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ABSTRACT 

We analyze phenomenologically several models for the high-energy 

scattering of hadrons through fixed, large angles. The emphasis is on 

trying to isolate and understand those aspects of hadronic forces which 

are important at large angles. We review the fixed-angle-lower bounds 

derived from analyticity and discuss how simple geometrical concepts 

can be used to guide our extrapolation of cross sections away from the 

forward and backward peaks into the large angle region. This extrapo- 

lation is important in understanding whether or not we need a new, hard 

component of the hadronic force to interpret the data. We try to isolate 

the important features of dual models, statistical models and constituent 

models and to clarify the possibility of experimental distinction between 

these approaches. 
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I. INTRODUCTION AND KINEMA.TICS 

The small-t region of hadronic scattering processes has been extensively 

investigated experimentally and has been subjected to thorough theoretical 

analysis. [ l] The Regge exchange picture which describes data in this region 

has been tested, adjusted, and retested. Though it has not remained simple 

through all these adjustments there seems little doubt that the approach is viable. 

Those questions which are still open seem quite capable of being resolved 

within the framework of the basic exchange picture. 

In comparison, the description of high energy scattering of hadrons through 

a fixed large angle is anything but decided. Although experimental results are 

not new, [2 ] the topic has not attracted corresponding theoretical interest. The 

one clear observation is that cross sections at fixed angles fall rapidly. This 

fact, in turn, implies small experimental counting rates at high energy and 

rules out the kind of detailed comparison of theory with experiment which is 

possible in the peripheral peaks. At this point several quite distinct models 

for the wide-angle hadronic processes are roughly consistent with experiment. 

Which, if any, of these models will ultimately prove correct is unclear but the 

new, high-statistics, experiments which may resolve the issue are now being 

considered. It seems appropriate, therefore, to compare these models in 

order to provide a framework within which new experimental results can be 

interpreted. 

In this paper we will consider the high energy scattering of spinless hadrons 

through a fixed, large angle. The neglect of spin effects at large angles seems 

reasonable and allows us to simplify the formalism. We will refer to the 
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process as ab -+ cd and label the kinematic variables 

s =ba+Pbj2 

t = tPa -Pc)2 

u=@ a - P,,” 

The CM momentum of particles a and b is given by 

2 1 
qab = 4s C 

s - (ma + mb)2 
J P 1- - (ma - md)2 N : 1 

The scattering angle is given by 

(1.1) 

(1.2) 

z =cos es = 
s2 + s(2t - (mi+m2,+mE+mi)) + Cm:-mi)(mE-m$ 

(1.3) 
4s qabqcd 

Some other useful approximations at high energy include 

4tu (1 - z)(l + z) = sin20s N - 
S2 

(1.4) 

Because we are discussing spinless particles there is a single amplitude, 

A(s) t) = A(s) z), which describes the process in all regions of the Mandelstam 

plane and gives the differential cross section 

dfl ‘cd 1 
m = 4,b 2 IA(s,z)12 

w-0 s 

and we can use $I invariance to write 

da 1 
dt= 64~s Gb 

IA(s,t)12 . 

(1.5) 

(1.6) 
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The partial wave series for A(s) t), 
al 

A(s,z) = c 
Q=O 

w + W,(s) P,(z) 9 0-v 

converges inside the Lehmann ellipse and will prove a valuable tool at large 

angles, z z 0. For modest angles the approximation 

P&cos 0) = Jo(~) +sin2(0,‘2) 
J$) 
277 -J2W+~ 3 J (77) 

I 
+ O(sin4 6/Z) 

(1.8) 

where 77 = (2L+ I) sin (0/Z) r (Q + l/2) qT/q gives a semiclassical impact 

parameter representation 

A(s,t) = 2 
/ 

bd b i(b, S) Jo(bqT) 

0 
(1.9) 

where 

and 

The expression (1.8) is useful in defining, at a given energy, a distinction 

between small and large angles. Small angles are those for which 

(2Q + l)max sin(6/2) is small so that an impact parameter description is 

appropriate. 

The plan of this paper is as follows: In Section II we discuss what can be 

learned from quite general analyticity principles. These results take the form 

of fixed-angle lower bounds as derived by Cerulus and Martin [3] and extended 

by Chiu and Tan. [4 J Precisely because the experimental fixed angle cross 
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sections fall so rapidly it is interesting to examine the theoretical conditions 

under which there are limitations on the asymptotic behavior. In Section III 

we discuss the fixed-angle asymptotic behavior in the framework of a simple 

semiclassical geometrical picture. This discussion will help clarify how the 

exact nature of absorption needs to be understood in order to specify the fixed 

angle “tail” of the peripheral peaks. In Section IV we examine possible reso- 

nance contributions to the fixed angle behavior in three different forms. First 

we discuss peripheral direct channel resonances in the form of the so-called 

direct channel Regge pole model of Chu and Hendry [5] and Schrempp and 

Schrempp. [ 61 This is found to be an explicit representation of many of the 

geometrical ideas discussed in Section III. We also discuss narrow resonance 

models and give a simple argument which relates the behavior of the amplitude 

at fixed angle to the asymptotic behavior of trajectory functions. Finally, we 

examine the class of statistical models which result from making a random 

phase assumption for the resonance contribution. In Section V we 

discuss field theory or constituent models for fixed angle scattering. The 

emphasis in this discussion is on obtaining some idea of the energy regime in 

which the scaling laws obtained in the field theory approaches might be valid. 

We also examine the assumptions which separate the constituent models from 

the other models without explicit constituents. 

Although several comparisons with data are included in Sections II-V, the 

emphasis is on an exposition of the concepts behind the theoretical models. In 

Section VI we summarize the results of the models and address directly the 

question of how well experimental data can discriminate between the different 

approaches. Experimental evidence which bears indirectly on the models is 

also discussed, and we attempt to draw some conclusions. 
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II. ANALYTICITY BOUNDS AND KINOSHITA’S MINIMAL INTERACTION 

Historically, one of the first formal discussions of high energy fixed angle 

amplitudes was in the form of a lower bound developed by Cerulus and 

Martin. [ 31 This work was very important in that it first showed how an 

amplitude at fixed angle is constrained by analyticity postulates. 

The bound of Cerulus and Martin occurs if we assume: 

1. The amplitude, A(s , z), has the usual Mandelstam analyticity. That 

is, it is analytic in the z plane cut from - CO to - (1 f c/q2) and from 

(1+c/q2)tQ + CO where c is some constant; 

2. There is a finite domain in the z-plane in which the amplitude is 
N bounded by s . 

Through the use of a clever conformal mapping and the application of 

Hadamard’s three circle theorem, [7] Cerulus and Martin showed that these 

assumptions imply the fixed angle lower bound, 

IA(s,z)l 2 d exp -c(z) s l/2 &.l 
J (2* 1) 

where c(z) is some positive function of z = cos 13. 

Aside from being a triumph in the application of complex variable techniques 

to high energy physics, the bound (2.1) has turned out to have phenomenological 

impact. Motivated, in part, by an empirical fit to the differential cross section 

of pp scattering by Orear, [8 J l 

s A exp (-qT/qo) =A exp(-q sin e/qo) (2.2) 

where A = 34 mb/sr and q. = 0.151 GeV/c, Kinoshita [9 J proposed that the 

bound (2.1) may be saturated by physical amplitudes for angles outside of the 

peripheral peaks. He formulated the principle of a “minimal interaction” which 
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implies that fixed angle scattering amplitudes should assume the smallest value 

consistent with the general requirement of analyticily and unitarity. This hypo- 

thesis implies the absence of any really “hard” component in hadronic scatter- 

ing so that instead of observing frequent collisions in which hadrons scatter 

through large angles we find instead the production of new hadrons at high 

energy. 

In order to evaluate further the significance of Kinoshita’s suggestion we 

must analyze the assumptions of Cerulus and Martin. In fact, the assumptions 

may be too strong. In particular, assumption (2) would not hold if Regge tra- 

jectories rise indefinitely so that for z $ 0 there is a region of s for which the 

amplitude rises faster than any fixed power. Martin [lo] has been able to 

rederive the bound (2.1) under the weaker assumption that the leading Regge 

singularity surface, o! (t), has the asymptotic behavior 

a(t) = o(t l/2 ) (2.3) 

Even this assumption may be too strong since dual models have linear tra- 

jectory functions. For example, the Veneziano model [ 111 has the fixed angle 

asymptotic behavior [ 11,12 ] 

IA veneziano(S “)I - G(s,z) exp [-NW] (2.4) 

which conflicts with (2.1). The Veneziano model does not have the usual 

Mandelstam analyticity in that the cuts on the real axis possessed by a physical 

amplitude are replaced by an infinite series of poles. It can be seen, however, 

that the important facet of the model which fixes the asymptotic form (2.4) is 

the existence of linear trajectories. This will be discussed more completely 

in Section IV. What is important here is the fact that it is possible to have a 
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reasonable amplitude with a more rapid decrease at fixed angle than the 

original Cerulus-Martin bound (2.1). 

