
?a(R) = Ia PR) Ia Ia ZPR) Ia D n A
4.12)
-1 & Z(R) 11
= Ia PR) Poz P(R) Ioz
where we have used IL Ia=Pa which follows from the definition of Ioz’ Eq. (2.14).

However in the limit R — « then @Z (R) becomes the identity operator Eoz since

P®R) — E and

I EP EIl =1 P Il =11 =E
o o o o o

oPols (4.13)

o
The last equality again follows from the definition (2. 14).

We continue with the explicit construction of Qoz by treating Tg 8 ina

B

fashion parallel to that of ’I‘]‘; g The term Tg can be written'as follows

B

t
E _ (0 [ -iHt . (-) Py e HHE (=) g
TaB(R,tO)—L (e UE L PR)ETT UL )dt

B B
t -t -iH t
(o (o et o T )
It (Ua e By PR U e P )t (. 14)
0
t ( +il t -iF t
_ &' (T Sy (0 B >
fo £, e Uy’ P@® U e fBa dt

In the second version of (4.14) we have employed the intertwinning relation 2°,
In the third version we have employed the adjoint operation. The difference of

Eq. (4.10) and Eq. (4.14) is

t iff ¢ -if t
o [0 o [ (9T = (- > B o
(fa,QaB(R, to) fﬁ) = j:t (fa,e [Uoz W(R)UB - 6aﬁ%(R)] e fB> dt
0
(4. 15)
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This defines the operator Qa B(R’t The expression above is defined for all

O)'

f € Aa and !, € £, since all the operators in the inner product on the right

o B~ B

are bounded and the integral is over a finite time interval. So the operator

QO!B(R’ tO) given by %

iH -iH t

t t '
QaB(R’tO)z.[tO e ¢ [Ufy‘”@(m Ué“’- Sup yam)]e B at (4. 16)
0

is a bounded operator for finite R,to.

Eventually to obtain the physical time-delay we will take the limit t

> 00

0

and follow it by the limit R — «», However, some of the interesting properties

of the time-delay operator are already present in form (4. 16). First, we see

that Qa is the component form of an operator on the channel space 4. Its

B

channel structure is identical to that of the S-matrix. The next property is that
Q,,®.t) = QL ®,t) (4.17)
aB 0 B0 ) ‘

This follows directly from the structure of (4.16). In fact Eq. (4.17) is just the

component form of the self-adjoint property for operators on 4. Thus for any

A

f € /4 which describes the state of the three-body system in terms of the asymp-
totic channel wavefunctions the time-delay operator Q will have real matrix
elements. Since Q represents an observable this must be the case. However

off-diagonal component forms of Q, i.e., Q will not generally be real.

apf’

It is desirable to take the limits t0—> o and R — « in the definition of our

operator Qa B(R’ to) . In the following section we shall construct an operator

Q

B defined by a kernel composed of generalized functions such that
N 1 .
(foz ,Q ) lim lim (foz , Q

f 4.18
S (8- 19)
0

ozB(R’tO) f'ﬁ o
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The functions fa and f! need to be smooth enough so that the generalized

B

functions appearing in the representation of Qoz 5 are well-defined. This restricted
" set of functions, defined in Appendix A, for which Eq. (4.18) is valid are dense

- in the space AA

One effect of taking the limit ty— > in the-representation (4. 16) is that

the Qa 8 operators will now intertwine with the channel Hamiltonians. By

changing the variable of integration in Eq. (4.16) it easily follows that

~ ~

iHat iH Bt
e Y Q,R,%) =Qy R,x) e (4. 19)
or equivalently,
H,Qps®. =) = Qu R, Hy (4. 20)
This property mirrors the intertwining relation (3.6) wvalid for the S-matrix
Sa g

