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ABSTRACT 

We have found a new computer solution to the aesthetic field 

equations. This solution describes a two particle system with more 

structure than previously found. The contour lines show an arm 

structure. We have observed four arms around the maximum center. 

The location of the maximum (minimum) center is not along a straight 

line. This is the first time that such an effect has been observed for 

any kind of nonlinear partial differential equation so far as we know. 

A further discussion of the aesthetic principles leading to the field 

equations is given. 

(Submitted to Foundations of Physics. ) 

*Work supported in part by the U. S. Atomic Energy Commission. 
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1. A New Solution of JYi 0 
jktQ= 

w”, have found a set of data for the equations 1,2 

arf jk mri - 

axI + ‘jk mQ (1) 

which give a more complex two-particle system than we have obtained up to now. 

Planar maps for z = 0, 1, and 2 for a representative field component, chosen here 
1 to be lYll, are given in Figs. 1, 2, and 3. A z = 0 plot at t= 4 is given in Fig. 4. 

We have also studied the motion of the maximum (minimum) center in time. We 

find that the location of the maximum (minimum) center is not on a straight line. 

This is the first time that such an effect has been observed for any kind of non- 

linear partial differential equation, so far as we know. 

We write 

ri =e ieP eYrQ 
jk ok j UY 

The values chosen for I? are: 
PY 

r$= .I 

1 r21 = 0 

r&= .i 

r&= .I 

rt2= .I ri3=o 

ri2 = 0 1 r23= .I 

ri2=-.i ri3=o 

ri2 = 0 ri3 = 0 

rto= .i 

1 r20 = -. i 

rio = .i 

rio = 0 

r!j2= .i rf3=-.i rfo= .I 

ri2= .i ri3 = .i r2 = .I 

ri2 = 0 ri3 = 0 ril= -. i 

ri2= .l ri3=o 2 roo=o 

(2) 

’ c ,Y 
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ryl = 0 rf2= .i 

r21 -3 = -. i ri2 = 0 

rzl= .i rz2=o 

rol 3 = 0 ri2 = 0 

ryl = -. i ry2 = -. i 

r$= .i ri2 = -. i 

r& = -. i ri2= .I 

r& = 0 ri2 = 0 

The values chosen for eoi are: 

ell= .88 e 1 2 = -.42 

e2 = .5 2 

e31= 

.9 

.2 e”z e2= = -.55 

eel= .44 eo2 = -. 16 

ry3 = 0 

r13 = .I 

3 r33 = .i 

ri3= .I 

ry3= .i 

0 r23 = -. i 

ri3 = -. i 

ri3 = 0 

1 e = 3 -. 32 

2 e3= -. 425 

e33= .89 

eo3 = .39 

rTo = -. i 

rzo = . i 

rio = .i 

rio = 0 

rio = 0 

rio = 0 

rFjo = 0 

rio= .I 

1 eo= .22 

2 eo= .3 

3 eo= .6 

1 coo = 1.01 

The data above satisfies Rike # 0 integrability equations. It is not completely 

general as we have rtk = l?&. 

II. Description of the Solution 

The z = constant maps show as much as four planar maxima and minima 

centers . This is more than we have obtained previously. However, we have 

only been able to find one three-dimensional maximum and one three-dimensional 

minimum. The maximum is at x=6.161, y= 2.541, z = 3.451. Here the field 

component takes on the value 4.25 (rounded off). The minimum is at x = 8.146, 
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y= .410, z=-1.450 with l?tl = -1.94 (rounded off). The particle is seen to have 

an arm structure. We have found four arms, or tubes, coming out of the maxi- 

mum. This is the first time particles of such complexity have been uncovered 

from a nonlinear field equation. 

There is no sign of singularities anywhere and as one goes far outside the 

particle system, the field components all tend to zero. Thus, we have a similar 

situation here as in our previous particle solutions, 2,374 As we go away from 

the origin, we have not found any more particles. Also, long runs along the 

coordinate axes show no additional interesting structure. 

