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ABSTRACT 

The contribution to the anomalous magnetic 
moment of the electron from the eighth-order 
triple-bubble diagram is evaluated. The value 
obtained.is 



One of.the most crjXica1 tests of quantum electr0dyziamics.l .fs the ' 

comparison between theory and experiment of the anomalous magnetic moment 

of the electron. The current situation 2 is as follows: 

a pp = (1159656.7 + 3.5) x lo-' 

atheory 
e = (1159651.9 + 2.5) x lo-' 

(1) 

(21 
3% Y 

The theoretical result was obtained using c1 -' = 137.03608 (26) and the Levine $9 
3 _ :T. 

and Wright result. With the likelihood of continued improvement in the 

experimental accuracy, as well as on the theoretical side, the reduction in 

numerical integration errors provided by the on-going program 4 to analyt- 

ically calculate previously numerically-determined sixth-order contributions, 

it is not unreasonable to suggest that, in the future, eighth-order calculations 

will be necessary. 

In the case of the muon, estimates of the eighth-order contributions have 

been made. 5,6 But for the 891 diagrams (this includes mirror graphs) whose 

mass-independent contributions yield the eighth-order electron magnetic moment, 

no calculations have been made. Presumably, there will be tremendous cancella- 

tion among many contributions yielding a value 7of order (t)4, but, of course, 

no one really knows. 

To show that eighth-order computations are not completely unreasonable and 

to make a small beginning at such a vast program, we outline here the analytic 

calculation of the contribution to the electron magnetic moment from the triple- 

bubble diagram. Admittedly, this is not one of the more complicated contribu- 

tions to be evaluated; but,‘ nevertheless, it represents a start. 

We begin with the following parametric expression for the triple-bubble 

contribution. 8' 

ae3 
KC (;)4 j-; dx(l - x) .{,;: dF2y2(1 - y2i3) I3 

x (1 - y2> + 4(1 - x) 
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The y-integral is easily done, leaving only the one-dimensional integral 

over X. 

.(;) ; $. (9 4 1; dx(lmx) {-,$ + 4(:;x) + (x-2) (x2x; 2x - 2, 
e In (1-x)13 

= & $1” {I,,, + I222 + I333 + 31112 + 31113 + 31122 + 3Il33 -m .: 

+ 3f223 + 31233 + 61123' 
(4) .iF- 

where 

{I 111' 1222s '333' '112' '113' '122' '133' '223' '233' '123.) 

- 10' ax(l-x) Ia3, b3, c3, a2b, a2c, ab2, ac 2', b2c,*bc2, abc) (5) 

with 

5 as-- 
3 

b = 4(1-x)/x2 

and c = (x-2) (x2 + 2x - 2) In (l-x) 
X3 

(6) 

Although the sum of the.terms in eq. (4) is, of course, finite, by split- 

(8) ting up ae3 in this way, terms which diverge have been introduced. Specifi- 

cally, terms occur for which 

lim ,1 e-to LE dx(l-x) aibjck diverges. 

By very carefully keeping track of these quantities, it will be shown that the 

03) divergences cancel in the sum, and the finite quantity, ae3 will be obtained. 

This-approach was first checked out by evaluating the fourth-order single- 

bubble and the sixth-order double-bubble contributions to ae. The divergences . 

cancel and the well-known results are obtained. 

a 2 119 = (7) m- ( 36 (7) 



and 

.a(6) e2 = (;I' (- 943 - 482 + f C(3)) (8) 
324 135 
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03) We now proceed to evaluate ae3 using eqs. (4), (5), and (6). A table 

of integrals used in the calculation is presented in the appendix. In what 

'1 follows, it is understood that Ii dxf(x) represents 1s dxf(x) and the E+O 

limit will be taken for appropriate sums of terms as described below. 