Before proceeding further we pause to contrast our defimition of the time-
delay operator with those that exist in the current literature. The main novelty

of Eq. (4.16) and the limit process in Eq. (4. 18) is of course its multichannel

character. However the type of limit in Eq. (4.18) is simpler than that previously

introduced by Smi’ch12 and also adopted by Jauch and Marchand6 and others. 7
These papers employ an average over R before the R—« limit is taken. This
average is used to get rid of oscillatory terms in R. Here we shall find that
treating the behavior of the projection operators @B(R) and Z(R) carefully
enough shows that thgse oscillating terms all vanish when evaludted between
appropriately smooth wavepackets fa and f'ﬁ‘
Let us now resume the development of the problem. At this point we shall

utilize the approach found in Jauch and Marchand’s6 treatment of time-delay

in the two-body case. Since the inverse of S exists one can find Q by
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determining SQ. An element of this product takes the form

| 0 if t -iH t

- o T 5 (-) = B
5,4Q,5®, 1) = [t Spe ¢ [UT @) -6, 7 m)e P a
0

t . ~
0 iHt : -if t : %
- T 5 (=) 7, B
- j:t e sw[Ua F®R) UL - 06,0 '76(3)] e dt

0

(4.22)
The first term in the square brackets may be simplified by noting that .
; OF 2 D BT 5 gOT _ O )
Z S0 Vs = Z U, U U =0 Py = U (4. 23)
a=0 a=0
The second equality is the asymptotic completeness of the U's and the third
equality follows from orthogonality properties of bound and scattering states. So

_ o B () _ gt -l
Z 0 Qs ®s to)f v [@(R)U -} @B(R)] dt

(4.24)
Our problem is now reduced to evaluating the right-hand side Eq. (4.24).

Let us take matrix elements of Eq. (4.24) and let the t, . For v#0 and

B#0 one has
3
<f'v’ of\; ya g™ )fB,Yz
if t ~iH ¢
7 (Ht (=) _+(=) = B g
L <f e 7 U [7(3) Uy - U B(R)] fﬁ>,y dt (. 25)

We now assume that:f'y and f! are well enough behaved so we méy interchange

B

the order of integration in Eq. (4.25). Thus we can rewrite our equation in the
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following form

~2 2 ~2 2
© it(p_ ~¥.-p.+
(py XyPl XB) i

3
| (fv’ TZ‘O SoneB(R’m)fE)v B ffv(pv)*’,[we

—

<_§’Y|U§/+)T[§(R) U,g’_) - U(B‘)@B(R)] l 5’ fb(gb) dg’yd'f,’é . 26)

TEL

The integral in the curly brackets is 2776(5:)2/')03"5,'[324-)( [? ) and physically enforces
energy conservation between an asymptotic state in the g channel and one in the
v channel. Since Eq. (4.26) holds for a dense set of functions f?’ and f' we can

B

associate it with the following kernel in momentum space.

3

<Py 2 Sy0R0p®) P4 =
O e T N L e e I
= 2m oG-y + ) <B U [P vl -8 7w 15y >

\]

Yy>0, >0 (4.27)
For values of the indices v and 8 where either one or both are zero, one can

repeat an evaluation similar to the one above. We find that
e 3 —
1 =
<pq laZ::O S)aRp®r ) P>

= 21 6 (TP iy <FaIU )T [ﬁ(ﬂ) vl vl 7 B(R)] >
8 >0 (4. 28)

3
<pq | Z SOaan(R7°°)|p'q‘> =
a=0

=27 6(5’2+52—§'2-G'2) <Pq IUg”)T[ﬁ R) Ug') - U(()“) 7 R) ] IP'q"'> (4.29)

The remaining portions of the paper are concerned with evaluating the matrix

elements appearing in these last three equations.
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V. DERIVATION OF THE TIME-DELAY RELATION
The previous section has demonstrated that if we can evaluate the matrix
‘element U,S-)T[@ ®R) Ug) - Ug) P B(R)] , then we know the product SQ. This is

equivalent to knowing Q since S_1 exists. We now shall compute the on-ghell

values of the abox}e matrix element. Let us define

= ) _ )z ) -
X,®)= PR Uy - Uy Py®) DAy 4 G.1)

We note that the operator form of Eq. (2.18) may be written

u® -t _g®) 5.2)
y Ty Ty

The kernel associated with K[y is that given by Eq. (2.19). Physically K'y contains
all features of the wavefunction related to the scattered parts of the wavefunction.
We note that Eq. (5.1) can be expanded as the sum of two terms, which we may

treat separately.

