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Gauge Theories and Symmetry Breaking II. 

1.' InTroduction 

In the first part of this series a new approach was proposed for 

renormalizing gauge theories with.spontaneous or explicit symmetry breaking. 1 

The models considered were based on the classical Lagrangian 

v/J2 denotes the vacuum expectation value <$> of the field 4 . Hermitian 

fields Jo and X with vanishing expectation values are introduced by 

(1.2) cp= +v+t W 9 

(1.3) <Ir,> = (7, = 0 . 

=2 and =3 are normalization factors of the fields. 

The non-linear part of (1.1) is invariant under gauge transformations 

(1.4) 

up to a total divergence. It represents the minimal gauge invariant coupling 

of a neutral vector meson field to a complex scalar field with quartic self- 

interaction. The gauge invariance is explicitly broken by the term proportional 

to cp++* and remains spontaneously broken in the. limit 6+-O , provided 

vso. 6 is determined by (1.3) for given other parameters of the Lagrangian. 
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In particular, v = 0 implies 6 = 0 . Thus v measures the strength of 

the symmetry breaking, whether spontaneous or explicit. 

Acc^ording to the discussion of Part I the models described by the 

Lagrangian (1.1) may be classified as follows. 

(A) Goldstone type models, e = 0 , g # 0 . 

(1) Symmetric case of complex scalar field with quartic self- 

interaction, v=6=0. 

(2) Goldstone model, v # 0 , 8 = 0 . 

(3) Explicitly broken Goldstone model, v # 0 , 6 # 0 . 

(B) Higgs type models, e # 0 , g # 0 . 

(1) Electrodynamics of model (Al), v = 6 = m. = 0 . 

(2) Vectormeson dynamics of model (Al), v = 6 = 0 , m. # 0 . 

(3) Higgs model, v # 0 L) 6 = 0 a m = 0 . 
0 

(4) Pre-Higgs model, v#0,6=0,m o#o. . 

(5) Explicitly broken pre-Higgs model, v # 0 , 6 # 0 , m. # 0 . 

All models listed are meaningful in perturbation theory except for the 

explicitly broken pre-Higgs model where the S-matrix is not unitary. 

In this paper the new renormalization method will be presented in detail 

for the explicitly broken models. These models do not involve zero mass * 

particles. The formulation of the spontaneously broken models, which require 

an investigation of the infrared behavior, will be obtained in Part III by 

taking the appropriate;limits 6 -to and m +O. 2,3 
0 

Two alternative methods of renormalizing gauge theories with symmetry 

breaking have been developed by B. Lee and K. Symanzik. 495 In Symanzik's 

approach conventional renormalization techniques are applied to a Lagrangian 

which is not manifestly gauge invariant, but with the coefficients correlated 

such that the desired Ward identities hold. Without using a regularization 
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this program has been carried out by Becchi, Rouet and Stora for the Higgs 

model in the t' Hooft gauge and by Piguet for the pre-Higgs model in the 
c, 

Stueckelberg gauge. 6,798 

B. Lee's method is based on a gauge invariant Lagrangian, like (1.1). 

The system is first regularized and quantized in a gauge invariant manner. It 

is then shown that the regularization can be removed for the renormalized 

Feynman amplitudes. In the treatment that follows we use B. Lee's method of 

gauge invariant quantization but without introducing a regularization. Instead 

we will deal directly with the unregularized, but properly renormalized 

Feynman amplitudes in momentum space. To this end we modify the renormalization 

scheme by including subtractions with respect to a subtraction parameter s. 9 

The connection to Symanzik's approach will be discussed in Section 6 using an 

equivalence theorem of the type first considered by Rouet. 10 

Though the symmetry may be badly broken in the mass spectrum, the theory 

retains gauge invariant features to a remarkable extent. The most important 

examples are the Ward identities. As was discussed in Part I these identities 

are responsible for the unitarity of the S-matrix in the Higgs and the pre- 

Higgs model. Other examples are some gauge invariant linear relations among 

differential vertex operations which, for instance, imply a gauge invariant * 

form of the Callan-Symanzik equation. We will emphasize this aspect of the 

theory by using a manifestly gauge invariant notation, whenever possible. 

