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ABSTRACT 

An algorithm that finds the k nearest neighbors to a point, 

from a sample of size N in a d-dimensional space, with an expected 

number of distance calculations 

Eb,l $ [kdr($),' (2N)l - ?? 

is described, its properties examined and verified with simulated 

data. For bivariate normal data, an average of 24 distance cal- 

culations is required to find the nearest neighbor to a point from 

1000 prototype samples. 
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INTRODUCTION 

Nearest neighbors have been shown to be an important nonparametric 

technrque for multivariate denszty estimation and pattern classifi- 

cation. (l-6) For classification, a sample of prototype feature vectors is 

drawn from each category, correctly labeled by an external source. For each 

test point to be classified, the set of k-closest prototype points (feature 

vectors) is found and the test point is assigned to that category having 

the largest representation in this set. For density estimation, the volume, 

V(k), containing the closest k-points to each of the N sample points, is 

used to estimate the local sparsity , g, (inverse density) by 2 = NV(k)/ k. b 
The application of these techniques has been severely limited by the 

computational resources required for finding the nearest neighbors. The 

feature vectors for the complete set of samples must be stored, and the dis- 

tances to them calculated for each classification or density estimation. 

Several modifications to the k-nearest neighbor rule have been suggested 

that are computationally more tractable but whose statistical properties 

are unknown. W8) The condensed nearest-neighbor rule (9) mitigates both the 

storage and processing requirements by choosing a subset of the proto- 

type vectors such that the nearest neighbor rule correctly classifies all 

of the prototypes. 

Fisher and Patrick PO) suggest a preprocessing scheme for reducing the 

computational requirements of nearest neighbor classifications when the 

test sample is much larger than the prototype set. For this case, it is 

worthwhile to use considerable computation preprocessing the prototypes so 

that processing can be reduced for each test sample. Their technique orders 

the prototypes so that each point tends to be far away from its predecessors 

in the ordered list. By examining these prototype points in this order and 
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having precalculated distances between prototypes, the triangle in- 

equality can be applied to eliminate distance calculations from the test 

vector to%any of the prototypes. (All of the prototypes must be examined, 

however.) The algorithm is examined only for k=l in two dimensions where 

for bivariate normal data .a median number of approximately 58 distance cal- 

culations were required for 1000 prototypes, after preprocessing. 

This paper describes a straightforward preprocessing technique for 

reducing the computation required for finding the k-nearest neighbors to 

a point from a sample of size N in a d-dimensional space. This procedure 

can be profitably applied to both density estimation and classification, 

even when the number of test points is considerably smaller than the number 

of prototypes. This preprocessing requires no distance calculations. (It 

cant however, require up to dNlog2N comparisons.) The distance function 

(dissimilarity measure) is not required to satisfy the triangle inequality. 

With a Euclidean distance (q measure he average number of prototypes that 

need be examined is 

1 

E/h,] &+ [k d r($# (2N)l - i , 0) 

after preprocessing. 

For the case of bivariate normal data with d=2, k=l, and N=lOOO, eqn (1) 

predicts an average of 36 distance calculations, whereas 24 are actually re- 

quired. The performance of the algorithm is compared to eqn (l), with simu- 

lated data for several values of k, d, N, and underlying density distributions 

of the prototype sample points. 
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BASXC PROCEDURE 

The pre>,ro@essing for this algorithm consists basical.Py of ordering the 

pr'statyJe PO.1 iIt3 on the values 0%' one of the coordinates. For each test 

poIat, the pl&otypes are examined in the order of their projected distance 

from the test point on the sorted coordinate, When this projected distance 

becomes larger than the distance (in the full dimensionality) to the k 

closest point of those prototypes already examined, no more prototypes need 

be considered; the k-closest prototypes of the examined points are those for 

the complete set. Figure 1 illustrates this procedure for the nearest 

neighbor (k=l) in two dimensions. 

A simple calculation gives an approximation to the expected number of 

prototypes that need be examined before the above stopping criteria is met.' 

