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Summary 

The analysis of beam loading in the RF systems olhigh- 
energy storage rings (for example, the PEP e-e+ ring ) is 
complicated by the fact that the time, Tb, between the 
passage of successive bunches is comparable to the cavity 
filling time, Tf. In this paper, beam loading expressions 
are first summarized for the usual case in which Th << Tt. 
The theory of phase oscillations in the heavily-bea&loa&d 
case is considered, and the dependence of the synchroixon 
frequency and damping constant for the oscillations on beam 
current and cavity.tuningis calculated. Expressions for 
beam loading are then derived which are valid for any value 
of the ratio Tb/Tf. It is shown that, for the proposed PEP 
e-e+ ring parameters, the klystron power required is 
increased by about 3% over that calculated using the standard 
beam loading expressions. Finally, the analysis is extended 
to take into account the additional losses associated with the 
excitation of higher-order cavity modes. A rough numerical 
estimate is made of the loss enhancement to be expected for 
the PEP RF system. It is concluded that this loss enhance- 
ment might be substantial unless appropriate measures are 
taken in the design and tuning of the accelerating structure. 

Summarv of Beam Loading Expressions for Tb << Tf 

We consider first the case for which the time between 
bunch passages is short compared to the filling time for the 
fundamental and all higher-order cavity modes up to a cut- 
off frequency determined by the bunch length and the dimen- 
sions of apertures coupling the cavity to the outside world. 
We assume also that these higher-order mode frequencies 
are sufficiently removed from being integral multiples of 
l/Tb = l$fo (where Nb is the number of bunches and f. is the 
revolution time) so that no higher-order mode is resonately 
excited. Beam loading can then be characterized by a 
continuous RF current at the fundamental mode frequency 
having a peak value (for short bunches) equal to twice the 
average circulating current. Beam loading in circular 
machines in this limit has been analyzed previously. 2 We 
will use here a somewhat different approach and notation. In 
this notation, a tilde is used to denote a complex (phasor) 
quantity, while a quantity without a tilde denotes absolute 
value. For convenienced -& is taken as the reference direc- 
tion (real axis), where 19 is the beam current; the acceler- 
ating component of a phasor voltage is then obtained by taking 
the reallart. All phasors are assumed to vary as clot. In 
Fig. 1, ig gives the phase of the incident wave from the ex- 
ternal generator. Angle 0 is the phase of the external gen- 
erator with respect to -To, _and $J is the phase between-&, 
and the net cavity voltage, V,. Using superposition, V, is 

FIG. l--Diagram showing vector addition of voltages 
in an RF cavity. 
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the sum of a genefator-produced voltage, v and a beam- 
induced voltage, Vb. The vector addition 
illustrated in Fig. 1. 

$+9=ac is 

The voltage v produced across a parallel resonant cir- 
cuit with shunt resistance R and driving current I is 
V/Ft = T/(1+ j& = i co8 +ejJ, . In this expression + is the 
tuning angle shown in Fig. 1 and defined by tan J, = -4 = 
= -2QL(w - wo)/u9, where Q  is the loaded Q, w is the 
driving frequency and 09 is k e-cavity resonant frequency. 
We define now a coupling coefficient B, such that /I/R is the 
internal shunt conductance of the external generator. Phys- 
ically, fl is the ratio of the power emitted from the coupling 
aperture to the power, PC, dissipated in the cavity walls 
with the external generator off and the cavity internally 
excited (by beam loading, for example). ,The following ex- 
pressions for the magnitudes of sg and i$, can now be derived: 

vg=vgrcosJ,; v gr =mg+$$ 

Vb = VbrCOS J,; iOR Vbr = - 
l+P 

Here Pg is the incident (available) power from the generator, 
i 
& 

is the average circulatmg current, * and Vgr and Vbr are 
e magnitudes of sg and Vb at resonance. 