Section 2 summarizes the free field theory of the explicitly broken pre- 

Higgs model. The normal product formalism in its conventional form is reviewed 

in Section 3 and applied to the Higgs type models. It is seen that anomalies 

occur in the current conservation law which destroy the unitarity of the 

S-matrix for the pre-Higgs and the Higgs model. This fact calls for a modified 

subtraction procedure which preserves the current conservation laws of the 
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classical theory. The new method is briefly explained for the explicitly 

broken Goldstone model (Section 4) and then applied to the explicitly broken 
4 

pre-Higgs model (Section 5). The theory of differential vertex operations 

is developed in Section 6. Finally an equivalence theorem is proved which 

provides the connection 'to Symanzik's approach. 

2. Free Field Theory of the Explicitly Broken Pre-Higgs Model. 

The free Lagrangian of the explicitly broken pre-Higgs model is given by 

(2.1) 

with 

(2.2) 

We briefly state the properties of the free fields A(') 
1-1 

, q(O) as , x(O) 

described by (2.1). p is a free neutral scalar field of mass M which 

commutes with Ai') and x(O) . The particles associated with I/J (0) are 

called o-mesons. The fields A(*) and x(O) 
u 

do not commute with each other, 

but may be written as linear combinations of commuting fields V , p+ , and 
1-I 

_ 

(2.3) 

VU is a free neutral vector meson field of mass m (in the Proca gauge). 

P+ is a free neutral scalar field describing particles of mass K which are 

called T-mesons. p is a free field of neutral scalar ghosts of mass h . 
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The masses K ) h and the parameter u are given by 

The model is only meaningful if the mass squares K2 ~ A2 are real and non- 

negative. The condition for this is 

(2.5) 

In the limit j..~ + 0 the mass squares approach the values 

m2 = rn: + w2 (vector meson) 

K2 = 0 (Goldstone particle a) 

A2 = cSLm2 
0 

M2 

(ghost particle) 

(o-particle) 

The propagators of Lagrangian (2.1) were given explicitly in Part I, 

Eq. (30). 

3. Failure of Conventional Quantization of the Pre-Higgs Model. 

We consider the explicitly broken pre-Higgs model. As usual an indefinite 

metric formulation is employed in order to quantize the Lagrangian (1.1). In 

general the S-matrix will not be unitary since the ghost particles of negative 

probabilities participate in the interaction. No physical interpretation of 

the model is possible then. In the limit 6 -f 0 , however, the ghost particles 

are expected to decouple from the rest of the system. The argument proceeds as 



-7- 

in electrodynamics. The ghost particles are described by the divergence aPA' 

of the vector potential. In the classical theory the Lagrangian (1.1) implies 
-n 

the field equation 

of the vector meson field with 

The current is partially conserved 

(3.3) 

as a consequence of the classical field equation of $ . (3.1) and (3.3) yield 

(3.4) 

as field equation of aPA' . In the limit 6 -+ 0 the divergences aDA' 

becomes a free field, 

If one can establish that in the quantized theory the divergence aVAV is also 

a free field the ghost particles do not interact and the S-matrix will be unitary.' 

Due to possible anomalies it is not easy to satisfy (3.3) and (3.4) in the 

quantized theory. In this case the S-matrix cannot be expected to be unitary 

in the limit 6 -to .: For an acceptable formulation of the model we therefore 

require that the current be partially conserved and represent the source of 

the vector meson field. It will be seen in this section that conventional 

quantization fails to meet these requirements. This result will motivate the 

modified quantization procedure to be proposed in the following sections. 
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To simplify the notation we combine 
A?J s * and x by a six-component 

vector 

6.6) -A,) A, A, ~ A, 2 1 A, = l\i/ , As= x . 
For raising and lowering indices we use the metric tensor 

(3.7) 

"a+ = 0 ;J: j#k. 
Latin indices run from 0 to 5 , while Creek indices run from 0 to 3. 

Let OR(x) denote monomials of dimension d!L in the fields and their 

derivatives at the point x . Time ordered functions involving fields and 

normal products are constructed by the renormalized Gell-Mann Low expansions 

Some or all of the OR may be field components or linear combinations,in which 

case the symbol N has no effect. For the non-linear monomials we take 

ag 2  dg l The superscript norm indicates that vacuum diagrams (disconnected 

closed loops) should be omitted. The interaction Lagrangian is given by 

(3.9) af cQr = 2 CP - -&PO , 

with the free Lagrangian (2.1). The superscript (0) indicates that free 

fields pertaining to % Co0 should be inserted. 

