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I. INTRODUCTION 

This paper studies the timedelay problem as it occurs in three-body 

- 1 scattering. Roughly speaking, the time-delay effect is the advancement or 

retardation of wavepacket motion due to the presence of interactions not contained 

in the asymptotic Hamiltonians. In the following we first give a rigorous definition 

of multichannel time delay. This definition is an extension to the multichannel 

case of the one employed by Goldberger and Watson. 2 Using then Faddeev’s3 

results in time-dependent scattering theory, together with the primary singularity 

structure 495 of the exact stationary wavefunction, we construct an explicit solu-- 

tion of the time-delay problem by following an approach similar to Jauch and 

Mar&and’s treatment6 of two-body time delay. Specifically we obtain a relation 

between the time-delay operator and the different S-operators and their energy 

derivatives, that is valid on the energy shell. It is the proof of this relation that 

is the main objective of this paper. 

The physical interpretation of the time-delay operator we define is only 

touched upon very briefly. Because of the controversy that clearly exists already 

for two particle time-delay regarding the different definition, 2,697 which might 

or might not be equivalent, 8 that are given in the literature, and because of the 

length of the present paper, we like to discuss the physical aspects of the problem 

elsewhere. 

This paper is organized into five sections. Section II introduces those 

features of three-body time-dependent scattering theory which are necessary in 

this problem. In Section III we define a set of reduced S-operators which have an 

explicit energy dependence because the solution of the time-delay problem cannot 

be expressed directly in terms of the usual S-operators. In Section IV we 

construct the time-delay operator starting from first principles and state the 
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problem we want to solve. Section V gives the main body of the derivation of the 

time-delay relation. Finally, Appendix A contains a discussion of the projection 

opera&s and their momentum-space representations. Appendix B collects some 

of the details needed in Section V. Appendix C discusses a class of terms which i; 
& 

vanish and do not contribute to the result derived in Section V. i.. 
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II. TIME-DEPENDENT SCATTERING THEORY 

This section gives an outline of the aspects of three-body time-dependent 

theory %at are necessary in the analysis of our problem. The physical scatter- 

ing problem is taken to be that studies by Faddeev, namely the scattering of three 

distinct nonrelativistic particles interacting via short range forces. Furthermore, 

the interaction in each two-body channel is assumed to be such that there is only 

one two-body boundstate. 

Let us briefly describe the coordinate systems we employ. After the center- 

of-mass motion has been eliminated from our problem there remain six degrees 

of freedom. In coordinate space we choose the Jacobi variablesg<a,ya to 

describe these. The variable TQ is the separation of particle a! from the center- 

of-mass of the (@) cluster. The independent variable yQ gives the vector 

separation of the constituents of the Q! cluster namely the spatial separation of 

particles p and y. The canonically conjugate momenta related to zQ and FQ are 

denoted by Ta and <a. The momenta c a! describes the relative motion of particle 

Q! and cluster a!. The kinetic energy of this motion is given by FE/2noI where 

n a = mJ”@+myV( ma! +m + m 
P Y 

) represents the reduced mass of particle a! and 

cluster a. The internal momentum of cluster a! is just yQ. The kinetic energy 

associated with this motion is $/2~, where p = a! “p my/(mp+ my) is now the 

reduced mass for particles p and y relative to their own center-of-mass system. 

It is clear that we have three distinct (01= 1,2,3) Jacobi coordinate systems each 

of which provides a complete description of 

The behavior of any physical system is 

free Hamiltonian related to the total kinetic 

-2 -2 
9cY Ho=2 +- 

2Pa ’ 
CY= 

o! 

the degrees of freedom. 

determined by its Hamiltonian. The 

energy is given by 

1,2,3 . (2. 1) 
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We shall employ an abbreviated notation for these kinetic energies, viz. 

-2 
g2 - pcY T2 

o! 2nQ ’ G2 CY =< . (2.2) 

The right-hand side of Eq. (2.1) is independent of the index Q. We shall take 

notational advantage of this invariance of Ho by frequently omitting the a! label. 

There is a similar invariant quantity in coordinate space. If we define 

z2 a! = 2naZz , 

and 

-2 -2 -2 
P = xa +y, , 

Y2 o! = 2l-Q; (2.3a) 

(2.3b) 

then b is a coordinate space invariant for all cy. 

The complete Hamiltonian is then obtained by adding to Ho all the interactions 

possible in the system. So for the system Faddeev studies we get 

3 
H=Ho+ L Va 

a=1 
(2.4) 

where VQ! is the potential acting between the particles /3 and y. The Hamiltonians 

H and Ho are operators acting in the Hilbert space of square integrable functions 

of our six degrees of freedom, i. e. , L2(Ta, qQ). We shall denote this Hilbert 

space by ~4, the inner product related to 4 by ( , ) and the identity operator on 

~6 by E. Acting on X, Ho and H are both self-adjoint operators. 3 

We next want to consider the different kinds of asymptotic motion because 

these will finally specify the solutions of the scattering problem. Because of the 

short-range nature of the forces we may expect that as t -&ta, the three-body 

problem is characterized by freely moving clusters. We have two distinct types 

of cluster motion. First, there are three possible cases of motion involving two 

clusters, each of which can be labeled by the index a!, indicating the particle 

-5- 



that moves in isolation. Secondly, there is a single motion involving three 

clusters, labeled by the index o!=O, namely when all three particles move inde- 

pende%ly. With each cluster description of the asymptotic motion there is an 

associated asymptotic Hamiltonian, determined by including all the intra- 

cluster potentials and omitting the inter-cluster potentials. For the two-cluster 

type of motion these Hamiltonians are given by 

Ha, = Ho + Va! . (2.5) 

For the three-cluster motion the asymptotic Hamiltonian is clearly Ho. 