We next studied the way the system changes as a function of time. The 

contour lines undergo changes in time (see Fig. 4). The location of the 

maximum and minimum center as a function of time is given in Tables 1 and 2. 

When the particles are away from each other, we see that the data is 

consistent with a straight line motion. From the results at t = 0 and t = 10, we 

obtain the following straight lines. For the maximum we have 

x= -. 9592 t + 6.161 

y = -. 4314 t + 2.541 

z = -. 9100 t + 3.951 

For the minimum we have 

x = -1.0566 t + 8.146 

y=-. 3268 t + .410 

z=- .6449 t - 1.450 

(3) 

All our results for x, y, z fall within . 001 of this (except in one instance when 

it is .002). The grid used in mapping the regions around the maximum and 

minimum centers was .OOl. Thus, these results accurately describe a straight 

line motion when the particles are apart. 
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At t = 20.37 we can see from the above equations that the x, y, z positions 

of th^e maximum is within .OOl of the corresponding x, y, z locations of the 

minimum. Thus, the results are consistent with an impact in the vicinity of 

t = 20.37. This is a rather remarkable and unexpected occurrence. 

As the maximum and minimum centers approach one another, the fields 

become greater in magnitude. Furthermore the field changes markedly within 

small dimensions. This necessitates smaller and smaller grids in order to 

follow the collision. Here, limitations in computer time becomes a factor. Thus, 

the decision was made to follow the particle at times somewhat after the impact. 

The maximum (minimum) center no longer lies on a straight line tr.ajectory. 

A schematic picture of what occurs is given in Fig. 5. The results are best 

explained by the maximum and minimum centers “bouncing” off one another. A 

further examination shows that the particles reflect off one another (see Fig. 5). * 

This is a simple form of scattering. 

Another possible interpretation of Fig. 5 is that the maximum (minimum) 

evolves into a minimum (maximum) much like a sine wave maximum can evolve 

into a minimum as time goes on. However, we have not found any evidence, 

from our computer results, for a maximum going into a minimum in a continuous 

manner. 

At t= 100, we verified with a very course grid that along COB in Fig. 5, 

I?:1 gets smaller in magnitude. Its value here was found to be -1.08. 

*Zabusky and Kruska16 worked with a one-dimensional nonlinear equation and 
found “pulse” like solutions that travel through one another. No evidence 
for a “bouncing” off effect was found. The “bouncing?’ off effect has not been 
observed previously, even in one dimension. 
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III. Aesthetic Principles 
h 

In the course of our work on aesthetic field theory, we have introduced 

several modifications from time to time. We would like here to give a rederi- 

vation of the basic equations in order to clarify several points. 

As most field theories allow for a vector field, we shall start off by 

assuming the existence of a vector field. 

We write for the change of the vector between two points in Cartesian 

space 

dAi = r! A.dxk 
lk J (5) 

Using continuity, we have 

8Ai 
-= 
,3Xk 

r3 A ik j (6) 

dAi should depend on the displacement between the two points. We drop possible 

contributions of order (dx)2 and higher. dAi should also depend on A.. To make 
1 

things more general, we could allow I” 
jk 

to be a function of Ai, among other 

things. I’ik is called the change function as it determines the change of dAi. 

In standard tensor analysis, there is no difference between covariant and 

contravariant indices in an orthogonal coordinate system. However, our intro- 

duction of upper and lower indices has a different purpose. In our approach, 

the coordinate system is just an arena for the dynamical fields. If we consider 

a field g.., jk 
1J 

we can introduce a dual or inverse field g such that gijg jk= $ . . 
1 

. . 
Thus, glJ is just the cofactor of g ij divided by the determinant of gij . In other 

words, gjk . 1s just an abbreviation for certain combinations of the field compo- 

nents g.. . 
1J 

Thus, the upper indices carry dynamical information and does not 

represent parallel projection of a vector on the coordinate axes as distinguished 

from perpendicular projection. 
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Thus, we have argued that it is legitimate to introduce upper indices in 

a cas^tesian coordinate system. Fields with upper indices carry dynamical 

information. 
. . 

