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ABSTRACT 

If the symmetry of the theory under global transformations generated 

by the charges is normal, the physical states of the system must be color 

singlets. (Th is is analogous to the physical states of two-dimensional 

quantum electrodynamics being neutral. ) Consequently, the local color 

currents vanish in physical states. The (two-dimensional) inhomogeneous 

Lorentz invariance of the theory is also discussed. 
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1. INTRODUCTION 

In the past year, the discovery of asymptotic freedom in non-Abelian gauge 

theories’ has been accompanied by enormous enthusiasm over the tantalizing 

possibility that this class of theory might also provide a mechanism for con- 

fining quarks. The hopes that exist in this direction arise from the observa- 

tion that such theories are very infrared singular.2 Calculations employing 

renormalization group techniques indicate the effective coupling constant grows 

at large distances, which suggests it may be energetically favorable for the 

quanta of the theory to condense locally in regions of space. We have here a 

sort of Orwellian democracy, where you are free only as long as you don’t 

wander off too far. 

So far there are no firm calculations that actually support these hopes, or 

more ambitious speculations based upon them, in four-dimensional space time. 

Of course entrapment might also occur in theories which are not of non-Abelian 

gauge type, as indicated by several recent investigations. 3 Nevertheless, the 

basic aesthetic reasoning underlying Yang-Mills theories4 is so appealing that 

it is urgent to explore further whether the behavior suggested by the renormali- 

zation group is in fact realized. 

In this paper, we examine Yang-Mills theories based on arbitrary simple, 

connected, compact Lie groups in one time and one space dimension (TDYM). 

For simplicity, we shall call the physical meaning of the group “color”, so 

that, for example, states that transform as singlets are colorless, etc. The 

basic result of our investigation is that 

<1cI’ ,,,,l$$,t)l ephys’ = o t U-1) 
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where J;(x, t) is any component of the local conserved color current, and 

where I qphys > are necessarily colorless states. This means that no physical 

state of the system can contain isolated observable colorful components. For 

this statement to make any sense, we require that the charges be %ormall’, 

i.e., that the symmetry is not realized in a Na.mbu-Goldstone manner. 

Our result generalizes a recent discovery by ‘t Hooft that quarks are 

absent from the asymptotic slates in U(N) TDYM, when N tends to infinity, with 

(gN) fixed. 5 As in ‘t Hooft’s calculation, we observe the only way the growth of 

the Coulomb energy with spatial separation can be kept from diverging is for 

screening to develop, so the net sources of the “electric” fields add up to zero. 

This in turn obliterates the single quark propagation. The non-Abelian character 

of the group leads to Eq. (1.1). 

It is because the essential features of TDYM arise from the infrared 

behavior of the theory that we consider our investigation relevant to what can 

occur in four dimensions. At the very least, one might have considered the 

trapping arguments in four-dimensions to be far shakier if a general result 

could not be found in two dimensions. Much more speculatively, if (in the 

broader sense of the renormalization group approach’) large momentum field 

components are integrated out7 of a four-dimensional gauge field theory, it may 

be that a two-dimensional structure remains to control the infrared behavior 

of the theory. 8 

The paper is organized as follows. In Section II we examine TDYM in the 

axial gauge. Elimination of the timelike gauge fields is carried through, so 

*- the theory involves only fermion degrees of freedom. Commutators of the 

k components of the stress-energy tensor are evaluated to examine questions of 

inhomogeneous Lorentz invariance. It is discovered that the algebra of densities 
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contains anomalous pieces, but these do not affect Lorentz invariance. In 

Section II we derive Eq. (1.1). It is noteworthy that detailed dynamical calcu- 

lations are not necessary to establish this result. In Section IV we discuss our 

result, with emphasis on the implicit assumptions that go into the derivation. 
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II. THE YANG-MILLS THEORY IN TWO DIMENSIONS 

In the first part of this section, we review the canonical TDYM theory, 

and eliminate the gauge field degrees of freedom by working in the gauge 

A;(x) = 0. In the second part, we examine the general form of the one dimen- 

sional Green’s function, and discuss a prescription for dealing with integrations 

by parts and surface terms. Finally, we examine the inhomogeneous Lorentz 

covariance properties of the theory, utilizing the approach of Schwinger , and 

resolve an apparent difficulty that arises. 