Chiu and Tan first extended the methods of Ref. 3 to discuss Regge asymp- 

totics more general than (2.3). [13] They showed that a generalized bound of 

the form 

IA(s,z)l 5 exp [-cy(z)sYQnsj (2.5) 

can be written and that y = 1 is appropriate for a linear Regge trajectory. By 

analysis of the phase contour structure of physical amplitudes Eden and Tan [ 14 J 

showed that there is a value of y 

l/2 < y 5 1 - 

under which (2.5) is valid. Kaiser [ 151 has repeated this result under slightly 

different technical assumptions. 

The interpretation of Kinoshita’s conjecture is therefore seen to be very 

dependent on which version of the fixed angle bound (2.5) is appropriate. This 

is, in turn, related to the question of the asymptotic form of Regge singularity 

surfaces. In spite of the many other phenomenological successes of dual 

models, there is no experimental support for a falloff as rapid as than given by 

(2.4). If Regge trajectories are indeed linear, or approximately so, then the 

apparent absence of any exponential falloff in s would indicate a violation of the 

principle of a “minimum interaction. ” The question of the asymptotic behavior 

of Regge singularity surfaces is, of course, extremely difficult to pin down and 

without hypothesizing a breakthrough in experimental resonance spectroscopy 

techniques it seems unlikely that the dual model assumption of approximately 

linear trajectory functions will be either confirmed or ruled out in the near 

future. [ 161 
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The possibility that singularity surfaces obey (2. 3) should therefore be 

kept in mind. If they rise no faster than a square root or if there is some Jmax 

beyond which there are no J-plane singularities then the original version of the 

Cerulus-Martin bound is appropriate. In this case Kinoshita’s conjecture has 

some chance of being valid. As we shall see, the hypothesis that the bound (2.1) 

is saturated for some c(z) has a simple geometric interpretation. This form 

also emerges naturally in several models. We can evaluate more carefully 

what is meant by a minimal interaction through examining the models. 
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III. SIMPLE GEOMETRICAL CONSIDERATIONS 

The convenience of describing hadronic scattering in an equivalent semi- 

classical geometrical picture has long been emphasized. [ 171 Even if we had 

a complete theoretical picture the translation of this theory into familiar geo- 

metrical concepts would provide a useful mnemonic device. In the absence of 

a definitive theory the abstraction of a geometrical picture from phenomeno- 

logical analysis can aid in the development of tractable theoretical ideas. 

A. The Geometry of Hadronic Scattering as Determined at Small Momentum 

Transfer 

The most reliable source of information about the geometrical structure 

of hadrons has been Regge pole phenomenology. Because Regge fits are done 

only over a limited range of transverse momentum the feature in the picture 

are necessarily crude. As a practical matter we can require of models for 

large-angle scattering processes that they be roughly consistent with the crude 

structure deduced from the small-momentum-transfer region. We can then 

apply the picture at large angles making the assumption that there is no finer 

structure and the results can be used to normalize and to examine the possi- 

bilities for new effects. 

The basic picture of a hadron is that of an extended object with diameter 

approximately 1 fm (5.1 GeV-‘). In addition, we know that a hadron is fragile 

in high energy collisions. The fragility of a hadron is an important dynamical 

characteristic. It means simply that a hadron is likely to break into pieces in 

a collision. Collisions of hadrons bear certain similarities to collisions of 

ordinary macroscopic fragile objects (such as glass ashtrays) except that the 

pieces of a hadron are themselves hadrons or groups of hadrons. As indicated 

schematically in Fig. 3.1, the hadrons in a collision usually emerge retaining 
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the direction of the momenta of the incident particles. When there are only 

two particles in the final state, the assumed fragility tends to mean that the 

event was either diffractive or peripheral. 

The distinction between diffractive and peripheral scattering injects an 

important nonclassical element into the discussion. We will attempt to under- 

stand diffraction as the feedback of other processes back on the elastic channel 

so that a diffractive component of the elastic amplitude must be present at all 

impact parameters at which a collision takes place. [18] In order to under- 

stand the diffractive component, it is obviously important that we know some- 

thing about production processes. There are many approaches to diffractive 

processes which involve making simple approximations for the production 

amplitudes. [ 19 J It is not our purpose to review here these efforts but it is 

obvious that the overall geometrical picture we are discussing here depends on 

the nature of diffraction. 

There is also a nondiffractive peripheral component in two-body processes. 

In Regge language this peripheral piece corresponds to quantum number exchange. 

It is E, however, the exchange of a simple Regge pole. A single Regge pole 

contains contributions at small impact parameter while our intuitive notion of 

fragility suggests that a collision at small impact parameter is unlikely to lead 

to a final state with only two hadrons. Phenomenological Regge models imple- 

ment this dynamical constraint by absorbing the low partial waves of the Regge 

pole. Absorption consists of modifying a single Regge pole exchange with cor- 

rection terms corresponding to cuts as indicated in Fig. 3.2. There is consider- 

able disagreement among practitioners of Regge fits both about the precise 

nature of the basic Regge pole exchange and the treatment of the many-body 

intermediate states in the Regge cut diagram in Fig. 3.2. [ 2 0] All of the 

; .,,‘Q /s 
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various approaches agree to some extent with the implications of our semi- 

classical notion of fragility in that quantum number exchange amplitudes tend 

to be large only within a band of impact parameter corresponding to the edges 

of the hadrons. As shown in Fig. 3.3 this feature of nondiffractive scattering 

also emerges from the more-or-less model independent extraction of ampli- 

tudes from data. 

Since we are interested here in fixed-angle scattering, it is important to 

notice that these peripheral processes necessarily involve a smaller range of 

partial waves than the diffractive ones. The uncertainty principle in the form 

A(s, cos e) 2 c(s)e -AL(s)Ae (3.1) 

can be used to relate the size of the fixed angle amplitude to the “coherence 

length” AL in angular momentum. Diffractive partial waves are roughly coher- 

b. l/2 ent from Q = 0 out to Q = Lrnm z 2 s 

hadron so that using (3.1) we can get 

where b o = ho(s) is the diameter of a 

Adiff. (Is, cos 6’) 
Adiff’ (s , 1) ’ 

exp[- $ s112 B/ (3.2) 

If ho(s) grows logarithmically with s the simple uncertainty principle result 

coincides in form with the lower bound of Cerulus and Martin. [3 ] This can be 

understood as giving a rough geometric interpretation to the analyticity assump- 

tions of Ref. 3. In models with linear Regge trajectories we see we can have 

some type of coherence out to Q = LmU M o’s which gives the weaker bound of 

Chiu and Tan. [ 13 ] 

The peripheral or edge scattering should then dominate over diffractive 

scattering at large angles since it has a smaller coherence, AL perish. This 
. 

range is governed by the amount of overlap that two relativistic hadrons can 
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have such that they exchange quantum numbers but do not fragment. This 

defines in some sense a “skin depth” of the hadrons. We obviously need a very 

detailed theory of absorption in order to obtain a quantitative expression for the 

skin depth. In simple models where Regge cuts are built iteratively from pole 

exchange such as indicated schematically in Fig. 3.2 the absorptive cuts are 

damped relative to the poles by logarithmic factors. In this case the exchange 

amplitude eventually behaves at fixed angle much like the diffractive amplitude. 

There seems, however, to be no fundamental reason why this iterative approach 

to absorption must be correct so we must consider a wider range of possibilities 

for aLPeriPh . Among these are growth corresponding to a ring in impact 

parameter space 

aLPeriPh N b+s) - b2W 
- 2 > 

p 

where b 1 - b2 < bo. It is also possible that 

(3.3) 

(3.4) 

or even that it becomes asymptotically constant. At this point we can do little 

more than compare the various possibilities with data. 