The right side of (3.8) only involves free field expressions and is 

defined in the following way. The expansion of the exponential leads to Green 

functions 



-9- 

where the 'k are non-linear and 6j 1 dj . (3.10) represents a time ordered 

Green function of the Wick products 
c, 

(3.11) 

and free field components. While the Wightman functions involving Wick products 

(3.11) are unique the time ordered functions are only defined up to contact 

terms. The symbols N6 
1 

. . ..N6 serve to specify a unique choice of time 
m 

ordered functions $ yet to be defined. As has been emphasized by Bogoliubov 

the renormalization of the Gell-Mann Low formula rests upon a proper definition 

of the time ordered functions of free fields and their Wick products. For 

defining (3.10) one expands the formal expression with respect to Feynman 

diagrams. To each diagram the renormalized contribution is constructed. The 

number of subtractions used is specified by the degree 

(3.12) 

which is assigned to each proper subdiagram y of r . N is the number of 

external lines. 

For formulating the equations of motion we introduce the effective Lagrangian 

The equations of motion may be derived from the following renormalized versions 

of Wick's theorem 

aa 
Ia) 

(3.14) 
<-f- yy” 04 x > = :<-r “Gf,( ,) 

aA r x 
(3.15) 

< -T *y)(x; gy+ O Cd x > = ; <T/$x) ; gyx), 

VA a 
Y 

with the functional derivative - 
60(x) and s 

denoting the Euler derivative 
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(3.16) 

Moreover, the shorthand notations 

(3.18) , 

were used in (3.14-15). Applying the identities (3.14-15) to the expansions 

~z+e~,o aLw* (3.8) of <T ,r (x)x> and ITAs '7 (x)x> we obtain 
r + 

(3.19) 
< l- QRw cx\ x ? 

QAr 
(3.20) 

<~-Ayy;: (XI x > 
Y 

or,in operator form, 

j (3.21) aL+ = 0 

w+ 

These relations represent renormalized forms of the equations of motion. For 

the field operators (#I and A 
1-I 

the equations 

(3.22) 

follow. Explicitly the field equation of the potential becomes 

(3.23) 

with the classical current given by (3.2). According to our requirements the 

current - defined as the source of the vector field - should be partially 

conserved. One finds 



The second term in the last line is of the desired form, but the first term 

fails to vanish despite the field equations (3.22). Instead we get 

(3.25) 

Substituting this and the hermitian conjugate 

an anomaly for the divergence of the current 

in the limit 6+-O. 

expression into (3.24) we find 

which destroys current conservation 

The quantization prescription (3.8) is not unique. The interaction Lagrangian 

contains various terms of dimension less than four. In (3.8) the degree four 

was assigned to all vertices, thus causing oversubtractions for many diagrams. 

However, assigning minimal degree to each term of the interaction Lagrangian 

would not resolve the difficulty. Experimenting with various possibilities 

we found as only remedy to include terms of the type 

(3.26) 
) 

where the coefficients do not vanish in zero order of e . With suitable 

degree assignments for the other terms it is indeed possible to meet all 

requirements. Since the coefficients of (3.26) do not vanish in zero order 

another problem appears, however. In every order of e one would have to sum 

an infinite number of Feynman integrals. In momentum space the sums involve 

geometric series which have to be integrated over outside their domain of 

convergence. This is certainly not satisfactory, In Section 5 a modified 
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procedure will be proposed which specifies the subtractions in closed form 

for every order of e . 

An-alternative method of renormalizing models with spontaneously broken 

symmetry is known from Symanzik's work on the o-model which has been extended 

to the Higgs model by B.' Lee. 5,12- In this approach one abandons the formal 

gauge symmetry and includes all possible interaction terms of dimension less or 

equal to four permitted by the true symmetries of the theory. The coefficients 

of the interaction terms. have to be correlated in such a way that the current 

is partially conserved. In Section 6 such a formulation will be given and 

shown to be equivalent to the manifestly gauge invariant treatment. 

4. Gauge Invariance Quantization of the Explicitly Broken Goldstone Model. 

We first explain the modified subtraction procedure for the simpler case 

of the Goldstone type models with the classical Lagrangian. 

We introduce a dependence on a new parameter s by setting 

with 

(4.4) <w) 5 oc, =o CL-t s=.l. 