By making use of the lower-order calculations leading to eqs. (7) and 

(81, or by a direct computation, it is easy to see that the combination 

(1 111 + 31112 + 31113 + 31122 + 31133 + 61 123) is finite. Either way, one 

obtains 

Ill1 + 31112 + 31113 + 31122 + 31133 -I- 61123 = -120<(3) + 293~~ + 2;;' 
(9) 

This means, of course, that the sum of the remaining terms (I222 + I333 + 

+ 31223 + 31233) must be finite. Evaluation of these terms, however, is much 

more complicated, and so, in this case, some details of the computation are 

given. 

The four remaining terms are considered individually, in order of in- 

creasing complexity. I222 is easily evaluated. 

I222 =,-64 "64'-128 ; '128'564 +'64 
5+-T e273--- 

5s5 
(10) 

In order to evaluate 1223, we make use of integrals (Al) - (A8) of the appendix. 

Writing 

I223 = 16/l dx' E- $ + 'z + 23 - _ o X X 

and substituting in the values of the integrals we obtain" 
. 

W 
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'223 = 8x2 
3- 

- 14078 
225 

+ 496 lne 
15 

+ 96 88 (12) 

For 1233, we have 

1233=4j~.{l-2_11.32+~-~+~_ 
X x2 x3 

80. 163 ln2(1-x) 
,X x7 ~$3 

(13) 
-Y 

Using eqsi (A9) - (A17), we find 

'233 = 4 I-46(3) - 1871r~ + 14543 - 494 -1027 - lna 12 C 248 - 16 + 16 
315 450 45 Ji-s E233 2 5x3 

a41 

The most complicated term is 1333, which involves integrals (Al8) - (A27). 

It may be written as 

I333 30 252 24 600 720 352 = 10 1 ex l-x + ,1 + -;; 18 - --$ - 96. ,4 + --$ - ,3 ,6 + v-m x7 x8 

+ $3 ln3(l-x) 

After a good deal of algebraic manipulation, it is found that 

I333 = -1085(4) -t 12725(3) - 369T2 - 558163 + 7 35 4200 488 15 Ins + 2284 + 15s s- E 304 
3s3 

+ 64 - 64 
z 5s5 

(15) 

(16) 

where C(4) = f S2(2) = < 
(17) 

From eqs.. (lo), (12),, (14), and (16) we.find 

I222 + I333 + 31223 + 31233 = -1085(4) + y c(3) - 2;r2 + 3;;' 
(18) 

All of the divergences have indeed cancelled out, and, as well, a curious 

tremendously-large cancellation among the finite parts has occured. 

e The final result is now obtained from eqs. (4), (9), and .(18). 

(8) 
ae3 = (f-)*' f-45(4) + $$ ~(3) + 151849 3 

40824 

I) 

(19) 
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Interestingly, the term proportional to ~(2) (or r2) has cancelled out in 

the final result. The numerical value' 

.(8) 
e3 = .000876866 (t)” (20) 

is of the order of magnitude expected on the basis of the estimate method 

described in ref. 6 (classes I and J). 
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APPENDIX 

We present here a table of integrals used in the calculation. The meaning 

of the divergent integrals is as described in the text. 

Ii dx ln(l - x) = -1 

/1 dx o -;; ln(1 - x) = $- 

= lne - 1 
\ 

Ins 1 I; 5 ln(1 - x) = -?j- - 1 7 
X lzz -2E+.18 

\ 

1 1 113 
6E'2-4E +m 

lnc 1 1 

1; dx(1 -x) ln2(1- x) =k 

1: " ln2(1 - x) = 25(3) 

IOTln2(l- x) =$ 1 dx 
X 

Ii $j ln2(l - x) = 
2 

-1ne I- 
X 

p+,j 

1; 5 ln2(l - x) = -Ins + 
X 

L+B+ E 9 2 3 5 

Ji+ln2(l- x) = -+j Ins + & + E 
2 59 

X 
L+s+- 144 

1 dx 
/o ,6 ln2(1 d = 5 

K Ins 

(A3) 