From the vector diagram in Fig. 1, the basic expres- 
sion for the accelerating voltage is 

va = vc CO8 9 = VP cos lj cos(8+ ?j) -Vbr cos2+ (2) 

In designing an RF system for a storage ring, we are nor- 
mally given the synchronous energy gain, eVs, determined 
by the magnet lattice; the synchronous phase angle, #J, 
required to maintain an adequate quantum lifetime (alterna- 
tively, the peak cavity voltage V,=V,/cos $J can be speci- 
fied); and the circulating current i9. We want to know the 
required generator power as a function of tuning angle and 
coupling coefficient. From Fig. 1 we have 

vcsin$J=v gr co6 J, sin(9 + $I) - Vbr co8 $ sin $ . (3) 

Using this expression in Eq. (2) to eliminate (O+ $), and 
Eq. (la) to express the result in terms of the available gen- 
erator voltage q, we obtain 

mg=& g c IN iOR 1 
2 cos$+- v,(l+p) cos2 J, 

+ sinb+-&pj C 
2 l/2 

co8 2) sin J, 
31 

* (4) 

Suppose now that a feedback system is available which 
can keep the reflected voltage wave in the input line to the 
cavity real by adjusting the cavity tuning; that is, to cancel 
out the reactive component of the induced beam-loadiig volt- 
cge. The reflected voltage wave can be real only if V, and 

t 
as shown in Fig. 1 are co-linear. This condition in turn 

.i plies that C+JI=O. Since [+++e =$I, then we must have 
also that e= #. Using the laws of sines on the vector tri- 
angle in Fig. 1 together with these relationships between 

*The expression for Vb, is valid in the limit of short 
bunches. For long bunches, i9 must be multiplied by a 
bunch form factor, b given in Appendix A. Note also that 
the shunt impedance s defined such that power and voltage P’ 
are related by P=V2/R. 
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angles, vbr cos $flc’sin g/sin e = -sin #/sin 6 ne -ki 
angle for real reflected power becomes 

tan+=-+ sin+=-&fl ‘b sin $I . 
C C 

For this case, Eq. (4) reduces to 

5 = 2 Fc’Vbr cos c?] . 

If we now differentiate Eq. (6) with respect to 8 to find the 
value of coupling coefficient, 6 which minimizes the re- 
quired generator power, we obgin 

ioR cos + 
@,=I+ v 

ioR vs 
=l+7- - 

(W 
C 

C 

The generator power at pm is calculated, using Eq. (7a) in 
Eq. (6), to be m = V, c&. The efficiency for the 
transfer RF power to the beam is ~)=Pb/p =i V /P g Qs f, = 
= (b&p&. The power dissipated in the cavity wa s is 
PC = V&R = P /$3 = pb/(pm-1). By conservation of power, 
the reflected p%wer is in general P, = Pg-Pb-PC. It is seen 
that the reflected power reduces to zero for p= pm. The 
tuning angle at 6=&n is obtained, using Eq. (7a) in Eq. (5), 
as 

Phase Oscillations and Phase Stability 

If the phase oscillations of the bunch about the synchro- 
nous phase angle are to be stable, then the abwe transition 
dV,/d(t-ts) must be negative, where (t-ts) is the arrival 
time of the bunch at the cavity gap measured with respect to 
the arrival time of a synchronous particle. The arrival time 
of the bunch relative to a synchronous particle is related to 
their difference in phase by w(t-ts) = 0-0,. Therefore, an- 
other way of saying the same thing is that dV,/dB must be 
negative. From Eq. (2) we then obtain the simple condition 
that sin (e++) > 0, or 

o<(e+#)<r . @a) 
It is easy to .show that this condition is one of the stability 
conditions first derived by Robinson. 2 Using Eq. (3), this 
condition can be written 

Vcsin$l+VbrCOsqJsinJI >o . W4 

If a feedback circuit adjusts the cavity tuning to keep the 
reflected voltage wave real in accordance with Eq. (5), then 
Eq. (8b) reduces to Vbr COB Q < V,. At optimum coupling, 
using Eq. (7a), this becomes [(iOR COB $)/(iOR cos $+2V,)] 
< 1. At optimum coupling the system is always stable. 

The physical meaning of the stability condition of 
Eq. (8a) is clear when it is realized that s+J, is the phase 
angle between the bunch and the crest of the generator- 
produced wave. Since the beam-induced wave changes in 
phase with the bunch, only the generator wave is effective in 
producing a net restoring force on the bunch. Instability 
arises when 0 + J, = 0 and the bunch lies at the crest of the 
generator-produced wave. Since the effective restoring 
force depends on 0 + J, , and since this angle is a function of 
beam current for fixed V and V,, then the synchrotron 

frequency will depend on Tie am current. From Eqs. (2) and 
(3) 9 

dVa/d6 = Vgrcos$sin(e+~) = Vcsin~+Vbr~~s~sin# . 

current can be written 

- (Vbr/Vc)2 cos2 9 1 
l/2 

WS w,ti,) 1 
--= 

WeO - w,(O) 1+ (VbrA’c)2 sin2 
(9) 