B. Simple Classical Model for the Forward and Backward Peripheral Peaks 

It is an amusing exercise to consider a simple classical model for peri- 

pheral scattering. This exercise helps us understand under what conditions 

the peripheral amplitude can be important at large angles and give at the same 

time a reasonable description of the forward and backward peaks. 
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Assume that the partial waves of a nondiffractive amplitude are given by 

aQts) = hp@) e 
hQts) Q /bos1’2 bos 1’2 

E \ 2 -c, 2 

a,(s) = 0 otherwise . (3.5) 

In (3.5) h,(s) is a smooth function of Q and is real and positive while the phase, 

qQ(s) z 77 (s), does not depend sensitively on Q over this range. We then have 

a nondiffractive amplitude 

(+)b,s”’ + c 

An. d 
(s,cose) s e il7 (s) 

x ; 

($) bo’2 
(2Q + 1) he(s) PQ(cos 0) (3.6) 

S -C 

The assumptions on the partial waves are quite severe and not necessarily ’ 

realis tic. Presumably a physical absorption mechanism would change both the 

phase and the modulus of the partial waves. By making hQ(s) positive and by not 

separating even and odd partial waves we are imposing a %lassical” definition 

of the forward direction for the process ab - cd and ignoring parity. 

In the forward direction the nondiffractive amplitude (3.6) can be written 

Anod’ (s,O) r eiV (‘I 2c(s) bos1’2 <hQ(s) > 
bos 1’2 

(3.7) 

Qr 2 

where the bracket denotes mean value. We now require the forward amplitude 

to have, within logarithmic factors, Regge asymptotic behavior, 

A n-d* (s,O) 
aMto) 

- (3.8) 
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Let’s assume that the trajectory intercept a,(O) is the same as that empirically 

observed in hadron scattering, cwM(0) = l/2. We can combine (3.7) and (3.8) 

in the form 

P(O) e -irl (s) o! (0) - l/2 
c(s) <he(s) > N 

2b0 
SM (3.9) 

Under our assumptions, the r. h. s. of (3.9) is a slowly varying function of s. 

From (3.5) we have 

bO c(s) < -yj- s l/2 (3.10) 

and from generalized partial wave unitarity, 

(3.11) 

Within the context of our simple model there are several ways in which we can 

get a slowly varying function of s on the left hand side of (3.9). The extremes 

are that 

hp@) z const. 

bos 1’2 
Qr 2 

c(s) c const. (3.12) 

which “saturates*’ the unitarity bound with a fixed or slowly varying number of 
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partial waves, or that 

hQts) s ds -l/2 

QG 
bOs1’2 

2 

b2 - bl c(s) “= ‘--B s m (3.13) 

where a ring of nearly fixed width in impact parameter is filled with partial 

wave amplitudes which vanish asymptotically. 

The second possibility, (3.13), is closer to the situation which emerges 

from simple absorptive corrections to Regge exchange but since we cannot pre- 

tend to understand the total effect of all the absorptive corrections we cannot 

yet rule out the possibility (3.12) or some form of intermediate behavior. 

Using (3.1) we see that the slower the growth of c(s) the larger the asymptotic 

cross section at fixed angles, 

In the backward peak, 

(i) bos1’2 + c 

A nod. (5,~) s eiqts) (28 + 1) h,(s) (-1p . 

-C 

If we write 

g,(s) = t4n + 1) h2,W - tan + 3) h2n+l(s) 

(3.14) 

(3.15) 



then the assumed smoothness of’hQ(s) makes this well behaved and we can write 

(t) bOs1’2 + c/2 

(a) bos112 - c/2 

gnw 

N ,iT (s) - c(s) qp)’ 

n= 
bos 1’2 

4 

(3.16) 

(3.17) 

Since gn represents the difference between two partial waves of different 

parity we do not have a constraint from partial wave unitarity. Our classical 

picture would expect it also to be bounded by a constant but, for example, if 

the positive parity partial waves were systematically larger than the negative 

parity ones gn(s) could grow with n. 

If we wanted a semiclassical picture of, for example TN scattering where 

the backward peak has power behavior characteristic of baryon exchange 

aB(0) =” 0 we might expect 

<hQtS) ' 
<g,/,(s) > = const. 

so that 

A n. d. 
(s,O) cc 2 bo(s)s l/2 

A n-d. (S,T) 

(3.18) 

(3.19) 

Although we have not dealt here with spin constraints we have seen that, at 

least for mnemonic purposes, it is possible to think of both forward and back- 

ward nondiffractive scattering occurring within the same peripheral band of 
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partial waves. It therefore makes sense to consider the extrapolation of this 

simple picture to the intermediate angles between the two peaks and this extra- 

polation is important to the question of whether we see anything %ew” at large 

angles. 

C. Geometry as a Constraint on Models for Fixed Angle Scattering 

Straightforward application of the uncertainty relation (3.1) can then give 

bounds or constraints on scattering amplitudes at large angles. Let’s, for 

example, in the spirit of Kinoshita’s conjecture, i 91 assume that there is an 

absence of fine structure so that the uncertainty relation can be interpreted as 

an approximate equality for some AL(s). 

AO z exp -AL(s) 8 
A@,(‘) i I 

eL 7~/2 (3.20) 

For pp scattering we can ask whether (3.20) can be valid with AL(s) determined 

by the diffractive channel alone, 

bO AL(s) r 2 s l/2 (3.21) 

with b. = 1 fm (5.1 GeV-‘). We take this size to be the approximate width of a 

gaussian b-space amplitude which describes pp scattering and, to first approximation, 

neglect shrinkage effects. 

s2 f$ (s, e ==742) a exp ( -5.1; s 
s) 

m exp -8.0 d/2 I 

which is much more rapid than the experimental falloff as seen in Fig. 3.4. We 

conclude that diffraction is negligible at 90” and that a geometrical model for 

pp scattering must contain a peripheral component as well as a diffractive one. 
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The best fit of the data in Fig. 3.4 to a form 

s2 g (s, 8 =7r/2) aexp -(Ab)i s~‘~,” 
{ 

(3.23) 

where Ab can be interpreted as the width of the peripheral band in impact 

parameter gives 

Abr 0.48fm. (3.24) 

in rough agreement with the width of the band of partial waves inferred from K*p 

scattering in Fig. 3.3. We could get different numbers from fitting different 

portions of the curve, however, since the data does not follow a simple exponen- 

tial . 

More direct evidence for a peripheral component in pp scattering is found 

in a geometrical interpretation of structure in the polarization data. This is 

discussed in some detail by Hendry and Abshire 122 ] to whom we refer the 

interested reader. This is important since a straightforward application of 

duality or exchange degeneracy ideas might imply that pp is entirely diffractive. 

Detailed fits to the shape and energy dependence of pp scattering which 

embody these simple geometric ideas have been presented by Chu and 

Hendry. [23] These fits are excellent at all angles and reproduce some quite 

complicated structure. 

A comment on the applicability of geometrical concepts is in order. In 

Section V we will discuss field theory models for large angle processes. In 

these models the large-angle scattering is due to the pointlike constituents of 

the hadrons. The fixed angle differential cross sections fall off with a large 

power of s such as s -8 or s-lo * mstead of exponentially like (3.23). We could 

reproduce the fixed-angle behavior of these models if we allowed the band of 
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important peripheral partial waves to grow logarithmically with s as in (3.6) 

instead of as &. We cannot be sure if this type of interpretation of these 

constituent models is correct since, because they do not introduce a distance 

scale, there is no way of calculating in these models what the diameter of a 

hadron is and what a peripheral collision is. However, an extremely interest- 

ing development in the interpretation of constituent models for hadrons has been 

the formulation of so-called “bag models. ” [24 J These models allow both for 

the quasi-free behavior of the constituents and for the comparatively sharp 

boundaries of the composite hadrons in a natural way. It would not be sur- 

prising to find that a version of the bag model could incorporate the concept of 

fragility we have discussed here. If this can be done it would represent a 

major step in the interpretation of collision processes. 

Without a complete understanding of the binding mechanism it is difficult 

to know whether a hard scattering between two point constituents represents a 

“new” component of the hadronic cross section. If the constituents or partons 

are located randomly in the interior of the hadron this component would add 

incoherently to the tail of the small angle contributions we have considered 

here. One test for the region of validity of these models, therefore, is that 

fixed angle contribution of peripheral quantum number exchange be negligible. 

To a certain extent this can be guaranteed only after detailed amplitude 

analyses at different energies clarify the situation. At this point it is not clear 

that we need such a new component. 
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IV. RESONANCE CONTRIBUTIONS AT LARGE ANGLES 

Resonance formation in hadron collisions provides a strong clue to the 

strong interaction force and resonance spectroscopy is therefore an active 

subfield of high energy physics. Large angle may be a particularly fruitful 

place to investigate the properties of direct channel resonances. 