=3 T_ (_) _ '{'_ (..) = .
XB(R) ZPR) (IB Kﬁ’ ) (IB Kﬁ )gDB(R) (5.3)

_I= _ _ T (_)_ >z (_)
[g’(R) PBgP(R)] IB+[KB g’B(R) PR) KB] (5.4)

Here we have used I; 1 5 =P g Now we observe that the first term in expression

(5.4) for X _(R) vanishes strongly as R — « . That this is so may be seen as

B

follows.

Let f_ be any function in #4,. Then

B B
HE@(R) -P BT??(R)]Ingu = n[@(R) -P B(@(R) -E) - PBE]IZfBH
<1 (?(R) —PB)I;fﬁll + 1l PB@(R) -E)Igfﬁll . (5.5)
using PBIZ = Ig and || PB I =1 our inequality becomes
<2N(P®R -EIH I . (5.6)

BB
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This last expression goes to zero since % (R) strongly converges to unity. Thus

we need only compute the value of US-) TY B(R)’ where Y B(R) is defined as

-

Y ®) = Ké") 7,®) - P@) K;;) . (5.7)

A lengthly and detailed analysis is needed to evaluate the expectation values
of U§/+)TY B(R). Most of the terms entering the computation turn out to be zero.
We shall deal with this complexity by placing in the appendices the evaluation
of the zero terms. Thus the detail exhibited in this section is somewhat more
important since it leads directly to the desired matrix element values. For
example we show in Appendix C that KS-) TY B(R) —0 in the R— « limit. Thus
our problem is simplified to computing

Rllew <5’7IU§/+)T[.§’(R) U[(;) —Ug) éB(R)] IBy> = Rllm <, | LY @)} >

(5.8)
Our expression for Y B(R) has two terms. We treat the operator K(~)§ R)

B 7B

flrst Using the Egs. (2.19) and (2.20) for K’g -) we may write KE% -) B(R) as

<3 q_le(‘)%(R)IB’é>

3 ia V< ()] n>‘ <_)n| I ->d
[ o o5 Pal Tyl s P | <P ‘@B(R) Py 4pp
> {-<p 4., lg 7 1p!>+ 5 3 2 ~
l YUY op B 52_)( _I'S’n +X -i0 f e, oy pn -1i0
o Xa™Pp Xg B, By
5.9

We further expand this by expressing the singular denominators in terms of their
delta-function and principal-value parts. We shall denote a principal-value inte-

gral by writing the denominator terms without the customary +i0 notation. Our

expansion of Eq. (5.9) now reads

6
<P,q, |Kg" P,@®)Ipp> = <p,d | ilel B;®) | pp> (5. 10)
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where the kernels Bi(R) are given by,

- - | P (R)lp
- re = ) <p6 g Pp
fpyqlel(R)lpB> fz <D. q l@aﬁlpﬁ q —p"2+x2 pﬁ (G.11)
Y B B
@) <5, e 3 3
- —- 3. ¢,@,)<p, lp> <Pg | #,®) B> =
=y o= B g7 Pp” 3w
<Py, BRI pg> —f 2 pz 2 pr!2+X2 2, 52 IR dpg (5. 12);
B B y 4y Pg Thg
),
IJK Ip! ><p IJ(R)lp
g 2,2 e af "B "B "B B 43 n
<p,yq,le3(R)lpB> _f Z 17r5(p X p )¢> (Q) 52‘“;2 ) x2 d’p Pg
y~Pg T
.13)
—_— - — = () Do 2 2 3u
<pyq,yIB4(R)Ip fa—-l 'yq‘y'gaﬁlpﬁ>“r6(p+q‘yp[3 +XB I?(R)Ipﬁ>d 8 (5. 14)
—-—— —_ (q )<p I%()IPB
<pqu'Bs(R)'pb>‘fz =22 Oy -By ) <Ty | PR | T v
—x -ply+X
a“p B
(5. 15)