At this point we recall that each two-body interaction is capable of supporting 

only one boundstate. We shall let $,(<,) be this unit normalized two-body 

boundstate wavefunction in the space of square integrable functions of To, i. e. , 

L2(<‘,). The corresponding boundstate energy is - xz. So we have 

ol=1,2,3 , (2.6) 

The symbol va! represents the potential found in the two-body problem involving 

the particles p and y. As we know Vo! and va! are integral operators in momentum 

space whose kernels are related in the following way 

(2.7) 

Because of this fact that there is only one boundstate for a pair, each of the 

different cluster geometries will specify a scattering channel. We now want to 

describe the wavepackets that characterize the asymptotic channel motion. Let 

us consider, e.g., the a! channel ((~f0). The cluster (By) will be described by 

the boundstate wavefunction #,(qa). To describe the relative motion of a! and 

the center-of-mass of the pair (py) we shall need the appropriate wavepacket 

indicated by fo(c&). In effect this function f ac is like a two-particle wavepacket 
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expect that one of the particles is a cluster. So for f, to be an acceptable wave- 

packet it must lie in the Hilbert space of square integrable function of To, i. e., 

L”(F@T which we denote by Aa. The inner product for this space will be ( , )a! 

and EQ will be the identity operator. So the a! channel motion is described by 

fa$J $&~a) and since +, is a known function, all the nontrivial information 

about this channel is given by fOL. For the three free particle cluster we have 

all six degrees of freedom present and the related wavepacket will have the form 

fo(‘i;: c). The space for f. will be L2(F, T) = X0, its inner product ( , ). and 

its identity Eo. Of course, ~~ is mathematically identical with A. 

It is useful now to construct Hamiltonians that act in those channel spaces 

%!* These new Hamiltonians are suggested by utilizing Eqs. (2.5)) (2.6), and 

(2.7) to get 

= 6; -x2,) f&Q &$Q a>0 (2.8) 

Eliminating the multiplicative factor $,(co) we are lead to define the channel 

Hamiltonian gal by 

(2.9) 

For the a=0 case the channel Hamiltonian !I,, does not differ i?om the asymptotic 

Hamiltonian Ho. Thus 

i-iofo = (F2 +G22, f. E A0 . (2.10) 

We then introduce a single Hilbert space to describe all these possible 

asymptotic motions of the three-body system. This space, denoted by 2, must 

clearly be the following product space 

(2.11) 
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h  

T h e  inner  p r o d u c t o f h  wil l  b e  (  , ),, , its i d e n tity wil l  b e  i. This  i nner  p r o d u c t 

is g i ven  in  te rms  o f p rev ious  i nner  p r o d u c ts as  
-  

(f,f’) A  =  2  (f,, fg a  . ( 2 . 1 2 )  
c Y = o  

A n  i m p o r ta n t remark  w e  h a v e  to  m a k e  h e r e  is th a t fo r  m u l t ichannel  scat ter ing 

th is Hi lbert  space  descr ib ing  f ree a s y m p to tic m o tio n , n a m e ly is di f ferent 

f rom th e  Hi lbert  space  descr ib ing  th e  exact  solut ion,  n a m e ly rl’L . S o , if th e  

c h a n n e l  fu n c tio n s  f@  a r e  set in  A  by  wr i t ing fa $ &  th e n  th e  channe ls  a r e  n o t 

o r th o g o n a l  viz. ( fac$&#,,  +  0  (a , P > - o ) . 

T o  conc lude  th is p a r t, w e  first d e fin e  a  pro jec t ion o p e r a to r  P a ! f rom + 4  into 

4  b Y  

P Q f =  f zc, E  Yz  C Y C Y  C l > 0  (2 .1 3 )  

T h e  subspace  assoc ia ted with th e  r a n g e  o f P o  consists o f al l  s e p a r a b l e  fu n c tio n s  

in  F Q  a n d  ? &  w h e r e  th e  fu n c tio n  o f ? &  is G Q . Second l y  w e  d e fin e  a n  o p e r a to r  

IO ! f rom 4  o n to  A a  by  

W e  n o w  tu r n  to  th e  d iscuss ion o f th e  M o l ler o p e r a tors  T -7 :) wh ich  a r e  th e  

bas ic  e l e m e n ts o f scat ter ing th e o r y . F a d d e e v ’s work3  establ ishes th a t U a ! (4  m a y  

b e  constructed f rom th e  solut ions o f a  F r e d h o l m  in tegra l  e q u a tio n  th a t c o n ta ins  

th e  s a m e  physics as  th e  th r e e - b o d y  tim e - i n d e p e n d e n t S c h r B d i n g e r  e q u a tio n , wi th 

th e  s u p p l e m e n tary  a d v a n ta g e  th a t th e  b o u n d a r y  condi t ions a r e  bui l t  in to th e  

structure o f th e  e q u a tio n . 