6 is a polynomial in s with s(O) = 0 of which only the value S(1) at 

s=l is relevant. Though eventually s will be set equal to one we need 

the theory in the full interval 0 =< s 2 1 for formulating the subtraction 

procedure. The parameter rj is restricted to a permissible range, but is 

otherwise arbitrary. It can be proved that the Green functions of the model do 
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not depend on the value of Tl . Apart from s and ri the independent 

parameters of the model will be the coupling constant g and the masses Ib , 

&I asso%ated with the fields $ or x respectively. wTI z1 and z2 are 

chosen independent of s . Suitable renormalization conditions at s = 1 

determine s(1) , c3, zi and z2. as power series in g with coefficients 

depending on M , 1-I , and rl , but independent of s . 

The free Lagrangian I;e dx1 is defined by the bilinear part of the full 

Lagrangian (4.1) with the coefficients replaced by their zero order values, i.e., 

with 

(4.7) pkf= j&& ( f- s-u% -t $"5V) 

fl+e 
Since rl ,w,g,v are independent of s we may express M(s) , I-l(s) by 

their values M , 1-I at s = 1 , 

q?o) denotes the zero order value of q , 

Since we need the theory in the range 0 2 s 2 1 we impose the consistency 

condition 

As long as M > 0 , 1-1 > 0 the model is not expected to suffer from infrared 

problems. One should therefore avoid vanishing mass values in the range 

0 =< s =< 1 by imposing the stronger condition 
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(4.10) M csja 7 o cc AA.0 
>y-- l 

This r;estricts the permissible values of n by 

(4.11) 

A possible choice of 6 
(0) 

consistent with this is 

(4.12) 
~@, = p l 

With this the s-dependence (4.8) becomes 

Let OR(x) denote monomials of the field components 

(4.14) 

( and their derivatives at the point x . The dimension of O11 is denoted by 

dx ' We will now set up a perturbative expansion for the time ordered functions 

8 

(4.15) 

of normal products N [0 (x )] with a1 R R at 2 dR . Some of the OR may be 

linear,in which case the normal product symbol has no effect. The time 

ordered functions (4.15) are constructed by 

if. L-a,. CPS = 
The symbol T 

S 
indicates a special time ordering which we are going to define 

now. The expansion of (4.16) leads to expressions of the form 

where we have distinguished the single field components from the non-linear 

monomials M. . 
J 

These time ordered functions of free fields and their products 

are defined by making subtractions not only for the external momenta, but also 
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with respect to the parameter s . l3 For each diagram contributing to (4.17) 

the unrenormalized Feynman integral is written in the usual way, but with the 

s-depend&t masses M(s) , V(S) used in the propagators. In the case of a 

primitive divergent diagram (with external lines amputated) the integrand 

fr of the corresponding.renormalized integral 

is obtained from the unrenormalized integrand Ir by 

(4.19) R, = (P- t;;+j rp 

The degree d(r) of r is given by (3.12). $I'> 
PS 

is the operation of 

taking the Taylor series to order d(r) in pj and s . In general, Rr 

is given by the forest formula 

(4.20) p = R ,, 

where the sum is over all forests (families of non-trivial'non-overlapping, 

proper subdiagrams of r ). Ir(U) is the unsubtracted integrand of the 

Feynman integral in which for each line of y 6 U ) not belonging to a sub- 

diagram y' 6 U of y , the external momenta and the variable s are inserted 

as dummy variables p 
Yt 

and 
9 a 

respectively. 
sY 

is the substitution 

operator which transforms from variables py' ) sy' of a subdiagram y' of - 

y to the variables appropriate to y . 

It can be shown that the renormalized integrals (4.18) constructed 

according to these rules are absolutely convergent for E > 0. and approach 

tempered distributions in the limit E -f 0 . 14 

For s-dependent normal products we will use the convention 

(4.21) 
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if 

(4.22) PCP,2) = 2 si l?(t) 
j=G 

.%I ' 

No chang: of notation is made for s-independent normal products. (4.21) 

satisfies the general rules 

We will also use the shorthands (3.17) for the fields $ and x . With 

(4.23-26) similar relations follow for $ and +* , in particular 

The equations of motion following from (4.16) will be found to be associated 

with the effective Lagrangian 

(4.28) 