3
<B4, |Bg®) I D> —=—f 21 in 0, bl +XB) $,{d,) <o, Jf(; "> im o(p) +qy—p'[§2+xz)><
a:

X <p'B'lg’B(R)|pB> d pB (5. 16)

It is now appropriate to examine the operator @(R)K(_). The kernel repre-

B

sentation of @(R)Ké—) is

)iz s

T, X,

el Wt "'71_71 it T +) -
B <pyq7137’(R)lpyq,y> 3 () = ¢, (d0) <P 17, lpﬂ l 3
= > {-<D g, lp >+ pyd q
n + ~n2 - 2+ 2__10 a=1 ’Yq’y B 112_ ] + 2_10 4

.17
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As before, we expand this in terms of its principal-value and delta-function

parts. We have

-

6
<'13;,?1;, L?’(R)Kg)lﬁﬁ'>z<ﬁﬁfyl }:lA (R) | Di> (5. 18)
1:

where the operators Ai(R) are given by

dl]

3
s =-[ <pyq7|9(R) i pyq,y> T a1 @ b > d3ﬂ" d3n” (5.19)
B J w22 - '

— Y v
P.}, +q7 —pﬁ+x6 a=1

Bya 1P ITd > 3 ¢, (d)<pn 15 15>

- = = 'rq'y PySy aB ' P8” 3, .3,

<p,yqy|A2(R)lpé> =+f o 2 PR X2 72 d’p d q,;/ (5. 20)
P+ ‘PB =1 Py, - X Pl Xy

e N <0, 4 @(R)!Ya'"""w
YY 3 B 2,

3
Z im 5(3" Xa—p +XB) o) (q") p" l:%( %IPB> d p"d q,y (5.21)
a=1

<B4, 14, ®) I F),> E—f<p,yq,yl{9°(R)l PId > Z <p;q;1@( )]pB> im &5l 2+ —pﬁ+xﬁ)d Spnadyy

(5.22)
6, (@) <P i) 152>
<p. 9, /A R)Ip,>= | <p. 4, PRI pq"> 3
ydy 58 1 Pg vy Yy? & R pﬁzﬂ%
3 an an ~2, 2 1"
i S(p,y +q,y —p'ﬁ+xﬁ)dp dq,y v (5.23)
3
Pgieeg oy — pngln g 7. pecTpnctt : an 2_N2 2 i
<Py, 1AgR) I pp> = f <P, 9, |Z(R) I Pya) > ;él im opg, = %, P +xpg) 94(2g)
s 2 a9~ 2 D
ol l:fféﬁ) 17} 17r6(pj)'/2+ "2—pb +x) d p”d ) (5. 24)
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We now proceed to evaluate the matrix element given in Eq. (5.8). We

show in Appendix B that

-

Rlinw<p IL,(B;®) —Ai(R))lpB> = 0 alli#2 . (5. 25)

When this result is combined with Eq. (5.8) we have

71 ) _)z = =
lim <p IU FPRYU, T -U ‘2. R) !p >= lim <p i1 ®R)- A R ip'>
i [ 8 "V 7B ] g7 By lhBy 8

(5. 26)

for ¥> 0. When v=0 this equation becomes

1i ¢+ )T[ U( )z ] - 1 B _(R)-A (R
im <P, qle ZPR) Ug 'FpR) lp3> 1_rf1w<p qyl oR)-Ay( )lpﬁ
R— R

(5.27)
At this point we stress that wehave to evaluate the above matrix elements only
for on-shell values of the momentum arguments. This on-shell requirement is
a consequence of the delta function appearing in Eq. (4.27) and Eq. (4. 28).