T h e  U t) o p e r a tors  wh ich  m a p  A  cl! in to A , h a v e  th e  fo l low ing  th r e e  p r o p e r ties: 

lo. ,(*)t 
o ! u  

(*I) =  
P  

6  
a P E P  

:A  --Q , 
P  (2 .1 5 )  
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3 
2O. c ua (*I Ur)t = E _ pd :X-X 

a=0 

3O. H U t*) = 
CY :X,--h 

(2.16) 

(2.17) 

We shall refer to these basic statements as the fundamental theorem. Property 

lo is a statement of the channel orthogonality of the exact wavefunction solution, 

when a=P it becomes a statement of probability conservation. Property 2’ is 

the asymptotic completeness of the exact scattering states. Pd is the projection 

operator onto the subspace spanned by the eigenfunctions of the discrete spec- 

trum of H. Property 3’ is the intertwining property and states that the exact 

wavefunction will have the same energy as the incident wavefunction, i. e. , energy 

conservation. (*) Furthermore the function <Fa?& I Ua! I 3Q> has the following 

structure: 

(2.18) 

The first term on the right represents the unscattered portion of the wavefunction. 

The second term is the scattered wave and can be written as 

(2.19) 

where 

(2.20) 

Here the functions ~5~ ca I > are the half-on-shell 

solutions of the well-known Faddeev integral equations 10 viz. 

(2.21) 



(2.22) 

The fiction $r is the vertex function defined by @ 

the same way, the wavefunction for three to three scattering is 

‘F&T;‘> = 6(?&?@$--) - <z& lKr)lF$;> (2.23) 

where the matrix elements of K (*I 
0 are related to Faddeev’s M operators 395 

QP 

(2.24) 

In concluding this section we recall that Faddeev proves the above described 

results with the assumption that the two-body potentials satisfy a boundedness 

property and a Holder continuity requirement. Using these assumptions, e. g. , 

the half-on-shell two-body t-matrix satisfies 11 

I <jTIt(*) IF >( 5 c/(1+ l~-5;q)1+o (2.26) 

1 <i;iA$lt(*)lp+A$> - .$lt(*)Ij?>I 5 C/(1+ I$-j?i)l+e [iAzi” + i@l”l 

(2.27) 

where IACI < 1, IA2 I < 1 and ZJ may be taken as close to l/2 as desired. In 

our time-delay proof we shall have to construct derivatives of the half-on-shell 

amplitudes with respect to the momentum arguments. It is clear that the esti- 

mate (2.27) is not strong enough to claim that <s I t(*) I g> is differentiable with 

respect to p or p’. We have not investigated the necessary modifications needed 

to ensure differentiability of t(*) and the other half-on-shell matrix elements 
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f x( ) R ,6$*) T(*t) 
a/3’ op’ * 

However it is likely that the original potential must be 

differentiable and that this derivative of the potential must also satisfy a Holder 
-h 

continuity requirement. 
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I 

III. REDUCED S-MATRIX ELEMENTS 

- In this section we describe the essential features of the S-matrix and intro- 
* 

duce the reduced S-matrix elements needed in our derivation. The S-matrix is 
‘a 

defined to be a mapping between the initial experimentally determined wavepacket 

fQ and the observed post-scattering wavepackets f? . We know3 that, in terms of 
P 

the Moller wave operators, this mapping looks like 

so 

% = 4+-(-) cl! : A, - $4 
P 

(3.1) 

(3.2) 

This S-matrix is even simpler when written down as an operator on the asymptotic 

_ channel space A. In this case the information in Eq. (3.1) can be expressed as 

f;=s; : 2-i (3.3) 

Let us now recall the basic properties of the S-matrix because it will turn 

out that the time-delay operator has properties which parallel those of the 

S-matrix. The first basic property of the S-matrix is that it is a unitary operator 
h 

when acting on the channel space X viz. 

sts = SE? = k . (3.4) 

In component form the equivalent of Eq. (3.4) is 

This unitarity is an immediate consequence of the statements lo and 2’ in the 

fundamental theorem. 
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The second basic property of S we want to stress is the intertwining prop- 

erty with the channel Hamiltonians gc,, 

This intertwining feature is the direct consequence of statement 3’ in the funda- 

mental theorem. 