A. The “Direct Channel” Regge Pple Model 

An interesting approach to the inclusion of direct channel resonances is 

due originally to Chu and Hendry. i23] This is the suggestion that direct 

channel resonances can be approximately accounted for by a “Regge Pole” in 

the direct channel. That is, we presume that the partial wave amplitude for 

spinless particles contains, in those channels with nonexotic quantum numbers, 

a contribution 

arle(s) G ( ) 
(Q - a!(s))f(~+ 1 + a(s)) (4.1) 

where a(s) is a complex trajectory function. This corresponds to an amplitude 

of the form 

APole(s,z) = 
f(s) Pa(,)oZ) 

sin W(S) 

e $0. (4.2) 

where Pa(z) is a Legendre function. In the strict forward direction, 8 = 0, the 

partial wave series (1.7) with (4.1) diverges but this can be handled by intro- 

ducing some extra convergence factor in the sum over P without altering sig- 

nificantly the validity of the approximation (4.2) away from the forward direc- 

tion. 
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Chu and Hendry [5,23] originally parameterized separately the s-channel 

helicity flip and nonflip amplitudes in nN scattering in terms of a central com- 

ponent given by a gaussian and a peripheral resonance component given by pole 

term analogous to (4.1). With a fair amount of freedom allowed by fitting 

separately the parameters at different energies they achieved a good fit to the 

differential cross section and polarization data at all angles. Typical fits to 

7r-p - 7rp, ?r’p - 7r+p and 7r-p - Ton are shown in Fig. 4.1. 

The fits of Chu and Hendry should be considered an explicit parameteriza- 

tion of the simple geometrical ideas discussed in Section III. They verify the 

connection of the central component with diffraction and the peripheral component 

with quantum number exchange. The fits offer a convenient way of summariz- 

ing a great deal of data. 

B. Schrempp and F. Schrempp [6,25] have formulated a quite similar 

s-channel Regge pole model which they call the dual peripheral model. This 

model is motivated to some extent by the dual absorption model of Harari. [26] 

They take from the dual model the decomposition of the amplitude 

A(s,t) = V(s,t) + V(s,u) f V(u,t) (4.3) 

and then use an amplitude very similar to pole A (s, z) in (4.2) for the terms with 

s-channel poles. A major improvement over the approach of Chu and Hendry is 

that Schrempp and Schrempp use .a specific complex trajectory function 

i2R 
cl!(s) = -; + 7 (4.4) 

with R = 1 fm in order to enforce the basic geometrical structure of a hadronic 

scattering event. With (4.3) they are also able to impose crossing relations. 

They show how their peripheral dual model explains a great deal of the 
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systematics of O- i 
+ + 

- O- $ reactions . A good example of the predictions 

are those for polarization in 7i-p - KA(Z) and crossed reactions illustrated in 

Fig. 4.2. 

Still another fit involving a direct channel Regge pole has been done by 

Kondo , Shimizu and Sugawara. [2 71 

One thing that can be done with the explicit form of the scattering amplitude 

(4.2) is to check the asymptotic fixed-angle behavior and compare it with our 

expectations based on the uncertainty relation (3.1). Inserting the asymptotic 

form for Po(-cos 8 ) valid when Re a! - 03 into (4.2) we get 

lApole(s ,cos e)l N 1 f(s) 
Lsin(aReo)cosh(nImor) +cos(nRea) sinh(rIma!) 1 

2 l/2 - 
X I sin2 ((Rea! + ,$(T- 0 ) f i) + sinh2 (Ima! (7r- 0)) nlalsin4/ c 

, (4.5) . 
I l/2 . 

If Imcl! is also large this simplifies to 

lAp”le (s,c0se)l - 2f(s) 1 / 2 
sin(rRea!) + cos(~Rea!) \7rIo! lsine ) 

lL2 exp[-Ima e} 

(4.6) 

Since Ima! in the Breit-Wigner form of (4.1) determines the width, AL, of the 

band of partial waves which are important this is in agreement with the estimate 

of the amplitude based on (3.1). 

If the direct channel Regge pole model is valid we can use the relation (4.6) 

which gives the shrinkage at fixed angle to compare with the value of Im a!(s) 

which determines the total widths of the peripheral resonances through 

MNPN “= 
ImatM2N) 

& Reo( gN) Rea! =N 
(4.7) 



I 

- 24 - 

One important qualification concerning the use of the direct channel Regge 

pole model exists . Taken at face value, it implies that only those channels with 

nonexotic s-channel quantum numbers and, hence, resonances should have a 

peripheral component in the amplitude. This agrees with the basic ideas of 2- 

component duality and exchange degeneracy. However, we have already noted 

that the interpretation of the pp elastic polarization data given by Hendry and 

Abshire [22 ] requires a peripheral band of partial waves in at least one of the 

helicity amplitudes in this process. 

B. Fixed Angle Behavior of Meromorphic Amplitudes 

The asymptotic behavior at fixed angle of the Veneziano model [28] was 

discussed in Section I as an example of the violation of the original form of the 

Cerulus-Martin bound. [3] We would like to present here a simple way to 

estimate the fixed angle asymptotic behavior of a more general class of mero- 

morphic functions (functions whose only finite singularities are poles). This 

exercise is instructive and, if we assume Veneziano’s interpretation 1291 of 

dual models as being a realistic approximation of physical amplitudes, will give 

us some insight into the possible behavior of the data. The convenient feature 

of meromorphic amplitudes is the absence of any normal threshold singularities. 

Because of this we can use simple analyticity arguments to discuss asymptotic 

behavior in terms of the spacing of poles and zeros. 

Suppose we have a crossing-symmetric meromorphic amplitude which can 

be decomposed 

A(s,t) = M(s,t) + M(s,u) + M(t,u) (4.8) 

in the usual way. The function M(s) t) has poles located on the real axis at 

01 (sN) = N and at a! (t,) = M. We want to get an estimate of the asymptotic 
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behavior of A (s , t) as s + 03 with t/s = -5 fixed. At high energy using (1.3) 

(&+z (4.9) 

In this limit the Beta function has the behavior [ 11,121 

r (-s)lT (-t) 
r (-s -t) t/s = -[ 

N r(lfT “y,, (vr’2 exp[i[*rRes + Ims log(l-l)]] 

x exp[Res[< log 5 + (1-Olog(l-~)] - &- &+O($$$] 

(4.10) 

which simplifies to (2.4). [ 301 

We can get a fairly good estimate of the fixed angle asymptotic behavior 

without knowing the specific form for the amplitude M(s) t) in terms of Beta 

functions. Consider the argument principle [31] applied to the function 

F$s) = W, -5 s), 

n,(r,F) - n,(r,F) = -& 27rl 
/ 

ds g 

Y t 
(4.11) 

Here y is a closed contour which does not intersect any poles or zeros, nz(y, F) 

is the number of zeros of F, and np(y, F) is the number of poles of F contained 

within y, For simplicity we can choose y to be the closed circle 

s = Re i0 L9E(O, 27f) (4.12) 

with the understanding that, if necessary, we treat separately the regions near 

8 = 0 and 8 = K where we might be close to poles or zeros. 
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By our definitions, the number of poles enclosed in this contour is given 

npt~,F) = [a(R)] + [WW] +2 (4.13) 

where the brackets denote the greatest integer function. We will assume that 

the trajectory function grows indefinitely and that asymptotically it has the 

simple form 

o!(s) - bsP (4.14) 

Then the 1. h. s. of (4.11) is large and negative. The fastest growth occurs in 

the situation where the number of zeros is small compared to the number of 

poles. 

Let h 
t 

(s) = -fn F(s), as R - 03 suppose we have an asymptotic approxima- 

tion to h(s) and hv(s), that is, there is some h (O)(s) such that 

hp N hy’ (s) 

(4.15) 

h;(s) - h(;)‘(s) 

for s on y. 

In this case the statement of the argument principle (4.11) assuming (4.14) 

and (4.15) is 

/ 

27f 
R 
2n de eie h(g)’ (Reie) - c(t) RP 

0 
(4.16) 

In the absence of systematic cancellations in the integrand of (4.16) we can conclude 

h;(sl Is E y = we (4.17) 
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where the power p is the same as that which gives the asymptotic behavior of 

the trajectory function. If we assume that, except for exceptional points, the 

logarithm is suitably smooth we get 

Ws, @J) - exp {-gd) (4.18) 

The agreement with (3.1) can be understood by noting that Mmax 4 o(s) in this 

amplitude. 

It is an important question whether this strong connection between fixed- 

angle behavior and the trajectory functions is more general than meromorphic 

amplitudes. The derivation of fixed angle bounds suggests that this might be 

the case. However, we might expect that in a unitary, physical amplitude that 

Regge poles do not determine the fixed-angle behavior but that Regge cuts 

dominate. Because of this expectation, the work of Ellis and Freund [31] is 

interesting. They claim that in dual models with loop corrections where the 

dominant singularity remains linear, o (s) - o’s, that the asymptotic expres- 

sion 

J A(s,z) - exp -o’s f(z) (4.19) 

remains valid. The expression (4.19) is actually verified only at the one-loop 

level but Ellis’and %eund conjecture that it is a general feature of unitarized 

dual ‘models. 
<I’ 

:. 
$ 

This conjecture conflicts with the approach to dual models which takes 

seriously the resonance spectrum of the dual born terms but assumes that the 

primary effect of the unitarization procedure is to break the tremendous degen- 

eracy of the mass spectrum. This latter approach emphasizes the connection of 

dual models to the statistical models which we will discuss more fully in 
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Section IV. C. Since there is no evidence for the rapid falloff (4.19) a resolution 

of this difference in interpretation is important to the continued viability of dual 

models. 