(A4) 

(fi) 

(A61 

(A7) 

(A8)' 

(A91 

(AlO) 

&l) 

I 

(A12) ' 

(AL3) 

(A14) 

(A15) 



Ii 9 ln2(l i-gj 137 - 1 

2 

- x) = - 1nE + X 4s4 +363+24E2+6~ 1 11 L.+L-- 18 37 3600 

+_11+5 137 3 71 

kiE3 ik2 +iK+Ti-- 600 

I; d&l - x) ln3(l - x) = - 5 

ji % ln3(l i x) = -65(4) 

1; % ln3(l - x) = -65(3) 
X 

1: % ln3(l - x) = 
X 

-35(3) - g 

1.dx 2 11 IO 3 ln3(l - x) = Ins - 2<(3) - 5 - -g 

llTr2 17 --_- 
24 8 

Ji%ln3(1-x) =tlnr-l------ 3 2e 5 6<(3) 
2B2 

_- BITT 12 -240 479 
X 

/I Tln3(l dx - x) =LZlnE------- 1 3 7 g(3) - - 137s2 - - 169 
o 3s3 4E2 4E 360 96 

X 

(A161 

w-7) 

. 

(A201 

(A211 

(A=) 

(A231 

(A241 

(A25 1 

W6) 

" '. =$ElnE------------ 1 3 7 '15 .29 15E: 4 31;(3) 

5c5 8c4 12E3 16~~ 
:, 363~~ 1120 

X 

-9600 12307 ' 

(A27: 



4. M. Levine and R. Roskies, Phys. Rev. Lett. 30, 772 ‘(1973); K. A. Milton 
Wu-ynag Tsai and L. L. DeRaad, Jr., Phys. Rev. E, 1809 (1974); L. L. 
DeRaad, Jr., K. A. Milton and Wu-Yang Tsai, Phys. Rev. E, 1814 (1974); 
J. Mignaco and E. Remiddi, Nuovo Cimento s, 519 (1969); S. Barbieri, 
M..Caffo and E. Remiddi, Nuovo Cimento Lett. 2,769 (1972); D. Billi, 
M. Caffo and E. Remiddi, ibid 2, 657 (1972); R. Barbieri, M. Caffo and 
E. Remiddi, CERN preprints TH 1801 and 1802 (1974). 

- 
8 

REFERENCES 

* Permanent address. 

. . . 

1. N. M.'Kroll and V. Hughes , Proc. III Conf. on Atomic Physics, Boulder, 
1972; S. Brodsky and S. Drell, Ann. Rev. Nucl. Science 20, 147 (1970); 
B. Lautrup, A. Peterman, and E. de Rafael, Phys. Lett. 2, 193 (1972); 4 ,2 
S. Brodsky, Proc. Summer Inst. on Particle Physics, SLAC, 1973. 

2. J. C. Wesley and A. Rich, Phys. Rev. A4, 1341 (1971); S. Granger and 
G. W. Ford, Phys. Rev. Lett. 28, 1479 (1972). 

3. M. Levine and J. Wright, Phys. Rev. Lett. 26,135l (1971) and Phys. Rev. 
D8 3171 (1973); T. Kinoshita and P. Cvitanovic, Phys. Rev. Lett. 2, 
1534 (1972); R. Carroll and Y. P, Yao, Phys. Lett. my 1125 (1974). 

5. B. Lautrup, Phys. Lett. 38B, 408 (1972); B. Lautrup and E. de Rafael, 
Nucl. Phys. E, 317 (19m. 

6. M. A. Samuel, Phys. Rev. I& 2913 (1974). 

7. An educated guess is.a, (8) - -q4. See ref. 6. 

8. T. Kinoshita, 11 Nuovo Cimento s, 140 (1967). 

9. A numerical check agrees with eqn. (20) to the accuracy shown. C. Chlouber 
and.M. A. Samuel, VAC 4,,unpublished (1974). 