We now shall turn to the definition of the reduced matrix elements of S. In 
45 order to carry out this definition we first require the known ’ representa- 

tions of the kernels of S in terms of T - (+) ,t+) 
’ op and $VEL introduced in Section 

II. For a rearrangement scattering process one has, 

The S matrices involving three free particles in either the initial or final state 

are given by 

and 

(+) The amplitude BaO is related to Bh: by 

(3.3) 

(3.9) 

(3.10) 

The * indicates complex conjugation. Finally the three-to-three S-matrix is 

(3. 11) 

We want to construct S matrices related to the expression above but with the 

energy delta function removed. We will use a lower case s to denote these new S 

matrices. Consider, in the first instance, S 
@’ 

Defining E = l?i - $ and 
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- I 

El = pf - Xi and employing the relation, 

(3.12) 

we may write Eq. (3.7) in the form 

In these expressions 6 indicates the unit direction vector associated with 5. 

Thus we are lead to define s ,+E) by - 

The energy dependence E appears on the right-hand side of Eq. (3.14) by virtue 

. The kernel 

~6~ I sap(E) l$b> represents an operator that will map square integrable func- 

tions with respect to the measure d&, , i.e. , L2G1), into L2&,). 
pP P 

When o~=p 

the leading factor on the right of Eq. (3.14) is the identity operator on the space 

L2G,). The energy dependence indicated on the left of Eq. (3.14) means that 

for each S 
aP 

operator we have a one-parameter family of operators s ,p. 

We consider next S matrices involving three free particles in the initial 

or final state. The kinematic relation E = c”,+pa suggests we define the angle 

wac such that 

(3.15) 

Using this convention the six-dimension delta function appearing in (3.11) may 

be written 

(3. 16) 
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Using then Eq. (3.11) we find that the reduced matrix operator sOO(E) is 

- 2 d O-pal&&phq; <?a<a 1 T t+) -1-1 1 p,q,! ’ (3.17) 

Here the operator s oo(E) takes a function from L2(~;,4;,pb) into L2(W,, ia,iQ). 

In this case the Hilbert space is defined relative to the measure 

i(2pQ2no)3’2 2 * 2 cos w o1 sm W, dw, dp,dG,. This measure is independent of 

o!. From now on, we will denote this space by Li and Li will indicate the space 

L2i$. 

The reduced S-operator related to S 
OP 

and Sao are defined in the same way, 

e.g., 

(3. 18) 

and, using I!!q. (3.8) 

(3.19) 

where p, and qa! are the momenta determined by E. 

The momentum and reduced mass factors are chosen such that the operator 

relations S obeys on 2 are also valid for s(E) on a reduced space. To illustrate 

this consider the kernel form of the unitarity Eq. (3.5) for a!, ,B > 0 

If we now use 
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together with Eq. (3.12) and we equate the coefficient of 6(E-E’) appearing on 

both sides we obtain for Eq. (3.20) 

-il- 
. . 

-I- S <w; r;“&l soa I;,>’ <J’$‘& I sop(E) l”b> dw’d! dr;; d$’ (3.22) 

This result is the kernel form of the operator equation 

3 t 
Qq.+,, = c s 

y=o ?/-a 
(El sypw * (3. 23) 

A similar demonstration shows that this equation is valid for all values of ac and 

p. The operator 1 a! stands for the identity operator on the space Lt , lo is the 

identity operator on L2 0’ 

Note that we can introduce a reduced channel space defined by 

(3.24) 

Acting on this space, the Eq. (3.23) is the component form of the first part of 

ir = s’(E) s(E) = s(E) s!(E) . (3. 25) 

where lr is the identity on 2,. The second equality here is obtained in the same 

way as the first. Clearly Eq. (3.25) is a one parameter family of operator rela- 

tions on ir which are equivalent to the relation (3.4) on the channel space 2. It 

shall turn out that the three-body time-delay operator will also have two forms- 
* 

one on 2 and one on f/z r’ 
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I 

IV. DEFINITION OF TIME DELAY AND STATEMENT OF THE PROBLEM 

Let us now describe the definition of the time-delay operator. Consider 

the edict wavepacket given by 

qa(t) = e -iHt 4Yfa fa E $9 4!,(t) E A (4.1) 

This is the wavepacket that evolves from the asymptotic channel wavepacket 

fo!s Likewise consider 

*b(t) = e -mt UH f1 
P P 

fbE A, 
P 

e;(t) E A 

-2 l/2 If we recall that F = (G”, + y,) is independent of ~=l, 2,3 then we can use the 

distance Fto define the radius of a sphere in the six-dimensional space gQ,ya . 

We will associate a projection operator g(R) on A with this sphere, 

= 0 
-2 l/2 if Izt+y,I . >R (4.2) 

The inner product (‘k&(t), <g(R) GQ(t)) is the likelihood of finding the state 9Eol 

inside the sphere of radius R at time t. Now if we form the integral 

s 
t0 W,(t) 9 l FcR) ~$H dt (4.3) 

-t0 

its physical interpretation is the fraction of time between -to and to that the 

state qika! spends inside the sphere of radius R. If we perform the limit to --L co 

then the integral represents the total time q, spends inside the sfihere. In 

association with the integral above we can form the more general integral which 

gives the overlap within the sphere of two distinct states Ska! and 5r’ . 
P 

We define 

(4.4) 
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In the notation for the complex number T E 
a6 

we have indicated some but not all 

the factors that it depends on. For example the value of TE will depend on 
- aP 

fol an;i‘f& as well as R and to. In the circumstance cz=j3 and b=fh then T E 
QP 

is real and has the interpretation we have given for the expression (4.3). Our 

notation for T E 
w 

carries a superscript E in order to specify that the times 

associated with T $ relate to the exact wavefunctions @E(t). 