We continue by considering the evaluation of the operator IVB2(R). Examining

BZ(R) we see that it is the sum of three terms. Defining Bza(R) by

ML pg><p~|9>B(R) 15’;3 5

F.4, 1B, R D> =¢_(T) 28 B s dy . (5.28)
7 P2a 17 % T R ATy e B
then
3
132(13.)=O§1 B,,®) . (5.29)

We shall demonstrate in Appendix B that only the term IyB 2y in the above sum

contributes to the nonzero matrix elements. So in this section we examine only
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IVBQ')/' Setting a=v in Eq. (5.28) gives us

(t) =
<p 1A 's <pl | P
o VB' 5 <p4%, (R)(Il)p >) Bt (5. 30)
P,+p7) (P, -P| B
+
P, *q,-Pg P! XZB B BB
We now use a property of @ B(R) established in Appendix A, namely, for f(f;ﬁ)

a smooth function in 4, and differentiable in IFRI the following limiting relation
P P

'Yqv]BZ'y(R) I pB> = 2nﬁqb (qy)f

is valid.

<P, &# (R)lp”> £(p') p"
B B B " o=
lim f d p[)7 = - [ (po ]I (5.31)

. w p "
R B~ B , B PE pB

In obtaining the form of Eq. (5.30) we have exploited the on-shell condition
~2 2_
P P! B B

The d1st1nct1ve feature of this term which prevents it from cancelling against

to write the first denominator solely in terms of the 8§ momentum.

the corresponding term I,yA2(R) is the fact that the singular surface occurring
at p B*p 5 changes the character of the R — «» limit. Without such a singularity
B(R) — EB. If this were the case then Bz'y(R) - A2y(R) would éo to zero.

We are permitted to use Eq. (5.31) in evaluating the R—<« limit in Eq. (5. 30)
since the portion of the integrand excluding <p‘é|9’ﬁ(R) IE,'B>/ pb—p‘é is a2 smooth
function of p' B This is a consequence of our assumptions in Section II
about the physical amplitude <p ldf( B) [ p'} B , namely it is differentiable

function of its arguments. The remaining ingredient of the integrand in

Eq. (5.30) is the denominator p +q’y p”2+ X g We need only estimate its

behavior in the neighborhood of p'é =p 32 So one has that
2. 2 ~2. 2 2 2 2
y oy B TR Ty 2 Yy
M2 2 2 ,
Thus for |p 8 —p:é I < xy we have the estimate
2 2, 2 —
+ + >0 all . 5.32b
q ~Pg *Xg a4 ( )
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Employing Eq. (5.31) in Eq. (5.30) now gives us

lim 5.4, 1B, ®)IF>=-20.6 Q) = V'J/()"’Bw@ ]
<P P = ~2ugty (0 g |
A A e Eres | Iy
L Py PP -
(5.32¢) 2
where ﬁé=p"[",ﬁfﬁ If we use
d Ps 1
= — 5. 33)
dp'} (p'+p )p | t1=n3t 4 12 (
B B PP Pl
our expression for the right-hand side of Eq. (5.32c) becomes
A, ‘ ) z5a “’vﬁv’ )5
by @) Wy <pv"% i ot 2p2 —5 4 E)<F, 1y 1 T 22 Py ¥y s
B P8 WYy
(5. 34)

In order to find I,yB 27(R) we must integrate this last set of terms with
f zpy(—diy)* d3q,y . Since z[J,Y is a unit normalized boundstate Wave_function, one
has at once that

Lim <p7|I B (R)I'f)’b>

R —
2
1. @)
:_._né._gl_.{f)’ |(y[7(+)l-—’,>___r:§_< IW()I - < L/f() 'Yq'Y d3
pr, dpy, Py yp'Pp 5 <Pyl g 1 PE” " B g IPE> | ——5— 49,
B B 2Pﬁ q_y+x_y
5. 35)