For simplicity, consider N prototypes uniformly distributed in a d-dimensional 

hypercube and a Euclidean distance measure. Assume also "that N 1s large 

enough so that effects due to the boundaries are not important. For this 

case, -the volume, v, of a d-dimensional spheres centered at the test point 

containing k-prototypes, is a random variable distributed according to a 

beta distribution 

p(v)& = -&rNq vk-' (1-v)"-k dv 0 5v.51. 

The radius of this sphere, given by 

‘[ I 
1 

'a = 
dI-($ ) v d 

F 
J 

(2) 

(31 
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is also a random variable. Let 

I 
L 

d/2 / dr (2) d * 

Then v = (sdrdld and the distribution for r d becomes 

N! dsd N-k 
drd)drd = (k-1) 1 (N-k) ! . csdrd) dk-l [l-(adrd)d] drd. 

The stopping criteria is met when the projected distance from the test point 

to a prototype along the sorted coordinate is greater than rd. This projected 

distance is uniformly distributed. The expected fraction of prototypes, 

then, that must be examined is just twice the expected value of rd given by 

eqn (4)?2) Various other statistics, such as the variance, median, and per- 

centiles can also be calculated from eqn (4). These calculations must be 

done numerically since the integrals cannot be evaluated analytically. 

A close upper bound (13) on E[r,] can be derived from eqn's (2) and (3) 

where from eqn (2) 

E[v]= & . 

(5) 

(6) 

The upper bound on the expected fraction of prototypes that must be examined 

is then 2Gd, and the upper;bound on the expected number of prototypes, E[n,], 

is 2$dN. Combining these results 

E[nd] s.fi, = 2 (7) 

Simplifying this expression and apnroxkating N-t-l by N, one has the result 

shown in eqn (1). The variance of nd is similarly approximated by 
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1 L 
ISEn, - xIn,)]2 

si 4 
dN (8) 

s"o thaT the $:-xfficient of variation becomes (to the same approximation) 

1,&d) 
" (9) 

Other statistics of the distribution can be similarly calculated. 

These calculations all presuppose a uniform distribution of the proto- 

type sample. This is seldom the case in application. For an arbitrary 

prototype density ~(3, the quantity 

has the beta distribution of eqn (2), where s&a is the d-dimensional sphere 

centered at the test point ;;', containing k prototypes. Also, the projected 

densities on the coordinate axes are no longer uniform. 

FULL Pl3OCErmE ------- 

The nonuniformity of the axis projections can be used to advantage to 

increase the efficiency of the algorithm, For a given expected radius Err,], 

the points that need to be considered are those that lie in the interval 

Ax 3r a[rdl9 centered at the projected test point. That projection axis, for 

which the number of such prototypes is least, should be chosen for maximum 

efficiency. If the points are ordered only along one coordinate in the pre- 

processing (basic procedure), then the one with the smallest average pro- 

jected density (largest spread) should be chosen. In the full procedure the 

points are ordered on several or all of the coordinates and the one with the 

smallest local projected density in the neighborhood of the test point is 

chosen. Thus, the ordering of the prototypes depends on the location of the 

test point ir t.he feature space. 
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For each test point, the local projected sparsity on each axis is 

estimated as 

4. si= Ix i,pi+n/2 - x I i,pi-n/2 01) 

where Xij is the ith coordinate of the jth ordered prototype and pi is the 

position of the test point in the ith projection.- The ordering of the pro- 

totypes on the particular coordinate for which si is maxImum, j = max 
Lci 

%il, 

is chosen separately for each test point. 

The number. of prototypes, n, over which the sparsity is averaged on 

each projection should correspond to a distance of about 2E[rd]. For a uni- 

form distribution, this is given approximately by eqn (5). The number of 

prototypes within this interval (again for a uniform distribution) is E[nd], 

given by eqn (1). For nonuniform distributions, both E[r,] and the various 

projected E[n,]'s will be different. Since the density distribution of the 

prototypes is usually unknown, a reasonable approximation is to use the uni- 

form distribution results, (14) tha-t is n+[n,] as given by eqn (1). 