A. TDYM in Axial Gauge 

The TDYM theory is based on the Lagrangian density 

z=-$Fa 
PV 

Fpva + i$r’(a, +ig 2 t” A;) +, 

where the gauge invariant tensor 

ppv =avAa-aAa 
CL 

cL v -g(fbcA;Ac . 
V 

(2-l) 

(2.2) 

The greek indices takes values (O,l), with Minkowski metric go0 = 1, g”= -1. 

Latin indices are the group indices, and C abc are the real, totally antisym- 

metric structure constants of an arbitrary simple, connected, compact, Lie 

group. 

We may choose a representation for the Dirac matrices ycl where 

0 1 Y”= 1o ; ( 1 Yl = 0 1 
( 1 -1 0 ; 

y5 = yoyl = ( 1 -lo =-(T 
0 1 3 ’ 

-(Note: yl is not Hermitian. ) However, for our purposes this is totally 
g. 

irrelevant. 
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au Fa 
PV 

abc Fb vi-l AvC 1 ; 
where 

j;(x,t) = T (x,t)Yy. $ WJ) 

(2.3) 

(2.4) 

G-5) 

is the gauge-invariant fermionic contribution to the current. 

We now exercise the freedom of gauge choice to set At(x, t) = 0. The 

essential simplification of the theory in this gauge manifests itself in the form 

taken by Eq. (2.4), 

a: A:(b) = -g jt@,t) , (2.6) 

since GI(x, t) = a,Ai(x,t). Equation (2.6) is non-dynamical (no time deriva- 

tives are involved), so Ai can be solved for, 

A;(x,t) = -g 
/ 

h’ Wbx’) j:W ,t), P-7) 

where 

a: V(X,X’) = 6(x -x’) . (2.8) 

Since ( aoAt) is absent from 9, At has no canonically conjugate momen- 

tum, and (2.7) may be used to eliminate At from the theory completely. Of 

course, it will be convenient to carry it along as a concise expression for the 

right-hand side of (2.7). 
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Quantization of the system is carried out by imposing the canonical anti- 

commutation relations 

{G”,” (x,t), 4$&t)} = gab sap 6(x-y), (2.9) 

where CY and P label the Dirac components of $ . The fermionic currents j a 
P 

satisfy the current algebra 

[j:W). j$Wj = i Cabc jE(x,t) 6 (x -y), (no sum onp) ; (2. lk) 

=iC abc .c 
J,(X,t)~(X-y)+ ia 6 

ab 
axm -Y) . (2. lob) 

This form of the current algebra is true under the assumption it is deter- 

mined by the short-distance behavior of the free theory. Equivalently, it is 

determined by postulating a free-field fourier decomposition for $(x, t) at fixed 

time. The time evolution of the system is then determined by the Heisenberg 

equation of motion. The coefficient of the Schwinger term in (2. lob) may be 

calculated explicitly under these assumptions, and is a c-number, (r = (2~) -1 . 

It is finite because we are working in two-dimensions. 9 

Since A:(x) t) is not an independent dynamical variable, its commutation 

relations are entirely determined by (2.10). In particular, 

[Ai@,t), Ai(y,t)l = ig’ Cabc du V(x,u) V&,u) j:(u) . (2.11) 

The non-trivial structure of this commutator is, of course, a consequence of 

the non-locality of the definition of At. The commutator of field strengths 

PO1 will be seen to have a more transparent form once we specify V(x,x’) with 

greater precision. 
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For the moment, it suffices to notice that in spite of (2. ll), the vector 

current with components 

Jad(x,t) = jt(x,t) ; (2.12a) 

(2.12b) 

is conserved. This is expected from the equation of motion (2.4). However, 

the symmetrization noted in < is required for actual conservation because of 

(2.11). It is also required, in any case, for Hermiticity. 