This is all well and good if glJ exists at all points, In our initial work on 

aesthetic field theory, we assumed that g.. - (-1, -1, -1, 1) at infinity, and 
1J . . 

it was supposed that glJ could then be defined at all points. However, in such a 

theory it was necessary for an infinite number of restrictions to be imposed on 

I” at the origin point. 5 
jk 

All invariants formed from I’i 
jk 

and gij had to be zero 

at the origin. Such a set of initial data is not easy to come by. Nevertheless, 

we did find some examples of such data. However, in none of these examples 

did we find a bounded solution. 
. . 

In the case that glJ exists at all points, we may introduce Ai by Ai =gijAJ. 

Then we get 

We have found better computer results with data that appears to satisfy 
. . 

g-. 1J 
- 0 at infinity. Then since g=O at infinity, we conclude that giJ is not defined 

at all points. Thus, we have to be careful and not introduce inverse fields when 

they are not defined. 

If we introduce a set of basis vector fields eoi , the dual field would be 
. . 

defined by e”eoJ= S? . Then we could use eoi 
1 

to introduce a dual field, if 

CY 
e .--6 

1 
” at infinity. However, we have never given any proof that this boundary 

condition can indeed be satisfied. 

On the other hand, once we have established the point that the upper indices 

have dynamical character, we may realize that it is not necessary to discuss the 

introduction of upper indices in terms of inverse fields for g.. and eoi. 
1J 
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The difference between two vectors in a Cartesian space is a vector. The 

role Gf the upper indices in (6) is to denote scalar products. This is a dynamical 

way for introducing a scalar product. We make the requirement that r$ act 

like a vector. This fixes the change of upper index fields, to have the same 

structure as (7) (we make use of the field equation (9) which is obtained below). 

Thus, in order for lYt tk to behave like a vector so far as its change is 

concerned, the change of upper indices is fixed according to (7). 

For the change of a 2nd vector field, we write 

dBi = dk Bjdxk (8) 

We are assuming the existence of a 2nd vector field Bi. (This is no problem 

since from r1 
jk 

we can construct I’ik and J?it . ) We are assuming, also, that 

Ii 
jk 

is a universal change function that determines the change of all vector fields 

in a uniform way. It is our philosophy that a vector being an array of numbers, 

should behave like any other vector field so far as its change is concerned. 

Going one step further, the change function should determine the change 

of all tensor fields with a tensor behaving like a product of vectors so far as its 

change is concerned. This leads to the field equations for the change function 

. arik + rm i 

dXQ 
jkrmQ 

Another way to justify the field equations is to argue that (9) constitutes a 

field equation with the following desirable aesthetic properties: 

a) All products of the field, and contractions of the field, are 

treated in a uniform way as far as their change is concerned. 

b) All higher derivatives of the field are treated in a uniform 

so far as their change is concerned. 
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C) Computer studies suggest that the field is analytic. 
4 

d) Computer studies suggest that I? 
jk 

- 0 at infinity may be 

satisifed. 

e) No arbitrary functions appear in the theory. 

Thus (9) can be considered a “fait accompli7’ so far as these aesthetic ideas are 

concerned. 

Note, in this approach, it is not necessary to introduce g.. as an inde- 
1J 

pendent field (by independent we mean that arbitrary parameters are assigned 

to gij at the origin point). 

From I’ik we can form objects like gij z JYt.Is. . 
tl SJ 

However, since I? -0 
jk 

at infinity, gij would also go to zero at infinity. Then, $j would not be defined 

at all points. This tells us that we can not indiscriminately introduce inverse 

fields once we impose the condition ri - 0 at infinity. 
jk 

IV. Discussion 

By now we have obtained many solutions to the integrability equations. 