$ 

The high-current stability limit, Vbr cos +=Vc, is also the 
condition for ws = 0. ~- 

The preceding analysis is strictly valid only in the limit 
in which the synchrotron oscillation frequency is small com- 
pared to the cavity bandwidth. If w is large compared to 
the bandwidth, the induced beam voltage cannot respond to 
changes in phase of the driving beam current. The accel- 
erating voltage is then simply V, cos $, and the stability 
condition is V, sin 9 > 0, independent of current. For syn- 
chrotron frequencies which are comparable to the cavity . 
bandwidth, the dynamic response of the cavity field to phase - 
changes in the driving current must be taken into account. 
This calculation is carried out in Appendix B. It is shown 
that for as Tf << 1, ws/wso is given by Eq. (9), and that 

. 

for ws Tf >> 1, ws=w 0. It is also shown that for 8 > 0 
(or w > wo) the oscillations are damped, while the opposite 
is true for w < ~0. This is the dynamic stability condiy 
for 9 system without feedback, considered by Robinson. 
Lee has considered the case of a system with feedback. 

It is worth point out that there are stability conditions 
similar to the ones just discussed in any high-frequency 
systems in which the stored energy can vary parametrically 
at a low frequency rate. Ceperley4 has made a clear and 
concise analysis of a closely related problem, that of elec- 
tromechanical (ponderomotive) oscillations which result 
from the modulation of the resonant frequency of a cavity by 
mechanical vibrations. He concludes that for these oscilla- 
tions the system is antidamped (unstable) for W> wo, and 
that on the opposite side of the resonance curve a %tatic” 
instability occurs in the limit of zero modulation frequency, 
corresponding to Eq. (8b) for the case of phase oscillations. 

Beam Loading for Tb m Tf 

The energy per turn extracted by a bunch passing through 
a cavity is AW =qVs= ioTbVs= PbTb, where q is the charge 
in the bunch. Using QL=wTf/2= ~W/p,(l+fi)], together 
with Pb/P = &- 1 at optimum coupling, we have 
AW/W= (2&b/Tf)[@m-‘)/(&+I)]. The ratio 7 = Tp/Tf iS 
therefore an approximate measure of the fraction 0 the 
stored energy removed from the cavity by the passage of 
each bunch. This expression breaks down for T w 1, since 
AW cannot be greater than W. It is clear that the expres- 
sions for beam loading derived so far mukt be modified for 
7 -1. 

Suppose charge dq crosses the cavity gap, producing an 
increment dVb in the induced beam loading voltage. Using 
R/Q= (V$Pc)/(wW/P ) =V@wW, the change in stored energy 
is dW = BV&V,&(R/~)]. By conservafion of energy this 
must be equal to -V, co6 @ dq. Since dVb is in the direction 
of in, the change in cavity voltage will be dv,= -co6 $J dVb. 
Therefore dVb= (w/B)(R/Q) dq. Assuming that all of the 
charge crosses the gap in a time short compared tc the RF 
period, then 

(10) 

For long bunches, the above expression must be multiplied 
‘by the bunch form factor given by Eq. (A. 1). The primary 
role of R/Q in determining the beamloading characteristics 
for the passage of a single bunch is also clearly seen. 

If cavity tuning is adjusted according to Eq. (5) and using 
also the fact that the synchrotron frequency is proportional 
to (dVa/ds)I/2, the change in synchrotron frequency with 

The steady-state excitation of the cavity by a periodic 
train of bunches is now readily calculated by taking the 
vector sum of the fields induced on successive passages. 

-2- .- 



I 
The total induced beam voltage, calculated by taking the 
sum immediately after the passage of each bunch and denoted 
byv;, is 

7; = ~~~ [I + e-T+@ + e2(-5*)6). . .] = 
1-e?ej6 ’ (11) 

A where 6 = (wo - w)Tb = T tan # . In other wbrds, between one 
bunch passage and the next, the residual field from l&e 
previous passage decays by a factor e-r and shifts phase by 
an angle 6. The average induced beam voltage is given by 
Tb = Sg - AVb/2. -relationship between these induced 
beam voltage vectors, and the transient behavior of the 
cavity field between bunch passages, is shown in Fig. 2. 

?G. 2--Vector diagram showing transient behavior of 
cavity fields during beam loading for T m 1. 