B. The Potential V(x,xl) and Surface Terms 

So far, no form has been specified for the “potential” V@,x’), Eq. (2.8). 

A general solution to that equation symmetric in x and x’ is 

Ix - X’I 
V(x,x’) = 2 +Axx’ + B(x +x’) + C. (2.13) 

where A(C) may be given dimensions of L -’ (resp. L). We will refer to the 

novel terms in V as the A, B, and C-terms for short. One expects the A- and 

B-terms to break translational invariance, and indeed the A-term does so in 

a violent fashion. The reader may verify this for him (her) self in the expres- 

sions appearing in Section II. C. Carrying the A-terms is cumbersome and in 

the end uninstructive, so we shall set A = 0 for our presentation. The B-term 

turns out to be more subtle, however, and will be retained for the present. 

Physically, the A, B, and C terms affect the boundary values of V. Thus, 

we must preface further discussion by commenting on integrations by parts. 

Whenever integrations by parts are performed on operators involving the fields 

$(x, t), we make the conventional prescription that wave packet rather than plane 

wave expansions be used, such that surface terms damp to zero. 10 Not all 
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surface terms will involve the field points at the spatial boundary explicitly, 

however, and in these cases special care must be taken. Typically these 

dangerous surface integrals involve V(x,x’), with one of its arguments at the 

boundary. These quantities can diverge linearly. 

An illustration (mild because 8,v enters) of the need for a prescription is 

provided by integrating the time component of the Maxwell equation over all 

space : 

$ltx.t)(z = -gQa , 
X 

(2.14) 

where the charge Qa = /dx ji; and where Xx denotes the “surface” in the 

single spatial variable x. The validity of this identity is, of course, guaranteed 

by 

a,Vcd)(, = 1 , 
X 

which follows directly from (2.8). 

Explicitly, though, one is assigning a value to E (z) for z = f 03. A con- 

sistent way to do this is to work in the spatial interval [L, -L] , then take the 

lim L -L 00 at the end of the calculation. That is, 

lim 
L-LOL) 

dw l (w - dw f(w) ; 

thus 

lim I? (*L) = rgQa/2 . 
L-03 O1 

Note that (2.14) places no constraint on B or C. 

i & A second example is provided by the requirement that charge be conserved. 

t.. This holds if <(x,t) vanish on the surface of x. Referring to (2.13b), the 
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condition is that 

Cabc // dudv [j~@L j:(v)} [v(w)a,v(x,v$zx = o . 

The surface term is evaluated for finite L, and anti-symmetry of Cab” is used 

to show that the terms involved are identically zero for any value of L. Again, 

no constraint is required for B or C. 

Once momentum conservation is established, it is possible to discuss sur- 

face terms in another fashion, by taking matrix elements between states of 

definite momentum: 

WGI~ - 
i(k - kl)x <kl e(O)lk’ > , 

X 
(2.15) 

where 6 (x) is an arbitrary displacement invariant operator. The value of the 

operator at spatial infinity does not appear explicitly. An example of this 

method will be given in Section III. 

Finally, making use of the ] L, -L] prescription, we can now express, from 

(2. ll), 

C b 
Fa,,(W FO1(X'A 1 =-igC abc V(x,x’) F&(x') 

+ a,,~(x,x') F&(x) + g Qc(B2 - W] . (2.16) 

This commutator will be important for our consideration of inhomogeneous 

Lorentz invariance, to which we now turn. 