The starting list of the k,-nearest prototypes are those whose position 

is closest to the test point in the jth coordinate. The other prototype 

points are then examined in order of their increasing projected distance 

from the test point until the stopping condition 

< ,< ('j,p 

j 

- 'j,&12 0-a 

is met for some point 4. ;Iiere d: is the distance squared to the kth nearest 

prototype of those examined up to that point. The current list of k cl.osest 

prototypes is then correct for the entire sample. 

The expected number of prototype points, %ll[ndlJ that need to be con- 

sidered .when applying this full procedu.re of choosing the optimum o-rdering co- 

ordinate individually for each test poirlt, can be calculated using arguments 
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aad assumptions similar to those that led to eqn (1). The result is 

(13) 

where the s i 's are the local projected sparsities on each of the coordinates rlea.l* 

ea 43. test point, and E[n,] is the emected number if all projected sparsities 

were the same. For uniformly distributed prototypes, E[n,] is given by eqn 

(1) and the si 's are distributed normally about their average values. 

Actual vdlues for Eruu[n,] are difficult to calculate, but eqn (13) 

can be used to gain insight into the strategy's effect. For example, if the 

spread of one of the coordinates is a factor of R larger, on the average, 

~&UI the others which all have approximately equal spread, then eqn (13) 

gives 

Eqn (13) clearly shows that the strategy will always incr<:ase the ;lii‘ici,:ilcy 

of the algorithm and be most effective when the variation of the p.~~.J1:04:ype 

density is greatest. 

CX.%'ER~L DISSIMILARITY MIZASURES .--i-____lll-- 

Although the above discussion has centered on the Euclidean distance 
d 

r 

I 

112 

dzm,?n, '= c 
1 i=l 

(Xim - Xinj2 (15) 

as a measure of dissimilarity between feature vectors, nc,t;here in the pro- 

cedure is it re&ired. In fact, the triangle inequality is not required. 

This technique can be applied smith any dissimilarity measure 
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I 

d 

.d(?m,2i, = g 
c, I 1 c 

i=l 
f i(Xim'Xin) (16) 

as long as the functions f and g satisfy the basic properties of symmetry 

f(&Y) = f(Y,X) (17a) 

and monotonicity 

dx) 2 43(Y) ifx>y 

The performance of the algorithm does depend upon the dissimilarity 

measure and, in particular, the result contained in eqn (1) applies only to 

the Euclidean metric. The dependence on k and N contained in eqn (1) is the 

same for any Minkowski p metric 

d(?m,2n’ = (P2 1) (18) 

since for these distance measures the volume of a d-dimensional Wsphere" 

grows with radius, r, as v CY rd. Because of their ccmputational advantage, 

the two most often used Minkowski metrics, besides the Euclidean metric (p = 2), 

are the city-block or taxi cab distance (p = 1) and the maximum coordinate 

distance, d(?m,?n) = max 
l.53.J' 

Xim - Xin( 1 (p = co). Upper bounds on the 

average number of distance calculations, E[nd], analogous to eqn (l), can be 

derived in a similar manner for these distance measures. The results are 
11 

El[nd] ,< (kd !> 
ifi 1-x 

N (P = 1) Cl4 

1 L 
E [n ] < kd NIBd cod" 

(p=oo). (1-b) 



SIM.ULATIONMPERIMENTS 

In order to gain insight into the performance of the algorithm and com- 

pare it to that predicted by eqn (l), several simulation experiments were 

perfozmed. For each simulation N+l random d-dimensional points were drawn 

from the appropriate probability density function. The number of distance 

calculations required to find the k-nearest-neighbors to each point using 

the full procedure (sorting on all coordinates) was determined and then 

averaged over all of the points. This procedure was then repeated ten times 

with different random points from the same probability density function. The 

average of these ten trials was then taken as the result of the experiment, 

and the statistical uncertainty was taken to be l/fi times the standard 

deviation about the mean for the ten trials. These uncertainties were all 

less than one percent and for the larger samples were around 0.1 percent. 