Using Eqs. (10) and (11) in this expression for Vb, 

h F1t7)+5F2t~) s 1 
where 

FI(T) = r(l-em2’) 
2~-2e-Tcos(7tan$)+e-273 ’ 

(1W 

F2(7) = ” -’ sin (7 tan 11) 
1 - 2e-’ co6 (7 tan$)+e -27 - WW 

In the limit T << 1, these relations reduce to FI = cos2 
F2= sin+ COB 4, as expected. The functions Fl(~)/cos 1 

and 
J, 

and F~(T)/cos $I sin JI are plotted in Fig. 3 as a function of T. 

All of the expressions listed previously for the case 
T-X 1 can be corrected so-that they are valid for any T by 
using Eq. (12) wherever Vb appears. In particular, Eq. (4) 
for the available generator voltage becomes 

This result can be applied to the proposed PEP RF system, 
for which io=20&mA, R=950 MSZ, V,=44 MV and V,= 
26 MV. We also define TV= ~/(1+8) =Tb/T o, where 
TfO = 2Q,/w is the unloaded filling time. IJ or PEP, TfO= 
25 psec, Tb’2.4 psec and ~~=.096. Using these param- 
eters, the preceding expression can be minimized as a 
function of 8 and $. The result is mg= 84.1 MV for 
Bm’3.41 and JI,=-37.3’. These values can be compared 

2.0 

1.0 

- - FI W/cos2~ 

- -- F~(T)/cosJ~ sine 

0 1.0 2.0 
T 1111.1 

FIG. 3--The functions FI(r) and F2(7) for various values 
of J,. 

to mg=82.9 MV, p =3.55 and$ =-37.4’ for r-0. 
Thus Pg is increased y 3(K, over tha.computed assuming IF 
7=0. 

Beam-Loading Enhancement 
Due to Excitation of Higher Modes 

From the analysis in the preceding section it is seen 
that the accelerating voltage can be written in the following 
two alternative forms: 

va=v R 
ga-iO 1+8 F1(7) ; ( ) WW 

AU=qV,=qV ga-q2 [$($I[?] , (I5b) 

where V 
Lfa 

is the accelerating component of the generator 
voltage nd AU is the energy gain per turn. For T CC 1, 
F~(T) reduces to cos2$, while in the limit of large T it is 
seen from Eq. (13a) that FI(T) approaches 7/2. Thus 
(w/4) (R/Q) represents the energy lost to the fundamental 
mode per unit charge for a single passage of the bunch, 
while the factor 2FI/7 takes account of the cumulative effect 
of a charge passing through the cavity on successive 
revolutions. 

It is now simple to generalize the preceding expressions 
to take into account the additional loss due to the excitation 
of higher-order modes. This loss can be represented as an 
additional beam-loading voltage with real component 

/ -27-i 

‘,,tDo) = c -7 -2Tn * (16) 
no l-2e ncosdn+e 

Here Tn=Tb/Tfi, 6 
is the energy a 

=t+-w)'$,=w&,, w,=&&&WQ& 
sing e bunch would deposit m the nth mode in f 

an llernpw* cavity, and b, is the bunch length correction 
factor of Eq. (A. 1). For small TV, the ratio of the total 
beam-loading voltage, Vbt’ Vb(n > 0) +VbO to VbO for= 

- - -3- 



fundamental mode at resonance is 

‘bt 
f(T) = r = 1+72 c 

Wn/y),CTn/7) 

b0 n>o w-cos 6J 

For large T, Eq. (16) shows that f(r) approaches a 
limiting value of f(m) = 1+ 
for the wn’s are given by a? 

O(wn/wO) . Explicit expressions 
orton and Neil5 for cylindrical 

cavities. As a function of T, f(r) should look like the curve 
in Fig. 4, with an inflection point at roughly T = 1. Shown 
also are resonances at particular values of r for which 
higher-mode frequencies are exact multiples of I/T,. 

FIG. 4--The beam loading loss enhancement iactor f(r). 