C. The Schwinger Algebra 

To study questions of Lorentz invariance of TDYM, we will calculate the 

Schwinger algebra of the components of the stress-energy tensor. 11 
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A superficially symmetric, conserved, gauge invariant candidate for this 

tensor is 

In particular, in the gauge A: = 0, we have 

8 00 =; F;lF”dl-; J,+r5 xii,; 

p z2 - - ; Fad1 F;l, - 

go1 = 

(2.17) 

(2.18a) 

(2.18b) 

These expressions for the components of the stress-energy tensor are in agree- 

ment with the results of Schwinger, when his formulae are specia.lized to the 

two-dimensional Minkowski space. Making use of (2.18), we can systematically 

work out the desired algebraic relations: 

1. The Hamiltonian is 

H = 
I 

dx eOO(x,t) 

2 
ZZ - i 

/ 
dx ef r5 ax ICI - % dxdx’ V(x,x’) j:(x,t) ji(x’,t) 

+ <Q2[ C + 2L(B2 + l/4)] (2.19) 

Here Q2 is a convenient abbreviation for ZaQaQa. The term written propor- 

tional to L in H is an infinite operator quantity. However, it can be removed * s 
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by adding an extra piece to the energy density, ’ 

6 00 - coo + /3 Q2 , 
where 

P g,” (B2 = - - + l/4) . 

Notice that even if B = 0, ,f3 # 0 for non-vanishing’coupling constant. 

also be noted that the C-term in V(x,x’) exactly cancels the term ( k 

exhibited in (2.19). 

The spatial displacement operator 

P = JdxsO1, 

then turns out to be time-dependent, 

aoP = i[H, P] 

zz - &2 
2 &a 

(2.2Oa) 

(2.20b) 

It should 

g2Q2C) 

(2.21) 

(2.22) 

This is, of course, the explicit violation of displacement invariance that one 

naively expects from the B-term in V. To conserve momentum, we need B = 0. 

However, the next calculation will show that we have not simply been erecting 

a straw man by keeping B # 0. 

2. Using the commutator (2.16), and the modified energy density given by 

(2.18) and (2.201, we find 

eoO(x’,t) 1 = - ia,S(x -x1) C eol(x,t) + ool(x',t) 1 
+ i g2(B2 F,O’(x,t), F;I(x’,t) . (2.23) 

We have smeared on test functions to obtain the canonical terms of the algebra, 

and more singular C-number contributions have been neglected in this formula. 
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The extra non-canonical piece that is exhibited here can be traced to the 

P2 - l/4) c abcQc term in the [F@‘, F~] commutator, Eq. (2.16). This 

term survives in these calculations because it is not legitimate to disregard 

surface contributions of this type, as we have already explained. 

Schwinger observed a similar phenomenon in the full four-dimensional 

Yang-Mills theory years ago. ‘i He found that the commutator of space-like 

separated energy densities involved anomalous terms, which could only be 

removed by non-trivially modifying the definition of the energy density. However, 

the modifications needed to salvage the energy-density algebra required the 

existence of genuine transverse dynamical gauge field degrees of freedom. 12 

These are totally absent from the two-dimensional theory, so Schwinger’s 

procedure cannot be carried through in this case. 

We seem to be in the position, therefore, that either momentum conserva- 

tion is violated (if B2 = l/4), or the energy-density algebra fails (if B = 0). 

On the other hand, the Schwinger commutator conditions are sufficient, 

but not necessary, conditions for relativistic invariance if interactions with 

gravitation are not taken into account. 13 It is reasonable to inquire whether 

the TDYM theory cares about the anomalous terms, since its inhomogeneous 

Lore& group is much smaller than the ten-parameter Poincare group of 

four-dimensional space-time. 

3. To investigate the possibility that has just been raised, let us now set 

B = 0 to maintain displacement invariance, and observe the following properties 

of 

a 
FOIW) = - f / 

dy E(X - y) j%Cv,t) . (2.24) 
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First, with the [L, -L] prescription, we have 

I 
dz E(Z) = 0 , 

so that 

I 
dx Fa,,(x,t) = 0 . 