The analogue of (3.14) also holds for the madified time ordered functions, 

az 
ie ‘j 

(4.29) (T s &yCS)4X 

x= 

This implies the identity 

with the abbreviation 
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On the left side of (4.30) some terms occur with a power of s assigned to 

the vertex with coordinate x . For such terms the new subtraction rules imply 

4\ 

Using definition (4.21) we find 

With this Eq. (4.30) becomes 

(4.34) 

Similarly, 

In operator form the equations of motion become 

(4.36) 

For the original field C$ we obtain 

(4.37) 

With these results a partial conservation law may easily be derived for the 

current 

(4.38) 'r =: 
3 

The divergence of the current becomes 

(4.39) 
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(4.27) and (4.37) imply 

Hence the current is partially conserved, 

in agreement with the classical result. The corresponding Ward identities are 

With the modified subtraction procedure it is thus possible to reproduce the 

classical conservation laws. In the following section the method will be 

extended to the explicitly broken Higgs model. 

We finally discuss two equivalence theorems. For the proof we refer to 

j Section 6,where the corresponding theorems will be treated for the explicitly 

broken pre-Higgs model. 

According to the first theorem the Green functions do not depend on n 

provided the same normalization conditions are imposed. Therefore, a special 

value of TI may be used, without loss of generality. A convenient choice 

consistent with (4.12) is n = p . ., 

The second theorem states that there exists an equivalent Lagrangian of the 

form 
9 

(4.42) % ov = ~ cj lzjt j 
j -Z 1 

> 

where the M. denote the monomials 
J 

This Lagrangian does not involve a subtraction parameter s . The time ordered 

functions are constructed in the conventional way by taking the N4-product of 
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of the interaction Lagrangian in the Gell-Mann Low expansion. This formulation 

represents Symanzik's method of renormalizing the explicitly broken Goldstone 

model. 5 -While the Lagrangian is not manifestly gauge invariant, the coefficients 

are correlated in such a way that the Ward identities hold in the desired form. 

5. Gauge Invariant Quantization of the Explicitly Broken Pre-Higgs Model. 

In this section the modified subtraction procedure will be extended to 

the explicitly broken pre-Higgs model. As for the Goldstone mode&we introduce 

an s-dependence of the Lagrangian (1.1) by making the substitutions 

with 

Instead of g , v ) and o we introduce parameters h ) w , and c through 

(5.3) v = w/e ) 
a = 9” IA 

a 
% 

) w= z,hJ-+ c= * 

8(s) is a polynomial in s with 6(O) = 0, of which only the value.- 6(l) is 

relevant. The parameter n is arbitrary within a certain range which will be 

determined by consistency requirements. It will be proved in Section 6 that 

the Green functions do not depend on 17 . 

The symmetry breaking parameters s and w vary within 

(5.4) 

The dependence on s is needed only for the formulation of the subtraction 

procedure. Eventually s is set equal to one. 

The charge e will be used as expansion parameter of perturbation theory. 

The unperturbed Lagrangian is given by the bilinear part of the Lagrangian with 
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the coefficients taken in zero order. At s = 1 we obtain the free Lagrangian 

(2.1) with 

- 

(5.5) 

M 
a 

Apart from the coupling constant e we choose n2 , p2 ) m2 ) p , w a h ) 

and a as independent parameters. The vector meson mass m and the o-mass 

M then become 

(5.6) 

using 9. lrn z. = 1 
e3oJ 

The theoryis 

(5.7) A 
7 

Accordingly, Green 

which will be implied by the normalization conditions. 

still strictly invariant under the substitution 

functions involving an odd number of A - and x-fields 
1-I 

vanish identically. 

We now state five normalization conditions which are imposed at s = 1 : 

where the functions TT are related to the corresponding vertex functions by 

(.see Part I, Section III C) 
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These normalization conditions uniquely determine the parameters c , z1 , z2 , 

z3 ' and 6(l) as power series in e with finite coefficients, independent 

of s , "An exact value of 6(l) will be derived from the normalization conditions 

(4) and (5) making use of the Ward identities. 

Our normalization conditions -provide the-correct mass adjustments for the 

stable particles of the Higgs and the pre-Higgs model. There is no reason 

to adjust the mass parameters for 1-1 # 0 since the model lacks a reasonable 

physical interpretation. Condition (5) guarantees that the x-propagator has 

a pole at the vanishing T-mass for !-J+O,m o#o. Apart from the free 

ghost particle there are no other stable particles in the pre-Higgs model. 