A measurement of Vbt in the limit T >> 1 has been made 
for a typical accelerating structure. An ener 
38 MeV has been measured6 for a bunch of 10 5 

y loss of 
electrons 

passing through the SIAC structure. The loss if only the 
f&t&mental mode were excited would be VbO = q(oO/4MrL/Q). 
Substituting inq=l.6~10-IO, w=Prx2856 MHz, L=2880 m  
and r/Q=4100 G/m, we calculate thatV -8.5 MV. Thus 
the single-bunch loss in the SLAC sir& - ?ur e is enhanced 
by a factor of 4.5 due to the excitation of higher modes. 
This corresponds to the limit f(m) in Fig. 4. For PEP, 
T c 0.4. If the PEP RF structure were to behave similarly 
to the SLAC structure, and if the enhancement factor for the 
SLAC structure were to behave as shown in Fig. 4, for PEP f 
would be about 1.5. Because the bunch length is relatively 
longer in a storage ring than in a linac, this is an over- 
estimate of the enhancement factor. However, even an 
enhancement of f = 1.25 would make it necessary to increase 
the klystron power by 3.4 MW, or about 50% over the pres- 
ent design value of 7.2 MW. (See Appendix C for &tails.) , 

In principle, the enhancement factor f can be calculated 
for any value of T using Eq. (16) if the frequencies, decay 
times and R/Q% of all modes with wavelengths longer than 
the bunch length are known. However, the measurement of 
these quantities with the necessary degree of completeness and 
precision is indeed a difficult problem.. It may be necessary 
to measure the loss enhancement experimentally by sending 
a train of bunches at an energy of least several MeV, spaced 
apart in time by Tb, through a prototype structure. By 
adjusting the shapes of the cells within the structure and by 
trimming the higher-order mode frequencies with tuners, it 
should be possible to minimize the loss enhancement factor 
for a given value of Tb. 
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Appendix A. The Bunch Form Factor 

In Ref. 7 it is shown that the amplitude of the field 
induced in the nth mode of a cavity by the passage of a bunch 
having a current i(t) is reduced below the field induced by a 
short bunch by the factor 

bn = (Iis+I&)v2 , (A. 1) 

where 

Ins= -& 
n / 

i(V) cos (wnt’) d(w$‘) ; 

Ina= -& 
/ .-n - 

i(V) sin(w,t’) d(w,t’) . 
e 

The phase of the induced field with respect to the real axis 

of a rotating coordinate system ejat is given by tan t?,, = 
(ira~IlS)- 

Appendix B 

Assume a driving current i having a phase modulation 
of amplitude A, assumed small, such that r=‘T6 (l+jA COB ost). 
The response of a resonant circuit to this driving current is 

where [= (w-wo)Tf and 7) = wBTf. The terms in ejWst and 
e-jwst represent two counter-rotating vectors with origins 
at the tip of the vector RTo cos ~leJ@ , where tan JI= -5. It is 
readily shown that the resultant of the two rotating vectors 
traces out an ellipse with semi-major axis 

a= (A/z)ol+(~)~~1’2+ [I+(t-n)j-1’2] 

and semi-minor axis 

b = (A/2) [1+ ([+~)2]-l’~ 
I 

- [l+(&92]-1’2] . 

The ellipse is rotated through an angle y= n/2+ (+++tJ-)/2 
.with respect to the real axis, where tan ++= -g+q) and 
tan #,=-(6-v). This result is illustrated in Fig. 5. 

\ 

7 

0 REAL (v, 
- '0 

2,11.1 

FIG. B--Response of a resonant circuit to a phase- 
modulated driving current. Here 0, is the 
unmodul$ed portion of the res onse, and 
REAL (V) is the projection of Q  onTO. 

If To is a beam-loading current, the projection of the 
ellipse on To provides a component in the effective restoring 
force for phase oscillations. For ,$ or 7 = 0 the ellipse 
collapses to a straight line, and the restoring force is in 
phase with the oscillations. For 181 > 0, the restoring force 

. 
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, 

is shifted in phase with respect to the oscilIations,if q is 
also > 0, leading to a growth or decay of the oscillations. 

Appendix C. Calculation of Power Loss due to Higher- 
Order Mode Excitation 

As me that the phase oscillations have the form 
A= AO e lws+o’)t. “r The differential equation for A can be 
written as 

A revised energy gain expression, which includes the 
additional energy 10~s due to higher-order cavity mode 
excitation, can be written as follows: 

d2A m = -w 
dt2 

z. fA= &+x)2 A 

where w is the usual relation for the synchrotron fre- 
quency. “lh e function ;f includes the effect of the cavity 
response on restoring force as mentioned above. and is 

where 

&1+62 ?j2, 

Fa = cl+ @?1a+ m21 @. 2a) 

5% 
Fb = [1+ (6:)2][1+ (&.@2] 

P 2b) 

Substituting for ? in Eq. (R. l), and equating real and 
imaginary parts, we obtain 

wf-a2 = wfo[l -() F] 
Fb 

(B. 34 

It is seen that, for 5-w-w 
ip 

> 0, the damping constant is 
negative and the phase osc lations are damped. In the 
limit of low oscillation frequency, Fb=O and F = [/(1+C2). 
Using also the real reflected power condition & Eq. (5), 
[= (Vbr/Vc) sin 6, Eq. (R. 3a) reduces to the result obtained 
previously in Eq. (9). For q>> 1, F,=O and ws=wso. For 
q-1, Eqs. (l3.3a) and (l3.3b) can be combined to give a fifth- 
order polynomial in us. After solving this polynomial for 
w 
d 

, the damping constant is readily obtained from Eq. 
.3b). 