Secondly, one easily finds 

/ 
dxx sl(x,t) = - $ Qa . 

(2.25) 

(2.26) 

Now, condition (2.25) assures us the extra piece in (2.23) does not contri- 

bute to ~oeoo = i [H, 60°] . Thus, the energy-momentum density is indeed 

conserved, i. e. , acl 8 O/J =o . 

Next, to insure 8 kJ ’ transforms properly as a tensor, we must satisfy the 

commutation relation 11 

i [Is”(x,t), K] = [“oax - x a,] e”(x) 

+ 2 eOl(x) , 

where the “boost*’ operator 

K= x”P- 
I 

dx x eoo(x,xo) . 

However, Eq. (2.27) is violated due to (2.23), by a term proportional to 

L2 Cabc Qc (Q”, F~lO] , 

(2.27) 

(2.28) 

where (2.26) has been used in obtaining this result. Fortunately, one can use 

the anti-symmetry of C abc to prove this term vanishes identically. 
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But now we are done, because there are no purely spatial rotations in the 

two-dimensional Minkowski space. Thus the inhomogeneous Lorentz algebra 

is perfectly acceptable even if B = 0. (Actually, the full [e”(x), e”(x’)] 

equal time algebra has not been displayed, but the reader can easily check that 

it holds, provided ,90° - 60° + p Q2 is accompanied by 6” - 13~~ - p Q2. ) 

To summarize, we have seen TDYM is Lorentz invariant in the gauge 

AT = 0, with 

Ix -x’I V(x,x‘) = 2 +c (2.29) 

giving 

H = -i 
/ 

dx $‘-y5 a, # - $ dxdx’ Ix - x’ I j:(x) jt (xl) . (2.30) 

This Hamiltonian agrees with the canonical Hamiltonian (also modified to 

eliminate L Q2 terms) 

only if C = 0. We shall set C = 0 from now on. Thus, we have eliminated the 

possible ambiguity in V by checking displacement invariance; showing the 

anomaly in (2.23) is irrelevant for Lorentz invariance; and requiring the 

Hamiltonian to be the canonical expression. As noted earlier, we could have 

kept the A-term in V as well, but this leads to catastrophic terms in the 

Schwinger algebra. 
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III. ABSENCE OF COLORFUL STATES IN TWO DIMENSIONAL 

YANG-MILLS THEORIES 

Having established the formal properties of TDYM in the preceding section, 

we now proceed to prove the absence of nonsinglet states in the theory. The 

derivation exactly parallels the Brown-Zumino 14 argument in TDQED, but 

because of the non-abelian character of the group it will be possible to prove 

an even stronger statement than that the charge vanishes. First, however, let 

us demonstrate that this much is true. 

The outline of the argument is as follows. The equation of current conser- 

vation, aPJi = 0, is supplemented by an equation of the form 

i [H, <] - a& = Aa (3.1) 

The Lorentz pseudoscalar operator Aa is the “axial current anomaly” if we 

identify E P ’ Jr as an axial current in the theory. The precise form of this 

operator may be ascertained by performing the commutation of H, Eq. (2.30), 

with Jy , Eq. (2.12b). It is 

A a a (x,t) = guFO1(XJ) - F c”bC [$@A f j;(G)} 

+ f Cab \du [dx -u) { A;(x,t), a, J;(u,t)) 

Fi+x,t), au Jy(u,t) II 
From current conservation and (3. l), it follows that 

OJad(x,t) = axAa(x,t) . 

(3.2) 

(3.3) 
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Consequently, a condition of consistency on the theory may be deduced, l5 

/ 
dx ax Aa(x,t) = 0 . (3.4) 

In detail, this condition requires 

g2aQa + f C abc 
X 

+ sp cab 
/I ( dudv $W, auJy(u)) [C(X - U) IX - VI 

- ECX -v) Ix-ul 1 I I: = 0 
X 

(3.5) 

Working consistently with out prescription for handling the surface terms, we 

have 

(3. 6a) 

lim 
L&W c E tx - u) Ix - VI - E(X - v) Ix - ul 1 I 

x =L 

x= -L = 0 . (3.6b) 

This shows that all the charges Qa= o for g # 0. 