C. Statis tical Models 

One line of thought which gives an alternative to constituent models for 

describing large transverse momentum phenomena can be grouped roughly under 

the general heading of *‘statistical models. ” These approaches have a venerable 

history [32] in the time scale of the development of ideas concerning hadronic 

processes. Much of the present thinking can be traced to the work of 

Hagedorn [33] and Frautschi. 1341 There are many ways of motivating the 

“statistical” approach but perhaps the most direct and instructive is to form 

an analogy between hadronic physics and nuclear physics. We will briefly 

review this analogy [ 351 here in order to place in perspective the application of 

statistical models to large angle exclusive processes. 

The diagram in Fig. 4.3 gives a rough indication of the energy levels in 

nuclear physics and hadronic physics. 

In nuclear physics there are roughly three energy regimes. At low energies 

there are a few well defined resonances or energy levels which can be calculated 

in shell models. There is an intermediate energy range in which the number of 

levels is large and the levels can be treated statistically. There is even a 

small overlap region where the number of levels is large but they have not begun 

to overlap so that we can “verify” the statistical approximations to some extent. 

The situation in hadronic physics is similar even if not so clear cut. At low 

energies there are well defined levels which are described nicely by the quark 

model. At higher energies there appear to be more resonances but it is not 

completely clear where statistical approximations are relevant. Of crucial 
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importance is the absence of an upper bound on the energy range of the statis- 

tical region. Most treatments assume that such a bound does not exist or, if it 

does, is located at super-asymptotic energies where free quarks can be created 

and that this energy is high enough to be ignored. In view of the fact that reso- 

nances overlap already at low energies, it seems impossible by traditional 

methods, such as phase shift analysis, to establish whether or not very high 

mass resonances exist and we have to follow our physical intuition. [36] 

In nuclear physics it is acknowledged that amplitudes in the resonance 

region are saturated by the direct-channel resonance contributions. In hadronic 

physics we also have to consider contributions corresponding to resonances in 

the crossed channel. It is also not completely clear the role that diffractive 

processes play in hadronic physics. One assumption that is usually made is 

then the Freund-Harari hypothesis: [37-381 a finite fraction of nondiffractive 

amplitudes is given by the direct channel resonances. Once the existence of 

high-mass resonances in hadronic scattering amplitudes is assumed there are 

two ways of going about the derivation of the level density. The first is a self- 

consistent or “bootstrap” approach advocated by Hagedorn and Frautschi. 

Assuming a fraction, f, of the s-channel nondiffractive amplitude is saturated 

by resonances we have the “unitarity” constraint 

p(m) r(m) = & N(m) (40 20) 

where p(m) is the level density. r(m) the average total width and N(m) is the 

number of open channels. We are already bringing in some statistical assump- 

tions to say that (4.20) is valid on the average. The number of open channels, 

N(m), in turn depends in a nonlinear way on the level density, p(m), and by 

solving the “bootstrap” equation with assumptions about r(m), we can obtain a 
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form for p(m). The level densities of Hagedom and Frautschi can be para- 

meterized asymptotically 

P(m) -bm”e 
m/kTo 

(4.21) 

There are some technical differences in the approaches which give different 

values of a. The value of kTo is derived by Frautschi and Hamer [35 ] and 

determined independently by Hagedorn [33] to be approximately 

kTo = I’ E mlT (4.22) 

Notice that the expression (4.22) for the density of states is not valid in 

exotic channels such as pp or K+p. One failing of the statistical approach is 

that selection rules have to be put in by hand. [39] 

Instead of the bootstrap approach, one can analyze the level density of 

specific models. Krzywicki [40] has argued that the level density (4.21) is 

implied by the basic assumption of duality. Examination of specific dual 

models [41] has confirmed the validity of this level density under these 

assumptions. A different asymptotic level density can be found, for example, 

in the quark model of Feynman, K&linger and Ravndal 142 ] but both agree on 

the number of intermediate mass states. The difference between the level 

densities is not likely to be resolved directly. 

In the statistical model the behavior of amplitudes at large enough angles 

to be away from the forward diffractive peak and other “coherent” effects is 

presumed to be given by the incoherent sum of the resonances. It is not clear 

that the incoherent effect will necessarily dominate the coherent “tail” of 

peripheral exchange effects considered in the naive geometrical model of 

Section III. It may be true that the resonance contribution should be important 
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at an intermediate range of energies. We are making a random phase approxi- 

mation for the large number of resonances. 

If we consider the process ab - cd, neglecting spin and assume that in the 

region of interest IA I2 can be approximated by the incoherent sum of resonances 

IAtW2 s L 7 (zQ+$ p+0se)(~~b)2(y~df 

e =90° i,Q (> S - mi,Qy+1/4 r:,, 
(4.23) 

The sum in 11 extends over the range QE (0, qR), where R is a typical hadronic 

radius. If we neglect the dependence of the residues over this range we can 

factor out the e dependence 

qR c (2Q +1)2 P;(cosB) Y 

(2Q + 1) 

and deal with the appropriate average quantities in the form 

IA(s,z)12 G 
t2@ tyabt h? tycdt6)? pd% w e) 

(4.24) 

(4.25) 

Now the further statistical assumption of equal partition of probability among 

channels 

allows us to simplify further 

da 1 
cm 

E rt6 I 
e s 90' 64~~s P&G 

6 wu 

(4.26) 

(4.27) 
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By simple space-time arguments we know that a resonance cannot decay 

before a signal can pass across a typical hadronic radius and that 

rt6 = oh6 (4.28) 

The statistical bootstrap model gives, of course, a specific prediction for both 

r( &), (4.22) and p( ,/s ) (4.21) and has been compared to data by Eilam, 

Gell, Margolis , and Meggs. [ 331 There is only an overall normalization factor 

corresponding to b in (4.21), the expression for the density of states and a 

small ambiguity concerning the value of kTo. Fits to asp and I&J elastic scat- 

tering at 90’ are shown in Fig. 4.4 and compared to the power behavior of 

constituent models. The agreement is good. 

A major flaw in the approach is that no predictions are made for the behavior 

of fixed angle cross sections in exotic channels. One possible way around this 

is to extend the observed spectrum to exotic channels and just state that the 

density of states in exotic channels is small. This would then imply, for 

example 

da/d !J K+p - K+p >> 1 
da/d!J K-p - K-p 8 G 9o” 

(4.29) 

(4.30) 

which is in agreement with present observations. It would also seem that the 

naive approach would imply large fluctuations about the mean in such exotic 

channels. This is not observed as we will discuss in the next section. Pre- 

sumably, the correct answer for exotic channels involves getting the spectrum 

in nonexotic channels right and then implementing crossing. This can be 
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investigated in the context of dual models but is somewhat outside the range of 

the straight statistical models. 

D. Ericson Fluctuations in Hadronic Physics 

One way of testing for existence of overlapping direct channel resonances 

is to look for Ericson fluctuations. 1441 These are well known in nuclear physics 

where, in the region of overlapping resonances, peaks and dips are attributed 

not to individual resonances but to fluctuations in the number and couplings of 

the overlapping resonances. The differential cross section in p+ 56F e-+ ~+~~F[445] 

pictured in Fig. 4.5 is a particularly clean example of this effect. 

If high mass direct channel resonances are a feature of hadronic scattering 

we would expect to see these oscillations in hadronic cross sections as well. 

The equations (4.26) and (4.27) should be expected to have corrections of order 

(1/.N)1’2 

(4.31) 

The period of these oscillations in energy is expected to be on the order of 

I’( 6). The average resonance width can therefore be determined if fluctuations 

are observed and there period measured. In principle, the magnitude of the 

oscillations can be used as an indirect measure of the density. In hadronic 

scattering this is not too reliable since, for example, the p( 6) in the statistical 

bootstrap model (4.21) varies over the period of one oscillation (4.22). It is 

also not clear whether oscillations should be attributed to the fluctuations in (Y)~ 

or the interference of fluctuations in y with a coherent background. 