If tis = wsO-ws is small compared to wsO, we can 
write e/f&+ C Fb/F,= -2q/(1+,f2-q2). Since a iB alS0 the 
half-width of the line for damped oscillations, this result 
shows that for 7 % 1 the line width is of the same order as 
the frequency shift. 

v, + vhmL= v ga-Vb F1(~)=Vc~~~$ . 
0 

The additional energy loss to higher modes, q&m=q(f-l)$o, 
is equivalent to an enhancement in the synchrotron radiation 
loss per turn in its effect on the synchronous phase angle 
and over-voltage ratio for the fundamental mode. The power 
transferred to the beam is increased by an amount iOVhm. 
In addition, a higher peak cavity voltage is required to con- 
tain quantum fluctuations. It is shown by Sands9 that, in the 
absence of higher-mode cavity losses, the height of the 
potential barrier which must be overcome by energy flu-- 
tions is proportional to V,(tan 9-e). Thus, if the same 
potential barrier is to be maintained in the presence of 
higher-mode losses, a new synchronous phase angle 9’ is 
required, where +’ is obtained from 

VS 
tan ++’ = ~~--& (tan et4 . (C. 1) 

The revised peak cavity voltage required to give the same 
quantum lifetime is then 

(C. 2) 

and the revised rf power requirement is 

p;: = 

Vh2 

R + io(vs+vhm) - (C. 3) 

=i 
R=950 MC and 

R/(1+6,) = 42 MV, usingiO=O,2A, 
‘=3955. For f=l.25, Vhm=(f-I)Vb = 

is value in Eq. (C. 1). together with9 
V = 26 MV and $ = cos-‘(26 MV/44 MV) = 53.8O we calculate 
dfl=49.40. From Eq. (C.2) we obtain V!.=56 &. which 
can be compared to Vc = 44 &fV with Vhmb= 0. From Eq. 
IC. 3) we find that P6= 10.6 MW. an increase bv 3.4 MW over 
he power requirem&t for VhmL 0. The cavity wall losses 
in the fundamental mode are increased from 2.0 to 3.3 hfw 
as the result of the higher peak voltage requirement, and the 
power transferred to the beam is increased from 5.2 to 
7.3 Mb’. However. this additional 2.1 MW also ends UD as 
power dissipated in the cavity walls. 

It must be emphasized that the preceding calculation is 
based on a very crude estimate of the enhancement factor f. 
The PEP structure, which convicts of a chain of inductively- 
coupled shaped cells with re-entrant nose cones, may have 
a behavior which is quite different from that of the disk-and- 
cvlinder structure measured at SLAC6 and investifrated 
theoretically by Keil. 8 Further experimental and-theoretical 
work is clearly required to resolve this important question 
in detail. 
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James Leiss (NBS1 Have you investigated what happens 
when bunches don’t have the same population? 

The answer is no. It seems to be messy 
e case where the bunches have the same popu- 

lation, but it certainly should be looked into. The answer 
is, I have not. 

Mark Barton (BNL): Have you investigated a case where the 
energy extracted by the beam in one pass is a sizeable 
fraction of the energy stored in the cavity? 

Wilson: The expressions I showed are valid also in that 
case. In fact, they include the case where the stored energy 
goes through zero, and the beam induces a field of the oppo- 
site polarity. c - s 

Gordon Danby (BNL): If you have that case, where the 
loading is very heavy and the cavity fields haven’t fully 
recovered by the time the next bunch arrives, then when 
you start, you have a different condition. How do you cope 
with that case 7 

Wilson: It is an equilibrium situation. In equfIibrium the 
-recovers exactly back to the point where it wa8 before 
the preceding bunch came by. If that does not happen by the 
time the next bunch comes by, you are not in equilibrium. 
Part of the calculation was to insure that that was exactly 
the case, that the cavity fields have recovered back exactly 
to the same point each time before the following bunch comes 
by. 
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