These simulation results are presented in Figures 2->where the vari- 

ation of the average number of distance calculations with N, k, d, under- 

lying distribution, and distance measure is compared to the upper bound 

predicted by eqn (1) (solid lines);:. Figure 2 shows the dependence on 

N (d=2, k=l) for several underlying distributions. These distributions 

are uniform on the unit square, bivariate normal with unit dispersion matrix, 

and bivariate cauchy 

P(X,Y) = - 1 
(l;;r2)(l+y2) 

. (19) 

Figure 3 shows the dependence on k(d=2, n=lOO and ,lOOO) for uniform and nor- 

mal data. Figure 4 shows the dependence on d(k=l, N=lOO and 1000) again, 

for both uniformly and normally distributed data. Figure 5 shows the de- 

pendence on d (k=l, N=lOOO, uniform distribution) for several different 

Minkowski p metrics, namely p=l (city block distance), p=2 (Euclidean dis- 

tance), and p=co (maximum coordinate distance). 
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DISCUSSION 

These simulation experiments show that 'eqns (1, la, lb) do, indeed, provide 

a close upper bound on the average number of distance calculations required 

by the akorithm to find neares% neighbors. Although these formulae always 

slightly overestimate the actual number, they quite accurately reflect the 

variation with N, k, d and p. As predicted by eqn (1-Y), the number of dis- 

tance calculations tends to diminish for increasing density variation of 

the sample points. (15) It is interesting to note that for d=2 and k=l, 

this algorithm requires a smaller average number of distance calculations 

for 10,000 prototypes than does the brute force method (calculating all of 

the distances) for 100 prototypes. 

The relative efficiency of this algorithm (as compared with the brute 

force method) decreases slightly with increasing k 'and more rapidly 

with increasing dimensionality d. In eight dimensions for 1000 prototypes 

(k=l) the average number of distance evaluations is reduced by approximately 

4% Although not dramatic, this is still quite profitable in terms of 

the preprocessing requirements. 

AE indicated by eqns. (1, la, lb) and verified in Figure 5, the growth 

of E[n d ] with dimensionality depends strongly on the choice of the distance 

measure. For Minkowski p metrics, it is easy to show that E [n ] 
P d 

grows 

more slowly with d for increasing p. The results of eqn (lc) and Figure 3 

indicate that if a distance measure is chosen on the basis of rapid calcu- 

lation, the maximum coordinate distance (p=co) is the natural choice since 

it also minimizes the number of distance calculations, especially for high 

dimensionality. 

A crude calculation gives a rough idea of how many test points, Nt,are 

required (in terms of the number of Prototypes, N 
P' k, and d) for the prepro- 

cessing procedure to be profitable. The preprocessing requires approximately 
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dNplog2Np compares, memory fetches and stores. Each distance calculation 

requires around d multiplies, subtractions, additions, and memory fetches. 

Assuming all of these operations require equal computation, then the pre- 

processing requires about 3dNplogN P 
operations, while it saves approxi- 

mately-‘ 4dNt(Np-E[nd]) operations. Thus, for the procedure to be profit- 

able 

4dNt(Np-E[nd]) > 3dNplogNp 

or crudely(16) 

(20) 

E[n,] is given approximately by eqn (1) (Euclidean metric). For d-2, k=l, 

and 1000 prototypes, No is around 10, whereas for d=8, k=l, and 1000 pro- 

totypes, one has N 0 S25. 

Although these results are quite crude, it is clear that the number 

of test points need not be large, compared to the number of prototypes, 

before the algorithm can be profitably applied. For density estimation, 

where N =N =N, 
t P the procedure is profitable so long as NO/N is small 

compared to one. 

The only adjustable parameter in this algorithm is the number of pro- 

jection coordinates, m, on which the data are sorted. This parameter can 

range in value from one (basic procedure) to d (full procedure). If less 

than the full procedure is employed, then those axes with the largest 

spread should be chosen. Arguments similar to those that lead to eqn (14) 

can be used to estimate the efficiency for this case. For the case where 

all coordinates have approximately equal spread, eqn (13) can be used to 

show that the increase in efficiency, as additional sorted coordinates are 

added, is proprotional to l/m. Results of simulations (not shown) verify 

this dependence. 
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The tendency toward decreasing relative efficiency with increasing 

dimensionality cannot be mitigated by requiring the distance measure to 

satisfy the triangle inequality .~ - 

(21) 