We may also write down similar definitions that pertain to the evolution of the 

asymptotic solutions in the absence of the intercluster potentials. For example 

these wavepackets are given by 

-iH t 
$(t) = e a! I?, cue! 

4$(t) = e -iH& t 
IPf& 

foL E A a! qp) E 4 (4.5) 

f; E “p, *p E x (4.6) 

The absence of the intercluster potentials means that the corresponding evolution 

. may be thought of as ‘free’ since the interaction between the target and the 

incident wave has no effect on the evolution of the wavepacket. The ‘free’ 

equivalent of the integral (4.3) is 

S t0 

-t0 
t+Jt), g(R) +a(W dt 

This gives the fraction of the time interval (-to, to) that the ‘free’ system spends 

in the sphere. The numerical value of the ‘free’ integral will differ from that 

of the integral for the exact wavepacket. This time difference is entirely due 

to the effect of the intercluster interaction on the evolution of the wavepacket. 

As above we write down a general matrix element that has the form (4.7) as its 



- I 

diagonal element. 

-h 

F 
TaPRtO) = Qp S t0 

-t t$t% @@) *;lt)) dt 
0 

(4.8) 

The Kronecker delta function appears in the definition (4.8) of the free transit 

time for the following reason. In the 01 channel free scattering there is no 

interaction between the target cluster and the incident particle. Thus any scat- 

tering which begins in the a-channel must remain in the o-channel. Since the 

asymptotic forms Ga(t) and G?(t) are not orthogonal, the Kronecker delta is 
P 

necessary to preserve the diagonalityof the free scattering. Taking the 

difference of T E 
UP 

and T I$ gives us the time-delay for the time interval (-to, to) 

and a sphere of radius R. 

Now we would like to construct an operator whose expectation value gives 

us the time-difference described above. We define 

E F 
tfa,Q&'Wo) f)$ = TaPtWo) - TaptWo) . (4.9) 

For each fa! and f; the quantities T E and T F 
@ a6 

have unique values so that 

Q 
a0 

(R, to) is defined by Eq. (4.9). It is useful to have an explicit form for Q 
w* 

This may be obtained as follows. One can write T F 
@ 

as 

T$WO) = 6 
-iHat 

to 
= “CT@ -t s ( a! a’ 

0 

-iii t 

cl!’ go(R) e p ft 
P 

where the operator @o&R) is 

: 42, - Aa 

(4. 10) 

(4. 11) 



From the definition (4.11) it at once follows that $@@) is a bounded self- 

adjoint operator. It is however not a projection operator since the idempotent 4 

property is not valid. This is seen from 

= Ia! k&R) Pa g(R) 1; . 

t where we have used IQ! Ia=Pa which follows from the definition of I o1, Eq. (2.14). 

However in the limit R - 03 then gi@) becomes the identity operator E 
01 since 

3‘) - E and 

I EP EIt = I P It = I If = F o! o!cd 01 a!02 CYO! a! - (4. 13) 

The last equality again follows from the definition (2.14). 

We continue with the explicit construction of Q 
w 

by treating TE 
@P 

in a 

fashion parallel to that of TF The term T E 
w- @ 

can be written‘as follows 

T$R to) = t0 s ( ,-iHt (-) 

-t0 

UQI f,, g(R) ewiHt Ub-) f; 

(4. 14) 

= s ( t0 f 
-to a! 

, e 
+iiiat +)t ,g5@) UH e-ifiPt f? 

CY P P, dt 1 

In the second version of (4.14) we have employed the intertwinning relation 2’. 

In the third version we have employed the adjoint operation. The difference of 

Eq. (4.10) and Eq. (4. 14) is 

(fa, QaptR, to) f&J = St0 
-t0 

(fa, eiflat [u:)~@(R, u;-’ - “ap <&)I ewi’ptf;) dt 

(4.15) 
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I 

This defines the operator Qap(R, to). The expression above is defined for all 

f, E Aa and fb E AP since all the operators in the inner product on the right 

are banded and the integral is over a finite time interval. So the operator 

Q w t&t,) given by 

Q,p(R,tO) = s 
t0 

e 
iHo!t (-)‘f 

-t0 
ba @(a) II:’ - aorP So] eWiKPt dt (4.16) 

is a bounded operator for finite R, t 0’ 

Eventually to obtain the physical time-delay we will take the limit to - 00 

and follow it by the limit R - ~0. However, some of the interesting properties 

of the time-delay operator are already present in form (4.16). First, we see 

that Q 
aP 

is the component form of an operator on the channel space 2,. Its 

channel structure is identical to that of the S-matrix. The next property is that 

QapfJ%to) = Q;&to) (4.17) 

This follows directly from the structure of (4.16). In fact Eq. (4. 17) is just the 

component form of the self-adjoint property for operators on 2. Thus for any 

f^ E 2 which describes the state of the three-body system in terms of the asyrnp- 

totic channel wavefunctions the time-delay operator Q will have real matrix 

elements, Since Q represents an observable this must be the case. However 

off-diagonal component forms of Q, i. e. , Q 
c@’ 

will not generally be real. 