In the limit 1-1 = 0 , m. -f 0 the transverse photon mass is adjusted by (2), 

and the CT-mass is adjusted by (3), provided the stability condition M < 2w holds. 

We next determine the s-dependent free Lagrangian if 
ego l 

Taking zero 

order coefficients in the bilinear part of % ,,e we find (2.1) with the 

s-dependent parameters 

(5.10) 

and M(s) , p(s) given by (4.5-6). The masses M(s) and p(s) may be 

expressed by (4.7-8) in terms of their values M and p at s = 1 . We 

demand that for M , m J 1-( >-0 the s-dependent masses M(s) , m(s) , U(S) , 

h(s) be positive in the entire interval O$s~l. This requirement can 

be met by choosing an rl with 

(5.11) 

and making 1-1 sufficiently small such that (2.5) is valid in 0 =< s =< 1 for 

the s-dependent parameters. With (5.11) the s-dependence of M(s) and &I(S) 

becomes 
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A possi&,le choice for Tl is 

17 = l..l . 

Let OR denote monomials of dimension d!L in the field components and 

their derivatives. Time ordered functions involving normal products N 
a!L 

[OR] 

of degree ai 1 dR are constructed by 

oe cQ5 = Jr? ce - -je %QO * 
As for the Goldstone model the free field Green functions with the time ordering 

TS 
are defined by making additional subtractions with respect to the parameter 

S which occurs in the Feynman denominators, as well as some interaction terms. 

The Feynman propagators and the interaction Lagrangian will be given explicitly 

at the end of this section. 

As in the case of the Goldstone model equations of motion follow from the 

expansion (5.13). For the time ordered functions we have 

(5.14) 

and for the field operators 

(5.16) aie ecF’ 
a* =o ) i 

Here the effective Lagrangian is 

(5.17) f w CS,%) = ti,I:f&J’~‘1 l 

The equation of motion for the potential A becomes 
l-J 
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with the current 

(5".19) 
- 

3 
l r = r: z,e 

The derivation (3-24) of the partial conservation law now goes through since 

Therefore, 

(5.21) 

The current thus satisfies the two basic requirements that it is partially 

conserved and represents the source of the potential (with the uncorrected 

mass m 0 )* The divergence of (5.18) yields 

Hence aVA' becomes a free field in the limit 6 -t 0 . 

We next discuss the corresponding Ward identities. For the potential the 

explicit form of (5.14) is 

For the current follow the Ward identities 

(5.24) a, CTjLl x> = 
where 

(5.25) 22 s b) =: WW 
Taking the divergence of (5.23) we find the Ward identities 

(5.26) 

with 
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(5.27) 

The special case where X contains only one field A 
1-I 

or x has important 

consequences. Then the'Ward identities (5.26) are 

(5.28) 

using condition (4) of (5.8). This implies 

-#xzw +Lwr,, = ia sm 
for the vertex functions. At p = 0 the second equation implies 

(5.30) 

Therefore, 

(5.31) 

. 

( s=l) 

Since the s-dependence of 6 does not enter the subtraction rules we may 

arbitrarily set 

(5.32) &Qs) = pIs$ . 

Substituting this and (5.1-3), (5.12) into (1.1) we obtain the explicit form 

of the Lagrangian which was given in Part I, Eq. (26). 
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6. Differential Vertex Operations and Equivalence Theorems. 

The Lagrangian of the explicitly broken pre-Higgs model can further be 

generalfzed by substituting 

for the mass term of the vector meson field. For 'c > 0 the consistency 

condition 

s”M; A- (r-E=)+ + s=w= 7 0 
is satisfied in the interval O=<sfl. At s = 1 the value m of the 

free vector mesons remains 

With this generalization the Lagrangian depends on two arbitrary parameters 

TI and 'I:. In this section the Green's functions will be shown to be 

independent of II or 'c using the method of differential'vertex operations. 15 

For the purpose of studying the differential vertex operations we write the 

effective Lagrangian , generalized by (6.1), in the form 

A 3 
3 

(6.3 

Let 5 be a parameter on which the coefficients of the Lagrangian depend. 
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The time ordered functions G = <TX> may be differentiated with respect to 5 by 

The notation on the right side is symbolic, indicating that the integral 

should be formed with the differentiations acting on the coefficients 

of the monomials in 
41 s $and X- 

Other useful relations are the counting identities which follow from 

the equations of motion (5.15) with j = k , 

for 

(6.6) 