Since we have seen momentum is conserved in the theory, Eq. (3.6a) can 

be discussed in a different fashion that never involves evaluating j;(x) t) on the 

boundary, by using Eq. (2.15). The expression I dx ax(AijT) may be sand- 

wiched between states of definite momentum to obtain (k - k’) 6(k - k’) 

<klAE(O) jy(O)lk’ > . This is zero provided the matrix element is well- 

behaved. However, a potential difficulty arises because the Fourier transform 

_ of A:(O) behaves like F I dq:;(q) q-2. The problem can be resolved by taking 

. . greater care in observing the (ie) prescriptions inherent in the definition of 
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this Fourier transform, for q in the neighborhood of zero. When this is done, 

Eq. (3.6a) is verifed to be true. 

The charges Qa cannot be identically zero as operators, however, without 

radically altering the nature of the whole theory. 14 Thus the conditions Qa = 0 

must be imposed as conditions on states. There is only one set of states on 

which all Qa can vanish simultaneously, and these are the singlet states of the 

group. Thus all physical states in the theory, that is, those states for which 

the theory is self-consistent, must be colorless. 

&aI+phys> = 0. (3.8) 

These conditions clearly rule out the possibility of observing a single color- 

ful quark as a physical state. The Wigner-E&art theorem assures us an even 

stronger assertion is true, however, namely that the color density itself 

vanishes locally between physical states. That is, from the group transforma- 

tion property of the density, we have 

= iC abc .c 
Jo(x,t) ; 

therefore, 

0 phys 1 $txlt) 1 ephys ’ = ’ . 

(3.9) 

(3.10) 

In addition, making use of the Jacobi identity valid for Lie groups of the 

type we are considering, 

CbcdCade + CcadCbde + CabdCcde = o 
t 

we find that 

(3.11) 

[Qa, 51: (x,t)] = i Cabc JT@,t) , (3.12) 
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Thus, Eq. (3.10) generalizes to 

< @’ phys I Ja,txPt) 1 ephys’ = o 9 (3.13) 

as required for Lorentz covariance. (Actually, of course, a gauge change is 

required when a Iorentz transformation is made, to restore the axial gauge 

condition in the new frame of reference. ) 

The vanishing of the local color density in physical states means we cannot 

construct a physical singlet state consisting of quarks that are spatially well- 

separated. Equation (3.13) then says this is true in any frame of reference. 

Whether this is a satisfactory general definition of “containment” we leave to 

the discretion of the reader. 

Returning now to the anomaly in the Schwinger commutator, Eq. (2.22), 

we see that between physical states, the anomalous term is absent. Neverthe- 

less, algebraic relations must be worked out before imposing the Q” = 0 condi- 

tions . It is satisfying that the Lorentz algebra, and conservation of the stress- 

energy tensor, can be demonstrated as operator identities before taking matrix 

elements. In this vein, note that the algebra of color densities, (2. lOa), is not 

a 0 = 0 relation between physical states, since the left hand side can receive 

non-trivial contributions from non-singlet intermediate states. We cannot rule 

out the presence of such unphysical colorful states in completeness sums, but 

the operators in the theory that link physical to unphysical states are not 

members of a complete set of simultaneously commuting observables. 



-20 - 

IV. DISCUSSION 

In this section we will summarize the results of the paper, comment on the 

assumptions that have gone into obtaining those results, and attempt to shed 

some light into the physical mechanisms at work. 