It is desirable to take the limits to-+ 00 and R - ~0 in the definition of our 

operator QDP(R, to). In the following section we shall construct an operator 

Q 
@ 

defined by a kernel composed of generalized functions such that 

(fo,Q f’) = lim 
c”lP Pa R---a 

lim tf,!,Qap(R,to) f& . 
to --tcfJ 

(4.18) 
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The functions f& and fb need to be smooth enough so that the generalized 

functions appearing in the representation of Q 
aP 

are well-defined. This restricted 

set Tf functions, defined in Appendix A, for which Eq. (4.18) is valid are dense 

in the space i. 

One effect of taking the limit to - 03 in the- representation (4.16) is that 
x.,, 
.- 

the Q 
w 

operators will now intertwine with the channel Hamiltonians. By 

changing the variable of integration in Eq. (4.16) it easily follows that 

iiiat iff t 
e Qap@, ~0) = QapR m> e ’ 

or equivalently, 

(4. $9 

(4.20) 

This property mirrors the intertwining relation (3.6) valid for the S-matrix 

Before proceeding further we pause to contrast our definition of the time- 

delay operator with those that exist in the current literature. The main novelty 

of Eq. (4.16) and the limit process in Eq. (4.18) is of course its multichannel 

character. However the type of limit in Eq. (4.18) is simpler than that previously 

introduced by Smith 12 and also adopted by Jauch and Marchand’ and others. 7 

These papers employ an average over R before the R-a, limit is taken. This 

average is used to get rid of oscillatory terms in R. Here we shall find that 

treating the behavior of the projection operators @ 
P 

(R) and g(R) carefully 

enough shows that these oscillating terms all vanish when evaluated between 

appropriately smooth wavepackets fcr and f, . 
P 

Let us now resume the development of the problem. At this point we shall 

utilize the approach found in Jauch and Marchand’s’ treatment of time-delay 

in the two-body case. Since the inverse of S exists one can find Q by 
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determining SQ. An element of this product takes the form 

S t0 
~yaQapRto) = Sya e iEat t-)-i- ,p(R) ,t-) 

-t0 
a! P 

- Gap.ap~)] e-iHpt dt 

t0 iN%t 

S -ilY t 
= e S ye p dt 

-t0 
(4.22) 

The first term in the square brackets may be simplified by noting that 1 

a$osya .I;)? = 5 u$+$JL) .l;)T = U$+)t(lVpd) = U;,t . 
a=0 

The second equality is the asymptotic completeness of the U’s and the 

equality follows from orthogonality properties of bound and scattering 

(4.23) 

third 

states. So 

t 

” 
(4.24) 

Our problem is now reduced to evaluating the right-hand side Eq. (4.24). 

Let us take matrix elements of Eq. (4.24) and let the to - ~0. Fory#O and 

p#O one has 

m 
J( -03 fyle iHYt u(+)t 

C 
-F(R) U(-) _ Ul-1 2 

Y P P P 
(R) 1 emiEpt ) f& Y dt (4.25) 

We now assume thatify and f; are well enough behaved so we may interchange 

the order of integration in Eq. (4.25). Thus we can rewrite our equation in the 
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I 

following form 

- f,"d,,)* 

The integral in the curly brackets is 2,6($-$-~~+~,2) and physically enforces 

energy conservation between an asymptotic state in the p channel and one in the 

y channel. Since Eq. (4.26) holds for a dense set of functions fY and fb we can 

associate it with the following kernel in momentum space. 

3 
< Ty I ago SYaQaPRM) Ii+ = 

, 
y>o, p>o . (4.27) 

For values of the indices y and p where either one or both are zero, one can 

repeat an evaluation similar to the one above. We find that 

Gz I 

--* 
<pq I c SoaQcrO(R’m)IFjl+ = 

a=0 

3 

(4.28) 

= 27r s(p”2+iy2-p2-i$2) <j5< IUo (+).I- P(R) ui-) - UI;’ jj2J (R) ] 1 pip > 
[ 

(4.29) 

The remaining portions of the paper are concerned with evaluating the matrix 

elements appearing in these last three equations. 
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V. DERIVATION OF THE TIME-DELAY RELATION 

The previous section has demonstrated that if we can evaluate the matrix 
- 

‘elemGt U(+)? 
Y , then we know the product SQ. This is 

equivalent to knowing Q since S -1 exists. We now shall compute the on-shell 

values of the above matrix element. Let us define 

X&R) = i?‘(R) U1;) - II;-) 3&R) :A -54 
P (5 - 1) 

We note that the operator form of Eq. (2.18) may be written 

(5.2). 

The kernel associated with KY is that given by Eq. (2.19). Physically KY contains 

all features of the wavefunction related to the scattered parts of the wavefunction. 