Experimental searches for Ericson fluctuations in pp scattering have been 

made. Allaby et. al. 146 ] looked at 16.9 GeV/c over a range of angles and 
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Akerlof et.al. [47] looked at 0cm = 90’ over a range of energies. Both results 

were negative. This would argue against trying to take the same statistical 

approach in pp scattering as in pp except for allowing the density of states in 

exotic channels to be small since this would imply large fluctuations. 

Frautschi [35] has interpreted structure at 180” in 7r-p -r-p and 7r+p -r+p in 

terms of interference of statistical fluctuations with a coherent background. 

This is shown in Fig. 4.6. 

F. Schmidt et.al. [48] have looked at **p -7r*p at large angles and at 

two nearby energies near 5 GeV/c. The structure they see, Fig. 4.7, is indica- 

tive of Ericson fluctuations although it would be more clear cut if more energy 

bins could be examined. 

The search for Ericson fluctuations provides an important experimental tool 

for deciding on the existence of overlapping high mass resonances. If fluctua- 

tions are found in a given energy range it would tend to support the interpreta- 

tions of the energy dependence of fixed angle cross sections in terms of direct 

channel effects . Simple constituent model explanations should probably not be 

applied at energies where there are such direct channel effects. 
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V. CONSTITUENT MODELS AND SCALING LAWS 

The models we have discussed so far have all contained an explicit dis- 

tance scale which governs the asymptotic behavior of fixed angle cross sections. 

In the dual resonance model [29-301 the scale is determined by (cr’) m where 

Q’ is the slope of the dominant Regge singularity. In the other approaches a 

scale is determined by the size of the hadrons, [ 91 by their peripheral “skin 

depth” [5,6] or by the level density of excited states. [33,34] We now want to 

examine the possibility that the large-angle scattering of hadrons results from 

the pointlike interaction of elementary constituents. This approach is largely 

motivated by the fact that simple quark models explain crucial elements of 

hadron spectroscopy [42,49] while quark-parton models provide a good descrip- 

tion of structure functions in deep-inelastic electron scattering. [ 50 ] Although 

composite hadrons are not necessarily neat surgical probes of their own 

structure, there is, in the context of specific models, a strong connection 

between electromagnetic form factors and structure functions and high-energy 

fixed-angle hadronic scattering. 

A. Constituent Counting Scaling Laws 

BrodsQ and Farrar 1511 have studied the scattering of composite objects 

in renormalizable field theories. They begin by studying diagrams such as those 

shown in Fig. 5-1. Neglecting the binding energy between the quarks in these 

diagrams it is necessary that all constituents of the same hadrons have equal 

momenta. In the kinematic region where t and u are large and proportional to 

s (the fixed-angle region) the CM energy of each constituent is then proportional 

to ,,/s- Dimensional arguments indicate that the invariant amplitude has dimen- 

sion 

d = (length)n* , F-1) 



- 36 - 

where n is the number of external lines. If v& is large compared to any 

masses in the problem the fixed-angle amplitude should be proportional to 

AB(s,z) OZ(&)-~+~ , (5.2) 

From this point, the basic assumption is that there is a scale-invariant inter- 

action between the quarks so that the binding of the quarks in the hadron does 

not modify this simple result. Brodsky and Farrar have therefore examined 

the assumption that this free-quark Born diagram has the same behavior as the 

physical amplitude in specific field theories. They find, for example, that 

diagrams like 5. Id can contribute a finite number of logarithmic factors but 

the result (5.2) is approximately valid for the physical amplitude unless some 

set of these diagrams sums to build up a new power. Diagrams such as 5. le 

do not change the behavior (5.2) provided the bound-state wave functions are 

finite everywhere. 

One exception to the Brodsky -Farrar rules has been reported by 

Landshoff. 152 ] He has found that the diagram shown in Fig. 5.2 dominates 

over the Brodsky-Farrar terms when there is a scale-invariant quark-quark 

scattering. There are reasons, within the context of specific models, [53] 

why diagrams such as that shown in Fig. 5.2 may not be important but there is 

still a great deal yet to be understood on this point. 

Whatever the diagrammatic justification for the Brodsky-Farrar rules, they 

must be considered an outstanding empirical success. The formula for the 

fixed-angle differential cross section, 

(dddt)ab --c ,e,d - ftt/s) s 
-(n,+ nb+nc+nd) + 2 

I (5* 3) 
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combined with usual quark-model assignments for the particles has shown 

remarkable success for correlating the systematics of the different processes. 

The comparison between the prediction, (5.3), and the result of fitting the data 

at 90’ to a simple power law is displayed in Table 5.1.. 154-561 

The empirical success of (5.3) is all the more remarkable in view of the 

fact that the original assumptions, including the neglect of binding energies 

between the constituents, would seem to rule out the application of (5.3) in 

energy regumes where resonant effects are important. However, there is sub- 

stantial evidence for IAN resonances of mass M NL 3Gev. This is in the middle 

of the range in which (5.3) is compared with data in Table 5.1. It may be that 

there is a new principle resembling the original form of Dolen-Horn-Schmid 

duality [58] which allows us to apply this type of asymptotic formula with no 

corrections even at very low energies. One of the problems in understanding 

the fact that there is no experimental evidence for unbound quarks arises from 

the ability of free-quark formulas such as (5.3) to successfully describe data. 

The very existence of high mass resonances is an interesting question in the 

context of field theory models because of the bearing such states have on the 

nature of the constituent binding mechanism. 

One explicit dynamical model for the role of constituents in fixed-angle 

scattering is that of Blankenbecler, Brodsky and Gunion. 1531 In this approach 

it is assumed that any direct interaction between quarks from different hadrons 

is absent or suppressed. The fixed-angle scattering is assumed dominated by 

the interchange of constituents . The identification is made between the hadronic 

constituents and the carriers of the electromagnetic current in order to relate 

the fixed-angle hadronic cross sections to form factors. 
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The expression for the fixed-angle invariant cross section in this model 

is of the form 

A(s,z) cx s FaW FJt) Fd(U) I(z) (5.4) 

where the F’s are form factors and I(z) is some smooth function. There is some 

question whether this expression is appropriate for a 3-quark proton. With a 

dipole proton form factor (5.4) predicts an s -12 behavior for the pp elastic 

cross section which conflicts with the Brodsky-Farrar value in Table 5.1. In 

other reactions the predictions of (5.4) agree dth the constituent counting rules. 

In the constituent interchange model the connection between fixed-angle 

behavior and fixed-t behavior of amplitudes can be studied. The fixed-angle 

power behavior is found to join on smoothly with the R.egge regions providing 

that Regge trajectories approach negative constants at large momentum transfers. 

For meson channels, the prediction is 

lim 
t 

am(t) = -1 
---%I 

(5.5) 

where a,(t) is the trajectory which, for example, determines large-t 7i-p elastic 

scattering. This prediction is connected with the question, mentioned earlier, 

of the existence of high-spin, high-mass resonances. Experience with potential 

models [59 J where (5.5) is valid combined with the usual analyticity properties 

of trajectory functions makes it difficult to reconcile (5.5) with an indefinitely 

rising resonance spectrum at positive t. Studies of effective Regge trajectories 

may be able to decide whether (5.5) is a better representation of the data than a 

linearly falling trajectory as we will discuss later. It is important to note that 

the prediction (5.5) is to be valid in exotic channels as well as those with 
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no nexo tic quantum number exchange. That is, it should describe the fixed-t 

behavior of T-P - K+Z- as well as n-p ’ -7r n. 

It should be noted that the constituent interchange model makes a large 

number of predictions for inclusive and semi-inclusive processes as well as 

fixed-angle scattering and that its success in correlating a large amount of 

data has been surprising. A more thorough discussion of the model is outside 

the scope of this paper and we refer the reader to the review of 

Blankenbecler. 160 3 

In a different interpretation of constituent models Fishbane and Quigg [61] 

have discussed the ratios of cross sections at 90’ under the assumption that 

they are proportional to the number of ways the constituents of a and b can be 

recombined to form c and d. This assumes the complete dissociation of the 

hadrons in a hard collision and the absence of any interference effects. For 

example, the ratios of the cross sections for pp - pp and np - np are obtained 

by making the usual quark model assignments of u (up) and d (down) quarks 

p = (uud) 

n = (udd) (5.6) 

In a pp collision the number of ways we can reform to protons out of a collection 

(uuuudd) is 

‘4\ I2 
( 0 2) 1 ==, (5.7) 

while in an np collision we have to reform a proton and a neutron out of (uuuddd) 

with probability. 