The TDYM theory has been examined in axial gauge in order that the bogus 

longitudinal gauge field can be eliminated from the outset, leaving only genuine 

dynamical degrees of freedom to work with. An a prior ambiguity in the speci- 

fication of the one-dimensional Green’s function has been maintained, and the 

inhomogeneous Lorentz group studied using Schwinger’s methods in order to 

remove the ambiguity. It was found that an anomalous non-local term in the 

commutator of spacelike separated energy densities persists, but in fact does 

not affect the Lorentz algebra, which involves integrated quantities. 

Next, an internal consistency condition of the theory was exploited to 

demonstrate that physical states are colorless. By use of the Wigner-E&art 

theorem, it followed that the matrix elements of the full local color currents 

vanish in physical states. Consequently, isolated localized colored states are 

unphysical. Of course, at a given time, singlet states consisting of more than 

one fermion are not ruled out by the consistency conditions. This is true in any 

frame of reference. Consequently, in a Fock basis, fermionic degrees of 

freedom must be present in the physical sector. 

To arrive at thise conclusions, we have used certain assumptions that ~II 

beyond assuming that the equations of motion and canonical commutation rela- 

tions are sensible as operator equations. One such extra assumption is that the 

Schwinger term in the equal-time commutator of time-space components of the 

fermionic current is a c-number. As mentioned earlier, this is basically the 

assumption that at fixed time the fields J, (x, t) can be expanded in terms of 
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Fourier coefficients satisfying Fermic-Dirac statistics; and that the time 

evolution of operators is then determined by Heisenberg equations of motion. 

A second assumption was that suitably smeared fields can be used, such 

that integrations by parts can be freely performed. This is a rather conven- 

tional assumption, and in the single crucial instance where some doubt may 

persist (Eq. (3.6a)), an alternate argument is available. Implicit in the alter- 

nate argument, however, is a third assumption used throughout, namely, that 

the charges exist as sensible operators, and that the vacuum is unique. 

All of the above assumptions are present in operator solutions to TDQED 

as well, 16 and, without further apology, we believe them to be reasonable. 

This does not mean, however, that alternative sets of mutually consistent 

assumptions may not exist. These would define a different theory. 

Examining Eq. (3.3-3.6), we see the mechanism at work here is the same 

as than in TDQED, namely that the current acquires a mass. We can rewrite 

(3.3) as 

(o+p2)4 = axGap 

where u2 = g20. Unlike the case of TDQED, the color density obeys an 

“interacting” equation of motion rather than a free equation of motion. Equa- 

tion (3.6) is the statement that the source current ax+a does not contribute to 

the total charge. The possibility that J”o acquires a discrete mass for any value 

of the coupling constant appears to be a peculiarity of two-dimensions. 

Indeed, the two-dimensional peculiarities of the theory can be exhibited 

more clearly if the explicit dependence of the Hamiltonian on the fermi fields is ~_ 

eliminated. This may be accomplished by using Sommerfield’s identity 17 
i; 

a,$= + 
I -y5 j” + jl, $1 
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applied to each fermionic species separately. This identity is true in two 

dimensions, and can be demonstrated as an operator identity using fixed-time 

expansions for $(x, t). l8 Using this identity, we can rewrite, 

where JP is the group singlet current Tr, 1 1c, , and the relative weights a and b 

depend upon the group under consideration. The entire Hamiltonian is now 

expressed in terms of current components. Together with the algebra (2. lo), 

this specifies the quantum dynamical problem completely. 19 However, solution 

in terms of canonical bosons 18 does not seem possible. 

Finally, although the Q” = 0 conditions of the theory should be treated in the 

sense of superselection rules, we have not really proved that the colorless states 

form a complete basis for all simultaneous observables in the theory. There 

remains, therefore, a question of unitarity for the solutions in the physical 

sector. It is clear that more work on this problem is required. 

We thank our colleagues at SLAC for stimulating discussions, especially 

T. M. Yan for several exchanges of ideas. In addition, one of us (J. W. ) is 

indebted to J. Arafune and Y. Nambu for a valuable suggestion. 
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