We note that Eq. (5.1) can be expanded as the sum of two terms, which we may 

treat separately. 

X p@) =&El) (I; -K;-)) - (I; - K;-)) s&R) 

= k@) - PO&R)1 I; + b;-) B@(R) -g(R) K;-‘3 

(5.3) 

(5.4) 

Here we have used I’ I = P 
PP P’ 

Now we observe that the first term in expression 

(5.4) for X@(R) vanishes strongly as R - 00 . That this is so may be seen as 

follows. 

Let fp be any function in A 
P 

. Then 

1$+(R) -PB~(R;lIJsfpll = ll[g(Et) -P+??‘(R) -E) - PpE]I&ll 

5 II (g(R) - P&fpll + II P&g(R) - E)$f~ll . 

t- “f 
using pkb - P 

I and II P 
P 

II = 1 our inequality becomes 

(5.5) 

(5.6) F 211(~(R)-E)I~PII . 



This last expression goes to zero since g(R) strongly converges to unity. Thus 

we need only compute the value of U (+) t Y 
Y P 

(R), where Y 
P 

(R) is defined as 
4 

Y&R) zi KI;)g&R) -s(R) KZ;) . (5.7) 

A lengthly and detailed analysis is needed to evaluate the expectation values 

of u(+)T 
Y 

Yp(R). Most of the terms entering the computation turn out to be zero. 

We shall deal with this complexity by placing in the appendices the evaluation 

of the zero terms. Thus the detail exhibited in this section is somewhat more 

important since it leads directly to the desired matrix element values. For 

example we show in Appendix C that K c;)? Y&R) -0 in theR- co limit. Thus 

our problem is simplified to computing 

lim <Fy I U$+)‘[S@R) Uk) - UI;’ gP(R’] I -p;P > = lim 
R--+=J R+m 

<py I IyYp(R) I s;b > 

(5.6) 

Our expression for Yp(R) has two terms. We treat the operator K pp) 

first. Using the Eqs. (2.19) and (2.20) for K (-) t-1 - 
P 

we may write K p 9p) as 

We further expand this by expressing the singular denominators in terms of their 

delta-function and principal-value parts. We shall denote a principal-value inte- 

gral by writing the denominator terms without the customary Ai0 notation. Our 

expansion of Eq. (5.9) now reads 

(5. 10) 
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where the kernels Bi’R) are given by, 

P2CR) I’ 

$‘I 5 (R) 13 > 
p d3p; -2-2-,,2 2 (5.11) 

py+qy-pp + xp 

(5. 15) 

x ‘2; I g&R) I i$ > d3p; (5.16) 

It is now appropriate to examine the operator OK:). The kernel repre- 

sentation of g(R)Kb,) is 

<syT IL? (R) J$-) I ‘jb > 

s <Tyjq I yI(R) I qp 3 
X.7 x 

i0 a=1 
d3pl;d3ql; 

(5. 17) 
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I 

As before, we expand this in terms of its principal-value and delta.-function 

parts. We have 

4. 

<FyXi/ l&R)K(-)I$,,<~’ 6 
P P yQv I C Ai I Fb (5.18) 

i-l P 

where the operators Ai are given by 
-; -* ‘j 
,- 

(5. 19) 
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We now proceed to evaluate the matrix element given in Eq. (5.8). We 

show in Appendix B that 

When this result is combined with Eq. (5.8) we have 

Ai@)) I-+ = 0 all i f 2 . (5.25) 

(5.26) 

for y > 0. When Y = 0 this equation becomes 

C 
s(R) U1;)-U1;)~&R,31$> = Rl~~~y$lB2(R)-A2(R) I$> 

(5.27) 

At this point we stress that we have to evaluate the above matrix elements only 

for on-shell values of the momentum arguments. This on-shell requirement is 

a consequence of the delta function appearing in Eq. (4.27) and Eq. (4.28). 

We continue by considering the evaluation of the operator IyB2(R). Examining 

B2(R) we see that it is the sum of three terms. Defining B20(R) by 

then 

B2W = 5 B a=1 2cv (RI . (5.29) 

We shall demonstrate in Appendix B that only the term I B 
Y 2Y 

in the above sum 

contributes to the nonzero matrix elements. So in this section we examine only 
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IB 
Y 2Y’ 

Setting a! = y in Eq. (5.28) gives us 

We now use a property of gp(R) established in Appendix A, namely, for f(< ) 
P 

a smooth function in X and differentiable in IT I the following limiting relation 
P P 

is valid. 

lim 
R-C9 

I Bp 13’ > f($ 

Pp-PF 

In obtaining the form of Eq. (5.30) we have exploited the on-shell condition 

-2 2 “,2 2 
PY- xY= Pp -xp to write the first denominator solely in terms of the /3 momentum. 

The distinctive feature of this term which prevents it from cancelling against 

the corresponding term IyA2(R) is the fact that the singular surface occurring 

at p =p” changes the character of the R - 43 
P P 

limit. Without such a singularity 

c+&W - EP. If this were the case then B 
2Y 

(R) - A 
2Y 

(R) would go to zero. 