3 In this case distance calculations can be avoided for those prototypes, x,, 

for which 

d(;;‘$;;l,) < ld(;;;,$ - d(ze’, 1 (22) 

where ?t is the test point, zk is the k-th nearest prototype of those al- 

ready examined and ;;' 4 is a prototype for which d(zt,?t) and d(?t,') have 

already been evaluated (and saved). The use of eqn (22) will be most 

effective when the dispersion of inter-point distances in the prototype 

sample is greatest. In this case, d(pt,?k) will tend to be small whereas 

dc;;'t,$,) and d(?t,zn) will quite often be dissimilar, making the right hand 

side on eqn (22) large. Since distance varies as the d-th root of the volume, 

the distance variation will decrease with increasing dimensionality for a 

given density variation. 

For a uniform density distribution in a d-dimensional space, the co- 

efficient of variation of the interpoint distance is 

(23) 

which decreases as l/d for increasing d. Thus, the usefulness of the tri- 

angle inequality is affected by the "Curse of dimensionality" in the same 

manner as the algorithm discussed above. 
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The performance of this algorithm has been discussed in terms of the 

number of prototypes that need to be examined and distances calculated. 

Aithoug; this is closely related to the actual computing requirements, it 

should be kept in mind that the true performance also depends on the de- 

tails of implementation' and the hardware capabilities of a specific com- 

puter. 

CONCLUSION 

A simple algorithm has been presented for finding nearest neighbors 

si 1-i 
with computation proportional to k N and preprocessing proportional 

to dNlogN. The algorithm can be used with 8 general class of dissimilarity 

measures, not just those that satisfy the triangle inequality. The algo- 

rithm takes advantage of local variations in the structure of the data to 

increase efficiency. Formulas that enable one to calculate a close upper 

bound on the expected performance for ccmmon metrics have been derived. 

Simulation experiments have been presented that illustrate the degree to 

which these formulas bound the actual performance. 
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12. Prototypes must be examined for a projected distance rd both above 

and below the test point position. 

13 .” TakTng the dth root of the average rather than the average of the 

dth root will cause a slight overestimation that decreases with 

increasing d. For d=2, this overestimation is around lO$, while 

for d=8 it is 6$. 

14. Simulation results indicate that the performance of the algorithm is 

very insensitive to the choice of n. 

15. The actual improvement, using the full procedure, is somewhat under- 

represented. Simulations using the basic procedure (sorting on 

one coordinate only) gave considerably higher values of E[n,] 

(20$ to 3C$) for the nonuniform densities than for the uniform 

density. The full procedure results presented in Figures 2-4 

shckl the nonuniform densities with smaller values for E[n,] than 

the uniform cases (again 20$ to 30%). Thus, the improvement over 

the basic procedure for these nonuniform densities is around twice 

that indicated. The full procedure also reduces the coefficient 

of variation of nd to about half that for the basic procedure and 

that predicted by eqn (9). 

16. This calculation is extremely dependent on the specific computer upon 

which the algorithm is implemented, and the results of eqn (20) 

should be regarded as only a crude estimate. 
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FIGURFl CAPTIONS 

FIGm L Illustration of the basic procedure for the nearest 

neighbor (k=l) in two dimensions. 

FIGURE 2. Average number of distance calculations required to 

find the nearest neighbor (k=l) for bivariate uniform 

(Cl), normal (0), and Cauchy (0 ) density distributions 

as a function of prototype sample size, N. 

FIGURE 3. Average number of distance calculations required to find 

the k nearest neighbors with bivariate uniform (0) and 

normal (0) density for 100 and 1000 prototypes. 

FIGURE 4. Average number of distance calculations required to find 

the nearest neighbor for uniform (0) and normal (0) 

density distributions with 100 and 1000 prototypes as a 

function of dimensionality, d. 

FIGUFUZ 5. Variation with dimensionality, d, of the average number 

of distance calculations required to find the nearest 

neighbor (k=l, N=lOOO, uniform distribution) for several 

Minkowski p metrics, p=l (0 ), p=2 (0), p=co (U). 
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