These solutions consitute the initial data for the partial differential equations. 

The resulting maps are very dependent on the choice of initial data. For 

example, if we choose all I” 
jk 

equal, then it can be shown that singularities 

develop. Also, we found’ another set of data for which singularities can be 

shown to exist. We have, as yet, been unable to produce data that can be con- 

sidered general. For’example, the data in this paper obeys l?ik = I’it. This 

restriction is maintained at all points as a consequence of the field equations. 

Thus, a hypothesis we can make is that the most aesthetic type solution of the 

integrability equations should be free from unjustifiable constraints that are 

preserved at all points. 
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In our minds, we can think of all sorts of functions that allow for many 

par;cle particle behavior and obey natural boundary conditions and have no 

singularities associated with them. Even though we can conceive of such func- 

tions in our minds, it would be a more difficult matter to write down a mathe- 

matical form for them. Our viewpoint is - of all these possible functions that 

can be constructed, the correct one would conform to mathematically aesthetic 

ideas. The many solutions we have found over the years can be looked at 

within this context. Solutions without unnatural constraints would be considered 

more aesthetic, 

We have pointed out that our data is not entirely general. Thus, there is 

no reason to believe that our present solutions are the most complex that the 

aesthetic field equations are capable of. We can expect that there is still a 

wealth of information within aesthetic field theory yet to be uncovered. 
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Table I: Location of Maximum Center as a Function of Time 
4\ 

Time Location of Maximum Center 

x= 9.997 

Value of I’& (rounded off) 

t=-4 y=4.266 3.55 
z=7.591 

x=6.161 
t=o y=2.541 

z=3.951 

t=4 

t= 10 

t=20 

t=20.8 

t=21 

t=25 

t=30 

x= 2.324 

y= .815 

z= . 311 

x=-3.431 

y= -1.773 

z=-5.149 

x= -13.022 

y=- 6.086 

z = -14.249 

x= -13.831 

y=- 6.387 

z = -14.864 

x= -14.042 

y=- 6.452 

i z=-14.993 

x=-18.268 

Y=- 7. 758 

z=-17.572 

x= -23.551 

y=- 9.393 

z=-20.797 

4.25 

5.29 

8.24 

231.67 

92.88 

63.23 

8.56 

4.11 



Time 

t=-4 

t=o 

t=4 

t=10 

t=25 

-1 
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Table II: Location of Minimum Center as a Function of Time 

Location of Minimum Center Value of l?il (rounded off) 

x= 12.372 

y= 1.717 -1.62 
z= 1.130 

x= 8.146 

Y= .410 

z = -1.450 

x= 3.92 
y=- .897 

z = -4.030 

x=-2.420 

y=-2.858 

z=-7.899 

-1.95 

-2.42 

-3. 82 

x= -17.817 

y=- 8.243 -18.71 
z = -18.799 

x= -89.750 
t= 100 * y= -40.592 -1.08 

z=-87.048 

*Grid here is too course for an accurate determination of location. 
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Figure Captions 

1. 

2. 

3. 

4. 

5. 

1 Map of I’ll at z=O, t=O. Approximate ranges: x= -. 2 to 11.8; 

y=-9 to 9.6 . Contour numbers are truncated. That is .49 is read 

as .4 andnot .5. However, the zero is roughly the true zero. 

Contour lines around the maximum and minimum are described by an 

additional decimal place. 

1 Map of I’ll atz=l, t=O . Approximate ranges: x= -. 2 to 11.8; 

y=-9t09.2. 

1 Map of I?11 at z=2, t=O. Approximate ranges: x=-.2 to 11.8; 

y=-9 to 9.2. 

1 Map of rll atz=O, t=4. Approximate ranges: x= -4.2 to 12.2; 

y=-10.6 to 11.4. 

Schematic drawing of collision process. The location of the maximum 

(minimum) center is not on a straight line. 
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