3 13 0 1 2 1=9. 
\ (5.8) 
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The prediction of Fishbane and Quigg is then 

dcr/dt (pp - pp) = 12 =g 
dojdt(pn -pn) goo 9 3 ’ (5.9) 

a value which is in rough agreement with data. These combinatorics provide 

several other interesting ratios which should be compared with data. [61] It is 

important to notice that Fishbane and Quigg assume the Wandard” quark model 

instead of colored quarks. It is interesting, within the assumptions associated 

with complete dissociation, to investigate how sensitive these ratios are to 

different constituent schemes. 

B. Other Field Theory Models 

The picture of Blankenbecler et.al. [53] discussed above is not the only 

approach to fixed angle scattering based on field theory which has some 

phenomenological backing. Fried, Kirby and Gaisser 162 ] advocate a picture 

where the scattering of hadrons through large angles occurs from a single hard 

exchange modified by the effect of exchanges of soft, virtual neutral vector 

mesons between external hadronic legs. They achieve an approximate wide 

angle formula 

g (s,z) = (do/dt)H S(s,z) 

where (do/dt)H is the Born approximation for single hard meson exchange and 

S(s) z) is the effect of all the soft external leg insertions. From this point, they 

fit some parameter and then use the relative strength of physical w-couplings 
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to make some nontrivial predictions. In this model 

dobW.w - PP) 
I 90” 

- aI sB11a2 

W’Wnp--np) 
I 9o” 

N a2 se6’ ’ 

W’dWp --VI 
I 90” 

c-) a3 s-6’6 

(5.11) 

In this model pp and kp elastic scattering have the same s-dependence in view 

of the strong w-coupling to Kg. The appearance of fractional powers in (5.11) 

is not attractive and the systematics of Table (5.1) favor the simpler Brodsky- 

Farrar powers but this work is important in that it shows that, within the con- 

text of field theories, it is hard to justify the neglect of external leg insertions 

since, with physical coupling constants, they can significantly modify the power 

behavior. The assumption in the Brodsky-Farrar approach that these are un- 

important needs further examination. 

Preparata 1631 has conducted a thorough investigation of large angle scatter- 

ing within the framework of a massive quark model. The basic postulates of this 

model are: 

(i) Quarks are the fundamental constituents. 

(ii) The mass of a quark can be considered very large. 

(iii) Hadrons are bound states of quarks with zero triality. 

(iv) Green’s functions display Regge behavior at high energies and decrease 

rapidly in the masses of external quark legs. 

(v) Physical amplitudes can be constructed by an iterative procedure in 

the number of intermediate quark legs. 
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In this approach the interchange diagrams of Ref. 53 are suppressed com- 

pared to the diagram in Fig. 5.3. The results of the calculation yield 

dcr/dtMB - log2 (s//L2) 

9o” S8 
fMBtZ = ‘) 

(5.12) 

dojdtBB - log2 (s/p”) 

9o” SIO 
fBB(Z = ‘) 

which agree with the Brodsky-Farrar rules. The fact that this model makes a 

definite prediction for the number of logarithmic factors is probably not signifi- 

cant for experiment. Rather it should be emphasized that the results are quite 

similar to those of Blankenbecler, Brodsky and Gunion in spite of the fact that 

the starting point is quite different. 
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VI. SUMMARY AND CONCLUSIONS 

Although we have not attempted a complete review of the theoretical 

approaches to large-angle scattering, we have discussed a large number of 

models with a wide variety of predictions for the asymptotic cross sections. 

The models and their predictions are summarized in Table VI. 1. The first 

order of business for a phenomenologist would seem to be the comparison of the 

predictions in this table with experiment in order to decide which model is 

“correct”. However, the problems involved in making a direct comparison of 

all these models with experiment are considerable. In spite of the fact that the 

asymptotic forms in Table VI. 1 show large differences, the differences in the 

predictions of the models at energies where data is currently available are 

actually quite small. 

Only three different models can be ruled out by a straightforward compari- 

son with present data. The dual model with linear trajectories makes the pre- 

diction (4.10). This fast falloff of the fixed angle cross section with s is simply 

not indicated by the data. The question of whether the bad, fixed-angle behavior 

should in any way “discredit” dual models is intriguing. The flaw should prob- 

ably be considered minor in view of their other successes. As indicated in 

Section IV the behavior follows rather directly from the linear trajectory func- 

tion and the degeneracy of states with the same mass and different angular 

momentum. This degeneracy may not survive a “unitarization” of the model 

and so the problem of the dual model’s disagreement with fixed-angle scattering 

data is not considered serious by many proponents of the dual approach. 

A second viewpoint which can be ruled out by the data is the strictest geo- 

metrical interpretation of Kinoshita’s minimal interaction where the scale is 

determined by the size of hadrons. This is essentially the diffraction dominated 
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geometrical model discussed in Section III (see Fig. 3.4). It should be noted, 

however, that the original formula by Orear, [S] Eq. (2.2), remains in sub- 

stantial agreement with large angle scattering. If we relax the geometrical 

interpretation of Kinoshita’s conjecture then his approach is not particularly 

meaningful but it cannot be ruled out. 

The final approach to fixed angle scattering which can be ruled out is the 

behavior of pointlike hadrons interacting through a scale invariant force. This 

would predict a behavior for elastic scattering similar to that in QED 

do - f(z) s -2 
dt (6.1) 

The most that can be said about this type of behavior- is that it is evidently not 

significant at current energies. We will not say anything more about (6.1) 

here. 

The remainder of the models discussed in this paper can still be considered 

active contestants in the field. The differences in their predictions for the 

fixed angle behavior do not work out to be large at present energies. In order 

to distinguish these models directly and convincingly it would seem as though 

we need two or three more decades falloff in the experimental data. The situa- 

tion of having many theoretical models which cannot be distinguished at present 

energies but which diverge slowly as energy increases seems a fairly typical 

situation in particle physics. However frustrating it may be for experimenta- 

lists wanting a fast straightforward experimental test, it looks like unraveling 

fixed- angle models will take a lot of time. An important possibility is that new 

experiments will discredit all the remaining models simultaneously. It would be 

very convenient if theorists received a clear signal about which approach is 

correct. As it is, those who emphasize the connection of large-angle scattering 
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with weak and electromagnetic phenomena will be drawn to the constituent 

approach while those who view wide-angle scattering as a continuation of 

small-angle hadronic effects are provided with several convenient mass scales. 

There are several important subsidiary questions in the discussion of large- 

angle scattering problems. The first is the problem of high-mass, high-spin 

resonances. A few years ago, in the heyday of dual models, it seemed heretical 

to doubt that such resonances exist. There have since occurred several develop- 

ments which have tended to shake this belief. The first, and most important, 

result was experimental - the failure of the Northeastern-Stony Brook [64] 

group to confirm the S, T, U enhancements reported by the CERN Missing Mass 

Spectrometer. [65] These bumps fitted nicely on a linear p-A2 trajectory 

complex and gave comfort to those who held the dual model viewpoint. 

Theoretical developments such as models for scaling, asymptotic freedom, 

etc. have tended to support constituent binding schemes in which it is awkward 

for trajectories to rise linearly. The essence of the parton model and the 

constituent interchange model discussed earlier is an idea of free or 

quasi-free constituents. We do not need high mass resonances in these consti- 

tuent models and the assumption that the fixed angle behavior is given by a simple 

power becomes clear only when we are “above” the resonance region. We do 

not understand these models well enough to know whether the results might also 

be good at lower energies, but this is an area where considerable theoretical 

progress might be made. 

Resonance spectroscopy therefore can provide a very important set of input 

into the area of knowledge concerning large-angle scattering. As we get to the 

masses where the phase shifting techniques are unable to make progress then it 

is important to have other evidence concerning resonant effects. The 
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Ericson-Frautschi fluctuations discussed in Section IV are an excellent place 

to start. Further experimental evidence concerning these fluctuations would be 

very important. The predictions made by Frautschi [35] in the framework of 

the statistical bootstrap models rely specifically on the assumption that average 

resonance widths are approximately (m,) and that the exponential mass spectrum 

of the statistical model is valid. Some kind of fluctuations should appear, 

however, whenever resonance contributions are important at fixed angle and 

their presence should be considered strong evidence for high mass resonances. 

Whether or not the resonances have the properties predicted by the statistical 

bootstrap (or some other) model is a harder question which is not easily 

susceptible to test by the fluctuations. 

Relevant to the question of whether or not we are in an energy regime where 

the simple constituent counting laws of Brodsky and Farrar (511 are apt to be 

valid is the paper of Hendry. [ 661 He points out that there is a great deal of 

fixed-t structure in the cross sections which intersects the fixed-angle behavior 

at current energies. This structure is easy to understand in the geometrical 

model of Chu and Hendry [23] discussed in Section III where it corresponds to 

structure in the Legendre functions which approximate the amplitudes. It is 

also possible to understand the structure in terms of Cdorico zeros [67] in a 

resonance approach but it is not a feature of any simple class of field theory 

diagrams. 