We are permitted to use Eq. (5.31) in evaluating the R-a, limit in Eq. (5.30) 

since the portion of the integrand excluding ~3~ 12 (R) I’;;; > / p1 -p” 
PP P PP 

is a smooth 

function of pi. This is a consequence of our assumptions in Section II 

about the physical amplitude <py IL%’ (+) 13; > , namely it is differentiable 
YP 

function of its arguments. The remaining ingredient of the integrand in 

Eq. (5.30) is the denominator F2-k -2 + 2 
y 4v-pP +xP’ 

We need only estimate its 

behavior in the neighborhood of p?12 = pl? 
P P 

So one has that 

2 -2 2 2 
i$+cpg+xp = ‘Iy’xy 1 xy 

Thus for I p’p” - p sf2 I < x”, we have the estimate 

(5.32a) 

(5.32b) 
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Employing Eq. (5.31) in Eq. (5.30) now gives us 

(5.32~) 

where $=p;l$. If we use 

(5.33) 

our expression for the right-hand side .of Eq. (5.32~) becomes 

(5.34) 

In order to find IyBW(R) we must integrate this last set of terms with 

s qyt%$* d34,1 a Since Gyis a unit normalized bound&ate wavefunction, one 

has at once that 

R-cc yy2y 
lim CT II B (R) igp> 

(5.35) 

This completes the evaluation of IyB2y(R). 

Let us now study the companion terms of IyB2y(R) that occur in Eq. (5.26), 

namely IyA2(R). As in the case of B2(R) we can decompose AZ(R) .into a sum of 

three terms. From the form (5.20) for A2(R) we can define 

(5.36) 



where A2(U@) is given by 

(5.37) 

Again we demonstrate in Appendix B that 

lim 
R -cc, 5: c! y 

<~ylIy(B2a03) -A2aWN3p> = 0 (5.38) 

So here we need consider only the term AZy(R). Using the on-shell condition 

-2 2 “,2 2 
Pr-xy = Pp -xp we may write Eq. (5.37) as 

cfyT I Azy (R) I j$> = 2n 
<z- 

S' 
% I&R) I q!jp 

Y P;: -Py 
d3p;d3q 

(5. 39) 

We now quote another feature of the operator .J? (R) demonstrated in Appendix A. 

For f E A0 and f(g’,T’) differentiable in the I$ I variable then we have the 
P P 

limiting relation 

(5.40) 

In the neighborhood of p;= py the last denominator in Eq. (5.39) never vanishes. 

Thus we are justified in using relation (5.40) to evaluate Eq. (5.39). The limit 

that Eq. (5.39) takes is 

RliTm “Y% 2Y 
-- IA (R) IF? = 2nY$y(- d 

gv’ 
pI;“pY 

(5.41) 
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A  

w h e r e  T; =  p .I;p r . O f course  th e  va lue  o f F Y  is on-shel l .  If w e  wri te o u t th e  

der ivat ive te r m  a n d  p e r fo r m  th e  in tegrat ion with respect  to  S  +  i$l* d 3 ”1  

th e n  IY q . (5 .4 1 )  b e c o m e s  

lim  
ny  d  -  

R - m  
c’;;;, I IyAzy@ ) I ? b  >  =  F;- d p  <  py  lX y p  ( + I IyT’ >  +  n Y  -  

Y  Y  
p  2  < P y 1 2 r y p  p  (f) 1  jy7 , 

2 p Y  

(5 .4 2 )  

By  comb in ing  E q . (5 .4 2 )  wi th E q . (5 .3 5 )  w e  c a n  d e te r m i n e  I - A a  . 
I 

W e  h a v e  
n  

l im  
R 4 m  

<Ty  I Iy(B2 (R)  - A2(R) )  l $b  >  =  -  +  -  

(5 .4 3 )  

T h e  s u m  o f th e  first two te rms  is just th e  to ta l  e n e r g y  der ivat ive s ince 

E  = g 2 /2 n  
P  

p  -xi =  q /2 n y - q  . S o  w e  c a n  sim p lify E q . (5 .4 3 )  to  r e a d  

lim  
R - m  

G y lIy(B 2 ( R ) - A :,@ )) I $ >  =  

-  -Jk- -t “r  < ~ y 1 3 c ~ II;ip , [ 1  2 p 1 2  2 p ; 
P  

(5 .4 4 )  

If w e  u s e  th is resul t  to g e th e r  with E q . (5 .2 6 )  a n d  E q . (4 .2 7 )  w e  o b ta in  p a r t o f 

o u r  des i red  so lut ion 

3  3  

1 i r -n  < F Y I c S y,Q a p ( R A  Ii$ p ’ =  < i$l  5  S y a Q a p l $ /!/!>  
R - m  a - o  a - o  

I 

=  2 n  & $ & y + x ;) 

i 

(+)  
n  n Y  --& ~ y I~ y ~ I~ jb>-  -++ -  [ 1  5  lsd+)  Ii;; 

2 p ’ 2 p ; y Y P  P  
>  1  

P  I 
( 5 .4 5 )  
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