Integration over x yields the counting identity 

Vertex functions may be obtained by Symanzik's functional methods. The vertex 

functions r = <TDProP of the field products (6.5) are determined from 

generating functional T(K ,...,KS 
0 

which is related to the generating 

functional G conn<Jo ,.--,Jg) of the connected time ordered functions by 

Legendre transform 

a 

the 
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holds between the generating functional r.{N&[M(x)],K) of <TNAIM(x)]XZProp 

and the genrating functional G Conn<N8[M(x)] , 53 of the connected functions 

<Ti'$.[M(x)]Dconn . For the vertex functions the differentiations formulae (6.4) 

and the counting identities (6.5) take the form 

Q\F 
(6.10) - - 

97 - 

(6.11) 
Aj~x~?~~(%, + 3,Aj"'~~~;i r . 

fJA* b‘, NL 
The subscript NL indicates that the non-li:ear part of the expression should 

be taken by dropping all terms linear in the fields A,, , $ , and X . 

The differential vertex operations are defined by 

(6.12) 
q- = 

with a symbolic notation on the right side, as in (6.3). Explicitly we 

have (at s = 1) 

We next derive a'gauge invariant relation between the normal products 

N2[@*$l and N4[@*@I . Relations between normal products of different 

degrees may easily be generalized to Lagrangians involving a subtraction parameter 

s . For a monomial M in the basic fields of dimension d 2 b and any integer 

a > b we have 
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. 

The sum extends over all monomials M. of s. and the basic fields with 
J 

dimension d satisfying 

b<d=<a l 

d is defined by assigning the dimension one to each factor s , A, , and 
J 

a 
1-I l 

Moreover, due to the discrete symmetries of if eff ' we need consider 

only those monomials Mj(s,z) satisfying 

V (M-1 
(-1) l J = t-11 

V1 W 

V Of.1 
(sl) 2 J = C-1) 

V2 09 

where v (M.)= number of X factors + number of 
1 J $ 

factors in M. 
J 

V2(Mj) znumber of $ factors + number of s factors in M 
j 

with Vi(M), i = 1, 2, defined analogously. Throughout this section the 

factors of X are required to be linear in the basic fields, 

Let Q be a polynomial in s and the basic fields with each term of 

dimension d 2 b . As a consequence of (6.13) Nb[Q] may be expressed by the 

d normal products of degree a>b. Thus there exists a polynomial P of s 

and the basic fields with 

and 

(6.17) 

Each term of P has a dimension d =< a . Combining (6.16) with the Ward 

identities (5.34) we obtain 
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If Q ?s such that%?(x)Q(s,z) = 0, then by (6.17) 

(6.19) 

for any product X of basic fields. Due to the linear independence of the 

Green functions of N,[M] for the various field monomials,we obtain 

(6.20) 

The equation @(x)R(s,z) = 0 is a necessary and sufficient condition for the 

b invariance of a field polynomial R under the gauge transformations (1.4). 

Therefore, to any gauge invariant normal product N,[Q] there is a normal 

product Na[P] of degree a > b which is identical in the sense of (6.16-17). 

Applying this result to the case 

Q = b*@ s a=4 ,b=2 , 

we find 

(6.21) (6.21) P= go bj*‘j + baA, 
J 

(for the definition of the (for the definition of the A A j j 
see (6.2)) with vanishing coefficients see (6.2)) with vanishing coefficients 

(6.22) Lx&= b,=o 
for the non-invariant terms.. A- 2 and /b 

4 l 

Thus 

(6.23) 
= 

Integrating over 2 and passing to the vertex functions we obtain the linear 

relation 

(6.24) A,r= I% 'fj Ajr 

3 '51 
with r2 = r4 = 0 
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for the differential vertex operations (6.12). 