This completes the evaluation of Iszpy(R).
Let us now study the companion terms of Iszy(R) that occur in Eq. (5.26),
namely IyAz(R). As in the case of Bz(R) we can decompose AZ(R) into a sum of

three terms. From the form (5.20) for AZ(R) we can define

3
AyR) = ZIAZQ(FQ (5. 36)
a:
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where AZOz(R) is given by

<5;EYI§(R> rﬁ'a';> MCEIAEY,

Toa,TA, ®)IT Blpﬁ prd®
<P CLY P> = p! 1t
Y 2a B an - =42 ~1 2,2 Y q'y
®, -x pﬁ +xﬁ) (®y +qy pB +XB)
| (5.37)
Again we demonstrate in Appendix B that
1i I -A P> =0 .
Jim a;y <B 1L, By, ®) - A, R)IT)> (5. 38)

So here we need consider only the term Azy(R). Using the on-shell condition

N2 2 ~'2 2 Y .
- = - we may write Eq. (5.37) as
P =X, =Pp~Xg y q. ( )

(+) =
|Z®R) 1 PIq> ¢ ( ")<P" IW IP
<3E-YIA2«Y(R) I’I‘)"ﬁ> = 9n f q'V ~ q'Y q'y B d3pnd qy
Y Y Py By (o, )(1.c>”“+qy =) +x)
. 39)

We now quote another feature of the operator 2 (R) demonstrated in Appendix A.

For f € 4, and (DY, ?1"6') differentiable in the | p}g'l variable then we have the

limiting relation

P4, PR) T q"§> pY
B B B (3} "M =
Hiy W @’ P a® ay dp’é {—ﬁ f(poB,qﬁ)]l

lim —~
R oo Pg-PYg e

Pg7Pg
(5. 40)

In the neighborhood of pj}: =py the last denominator in Eq. (5.39) never vanishes.

Thus we are justified in using relation (5.40) to evaluate Eq. (5.39). The limit

that Eq. (5.39) takes is

”'%( )!p
lim <p q A (R)lp > = 9n ¢ ( - Py 'YB B
R-—»oo q’y 2"/ qy) dp,y p (pH p,y)(p" _p +qv+xy)

(5.41)
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where ?};=p};§y. Of course the value of Ey is on-shell. If we write out the
derivative term and perform the integration with respect to f P (_q:y)* d?’q_y

then Bq. (5.41) becomes

__X__f.l_ =t _3’_ )=
Rlinoo <p,y " z,y(R)lpB> B, dp,y <P, |2, ﬁlp8> + <p A, Blp,3>
pv
Iy, () 12
_ <T: (1) | ’I’v 5 r ,'Yq'y d3" (5.42)
P ,YB PB J ,E],f/-i-xs, \ )
By combining Eq. (5.42) with Eq. (5.35) we can determine I,y[Bz(R) -Az(R)}
We have
- %y d *+)
1 L,(B.(R)-A = .=t — H
s <Py 1L, (By®R) - Z(R))IPB b, & <p l yﬁlpﬁ,

P 4 R e _fx #) =
p,ﬁ Y <p,yl9’fﬁlpk> > <p | Blp3> <p. L%,YBIpB>

|
B 2PB 2py
(5.43)
The sum of the first two terms is just the total energy derivative since
E = p 2/2n B =P, /2n x,y So we can simplify Eq. (5.43) to read
lim <p L. (B.(R)-A.®)) | Bt> = - = <. I%(+)Ip'>
Rowew 1 Y 2 2 B aE Py yp ' Pp
- + —nz- <p. L%’( )P (5.44)
2p 2p2 Y B
B Y

If we use this result together with Eq. (5.26) and Eq. (4.27) we obtain part of

our desired solution

lim <p IZ Yo aB(R’ )lpB> ._<p IZ o %! B>

R —
176(52 2 512, ) IJF(+)I > - —nﬁ-+—1}—}/— If()l ?
v Xy P g -3 By VB PB T gpZ g2 | Ty v pB;
B Y

(5. 45)
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