The graphs in Fig. 6.1 illustrate Hendry’s point. It should be noted, 

however, that straight lines which interpolate the dip structure in these diagrams 

have a slope which is very close to the predictions of Brodsky and Farrar. This 

again may be a case where, for some unexplained reason, an asymptotic form 

extrapolates quite well into regions where it is not strictly applicable. 
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It is quite important to consider how predictions for fixed-angle connect 

up with the fixed-t behavior. One of the attractive features of the Chu-Hendry 

parameterization was that it provided a simple expression which covered the 

entire angular range. This feature has subsequently been supported by the work 

of Schrempp and Schrempp using the geometrical model at large, fixed t. 

While not providing a description of the complete physical region there has 

been a considerable effort to extend the Constituent Interchange Model from 

the fixed-angle region into the fixed-t region. 1531 This effort has resulted in 

predictions for the large-t behavior of Regge trajectories. Let us consider 

here the status of the predictions 

lim 
t-co 

a,(t) = - 1 

lim 
t -Co 

a,,(t) = - 2 (6.2) 

This prediction can be tested by measuring the effective trajectory in 7r-p - Ton 

and pp elastic scattering. 

Barger, Halzen and Luthe [68] have calculated an effective trajectory in pp 

scattering using 

do 
Qn dt (PP -PP) = (20eff(t) - 2) hs + h P(t) (6.3) 

This is shown in Fig. (6.2). Blankenbecler et. al. [69] have calculated the 

effective trajectory in Fig. (6.3) using 

QII dt @P - PP) = (2 oeff(t) -2) QW.0 + Qn P(t) (6.4) 

which they claim is more consistent with the duality properties of the pp elastic 

amplitude. The differences in the t-dependences of these two trajectory functions 
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is primarily due to 

Qn(-u) = Qn(s + t -4m’) = Qn(s)+Qn 1 + ( t-;m2) (6.5) 

and so the fact that the trajectory of Barger et. al. falls below -2 should there- 

fore not necessarily rule out (6.2). 

Possibly more significant evidence concerning the large-t behavior of Regge 

trajectories is the study using Finite Energy Sum Rules of the amplitude struc- 

ture of n-p - non. Elvekjar, Inanie and Rungland [ 70 ] report that the large t 

region the amplitudes are very similar to what is expected from a simple p- 

Regge pole with a linear trajectory. In particular they point out the right- 

signature zero at t = - 1.6 and a second wrong-signature zero at t = -2.4 -2.5 

consistent with the places where a linear trajectory would pass through -1 and 

-2 respectively . Their results are shown in Fig. 6.4 . There is some feed- 

back through the “optimized convergence” finite energy sum rule of the form 

assumed for the trajectory function and the structure in the amplitude. However, 

if this structure is confirmed independently, for example, by amplitude analysis 

at large t then it would argue quite strongly for the existence of indefinitely 

falling trajectories. 

A final word of caution is appropriate about the dangers of concentrating on 

one aspect of hadronic interactions, such as fixed-angle scattering, and drawing 

sweeping conclusions about models. Clearly, what we want is a theory which 

explains all the data: inclusive and exclusive. What we have tried to do here 

is to try to decide which aspects of such a theory might be particularly sensitive 

to experimental knowledge on fixed-angle scattering. 
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FIGURE CAPTIONS 

3.1. This diagram schematically suggests one of the basic features of collision 

processes of fragile hadrons - absorption of low partial waves in the 

2 - 2 channels. A central collision is more likely to fragment one of 

the incident hadrons and contribute to a many-body final state as indicated 

in Fig. (a). The low partial waves in a 2-2 amplitude are suppressed 

leaving a peripheral component such as shown in (b). 

3.2 Typical approach to absorbing the low partial waves of a Regge pole. 

3.3 This figure taken from Ref. 21 demonstrates the geometrical difference 

between diffractive and nondiffractive scattering. Diagram (a) gives the 

Legendre coefficients for the “amplitudes” in K+p and K-p elastic scatter- 

ing showing the presence of a central “diffractive” component. Diagram 

(b) shows the same thing for the difference of K-p and K+p and represents 

peripheral quantum number exchange. For more details see Schmid; 

Ref. 21. 

3.4 s2 da/dt for proton-proton scattering at 90’. If we ask for a peripheral 

component then the data are roughly consistent with (3.26) with a Ab z .48 

fm. The falloff of the data is too rapid to be due to diffraction with 

br lfm. 

4.1 The differential cross section at 5 GeV/c for 7r’p -. x’p (diagram A), 

7r p - r-p (diagram B), 7r’-p - non (diagram C). The curves are the fits 

of Chu and Hendry explained in more detail in Ref. 23. 

4.2 Figure taken from Ref. 25 where more details of the model can be found. 

The curves compare predictions of the dual peripheral model of Schrempp 

and Schrempp for the polarization. 

4.3 Sketch of Energy Levels in Nuclear Physics and Hadron Physics. 
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4.4 (a) 7r-p elastic scattering data are compared with the theoretical pre- 

dictions of the statistical model of Ref. 43 with kTo = 140 MeV (Solid 

line). The dashed line represents a form s -8 which corresponds to the 

asymptotic behavior of constituent models. 

(b) Same for 7r+p elastic scattering. 

(c) Data on pp scattering are compared with the theoretical predictions of 

the statistical model of Ref. 43 with kTo = 140 MeV (Solid Line). The 

dashed line represents a form s -10 appropriate for the asymptotic 

behavior of statis tical models. 

4.5 do/dSIfor p + 56 Fe p+ 56 Fe at energies around 9.4 MeV. Taken from 

Ref. 45. 

4.6 Data on d c/dt for 7~+p + 7r+p at 0’ and 180’. The structure in the back- 

ward data is interpreted by Frautschi as evidence for Ericson Fluctua- 

tions. For more details see Ref. 35. 

4.7 Data from Ref. 48 showing fluctuations with energy of r*p elastic cross 

sections near 5 GeV/c. The quantity A is defined as 

A = da(E + AE) - do(E) 
do(E + AE) + da(E) 

where AE = 36 MeV. 

5.1 Typical Diagrams considered by Brodsky and Farrar in Ref. 51. 

5.2 A diagram investigated by Landshoff 1521 which does not obey the Brodsky- 

Farrar constituent counting power law (5.2). 

5.3 Diagrams for large-angle scattering in the massive quark model of Ref. 

63. 

6.1 (a) Structure in dcjdt for *‘p scattering pointed out by Hendry. [66] 

(b) Same for pp. 
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6.2 Effective c1! in pp scattering from Barger, Halzen and Luthe. [68] 

6.3 Effective Q in pp scattering from Tran Than Van, Gunion and 

Blankenbecler. [69] 

6.4 Structure in amplitudes in .rrp - Ton suggesting a second wrong signa- 

ture zero. [70] 
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TABLE 5.1 

Process Constituent Power Experimental 
-Power tinge Js 

YN - TT’N 7 7.3 f 0.3 1541 2.8-3.8 

K;P - tiLp 8 8.5 f 1.4 1561 2.2-3.4 

%P - 7T+ii 8 7.4 f 1.4 [56] 2.0-4.0 

EoP -7rz + 0 8 8.1 f 1.4 1561 2.3-3.4 

K+P - K+p 8 7 -+l c55 I 2.0-3.6 

T-P + 7r-p 8 8 *1 1571 2.0-4.1 

r+P - 7r+p 8 7 *1 [551 2.0-3.5 

PP - PP 10 9.7 f 0.5 (2.5-6.1) 

PP - PP 10 
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TABLE VI. 1 

Comparison of Models for Fixed-Angle Hadronic 

Scattering Processes 

A. Models with an Explicit Mass Scale 

Model Mass Scale Fixed Angle . 
Behavior Set tio n 

Dual Models [ lP,12 ] 
with linear trajectory 
a(t) = o!(O) + a’t 

Minimal [ 9 ] 
Interaction 

Statistical [ 33-35 ] 
Bootstrap 

Fragile Hadrons [23-25 ] 
s-channel Regge 
pole 

W) -l/2 exp{ 4’s f(z)] II, IV 

NN 1 (fm)-I 
(l/ho) diameter of 

hadrons 
exp[-b. & f(z)} II, III 

m 7r 

inverse of 
“skin depth” 
Ad x l/Mp 

f(z)elcp(- d3y.j N 

exp {-(Ad) 6 0} II&IV 

B. Models with Pointlike Interactions 

Constituent Counting i 5 1 ] 
Power Laws 

Constituent [53] f(z) s -12 for 
Interchange pp if proton V 
Model quark + “core” 
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