We next consider the expression 

(6.25) - Q ” $ ArA’ , 
which is not gauge invariant. Nevertheless an identity similar to (6.22) 

can be found,since the linearity of 

(6.26) z Q .= +A r 

allows to write (6.17) in the form 

This implies 
< -i- A/q [gL,{ gyv?21 - 

(6.28) &, { R%q - & 4,Arc-,,s 

Hence P is of the form 

(6.29) P= 

with R being a gauge invariant polynomial. We thus arrive at the linear 

relation 

(6.30) 

For the differential vertex operation Aoo we obtain the identity 

(6.31) n,,r = 
We now discuss two equivalence theorems. The first theorem states that 

Lagrangians with different values of n2 and ~~ are equivalent provided the 

same normalization conditions (5.8) are imposed. Condition (5) is satisfied 
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by (5.31). The parameters z = c , zl , z2 , z3 are uniquely determined as 
0 

functions of 112, X2 by the first four normalization conditions 

where 

It suffices to show that the vertex functions of the fields do not depend on 

n2 ) T2 . To this end we form 

(6.34 

‘32’ 
a 

Here z denotes the derivative with respect to one of the independent 

2 variables ?l , '2, e 9 p2 9 rnt , w 9 h , a . al 
as 

is the derivative with 

respect to one of the variables z , z 2 2 2 2 
0 

1 , z 2Jz3d 4 d ,moob 

h ,a, if considered as independent parameters of the Lagrangian. Using 

and (6.23),we can eliminate atr in (6.34). 
an2 

Therefore 

aF 
(6.36) - 

v 
k ’ 

(cl) 

The normalization conditions (6.32) imply 
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Since t& functional determinant of (6.32) does not vanish we have Ak = Bk = 0 

and ar = ii!- = 
aq2 aT2 

0 identically. This completes the proof. 

The second theorem concerns the equivalence of the gauge invariant 

quantization to Symanzik's approach which was used in B. Lee's work on the 

Higgs model. For the purpose of this discussion we denote the Lagrangian (l.l), 

(5.1-3) of the explicitly broken pre-Higgs model by 3:. The theorem states 

that a Lagrangian 

(6.38) 

f 

I 

equivalent to -ce exists which does not involve a subtraction parameter 9 . 

The Green functions are constructed as usual with the N4-product applied to 

the interaction Lagrangian &'I . For the proof we construct a family of 

Lagrangians 

(6.39) cf tea. = 

where M. 
J 

denotes the monomials in the fields AU , $J , x and derivatives 

of dimension less or equal to four. 
Qkt 

denotes the field monomials of 

dimension less or equal to 4 - k. All monomials are supposed to be even in 

A 
P rX* Moreover, monomials are omitted which can linearly be expressed by 

others up to a total divergence;. The rules of the preceding sections for 

constructing time ordered functions are generalized to the s-dependent Lagrangians 

(6.39) accordingly. Ik will be shown that the coefficients of (6.39) can be 

chosen such that the family consists of equivalent Lagrangians including the 

% 
/ 

original Lagrangian LE of explicitly broken pre-Higgs model and a Lagrangian 

(6.40) 
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where all tll = 0 . The effective Lagrangian corresponding to (6.39) is 

We extend (5.17) to a complete and independent set 

of normalization conditions which uniquely determine the coefficients "j as 

power series in the coupling constants for any Lagrangian (6.39) with given 

tkl ' We restrict the family (6.39) by imposing 

(6.43) (yc = 
J 

&: "I) 
I 

where the Cj denote the values of 
2 

for the original Lagrangian . f co. 

Differentiating-the vertex functions r with respect to tkl we obtain 

(6.44) 3r 

Primed derivatives refer to 
uj , tkl as set of independent variables. 

With the identities (6.13) we get 

ar 
(6.45) 

and 

(6.46) 0 = - 

from (6.43). Since the functional determinant of (6.42) does not vanishpwe 

have %l,j 
ar =0 and - 

:a%i 
= 0 identically. This completes the proof of 

the theorem. 

We finally give formulae for the derivatives of vertex functions with 

respect to the independent variables e , p2 , rnz , w , h , cx , setting 

17 =$~>~=rn~ and s=l. These relations, along with the identities 

(6.231, (6.31) will be used in Part III. Since the terms N M.] of the 
4 J 
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effective Lagrangian (6.1) only involve coefficients depending on e , s and 

W we have 

i+& - '$A, + a%& .+%*s 
"3 

(6.47) 

for the parameters 

For the derivatives of I' with respect to e and w we find 

identities for NA = 1 Nj ,/, , N + NX = N4 + N5 . From (6.11) we get * 
j=o 

(6.50) 

(N++~,)i-= { i.ue - &G-~JA~ - +=A, + -,&iv 

- =A'zi A6 -v&jr 

Combining these equations with (6.48) we find 
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