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ABSTRACT 

Phenomenological and theoretical aspects of single particle contri- 

butions to sum rules derived from commutation relations are considered. 

A derivation of sum rules arising from an equal time axial-charge 

algebra evaluated between arbitrary single-particle states is given. 

A phenomenological analysis of these sum rules is carried out. An 

analogous derivation of sum rules associated with the sigma operator 

is shown to be invalid. An amended form for the sum rules is derived. 

Finally, we comment on relations obtained by taking vacuum-vacuum 

or vacuum-single particle matrix elements of certain commutators. 
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I. INTRODUCTION 

We present in this paper a study of phenomenological and theoretical aspects 
4\ 

of single particle contributions to sum rules arising from matrix elements of 

various commutator algebras. In all cases, we restrict the invariant momen- 

tum transfer, q2 , across these matrix elements to be either zero or small 

(lq2 i 50.5 GeV2). 

The motivation for undertaking this study arose from a calculation by 

Golowich and Holstein’ in which a model for vector and axial-vector current 

excitation of the pion into arbitrary-spin single particle states was formulated 

and solved. This model parameterized the momentum transfer dependence, for 

small q2 , of matrix elements of the operators Vt , A:, ap Ai (a = 1,2,3) by 

means of o, Al, r poles, as well as allowing for higher mass contributions by 

means of constants. Current algebra, the “partially conserved axial-vector 

current” hypothesis (PCAC), and the Bjorken-Johnson-Low (BJL) theorem were 

used to constrain the parameters of the model. A rigorous consequence of the 

conditions just enumerated is that excitation of the pion to single-particle states 

with spin J > 4 is forbidden. This result led to a study of sum rules associated - 

with commutators of time components of currents at zero or small q2 taken 

between single pion states at infinite momentum. In particular, a Fourier 

transform of the charge density algebra 

[At (0 , z), A! (0)] = 2 S”(z) V;(O) (1) 

(in this paper, J* =- J1 f i J2 for any isospin carrying operator J,), its first 

derivative with respect to q2, and the first derivative with respect to q2 of the 

Fourier transform of 

[Ivy (0, -3, vy (O)] = 2 fs3 (-2) $0) (2) 
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were all evaluated at q2 = 0. The sum rules were evaluated in resonance 

approximation. With experimentally determined decay widths as input, it was 

founzthat resonances of spin J 54 were successful in nearly saturating the sum 

rules. 1 On this basis, it was conjectured in Ref. 1 that damping of small q2 

current-induced transitions for which the difference in spin exceeds some 

moderate value (perhaps AJ - 4) might be a general hadronic phenomenon. 

Further thought has tempered, to some extent, our enthusiasm for this 

outlook. It is possible that the underlying reason for the success of the satu- 

rated sum rules lies in the subtractive nature of the commutators in Eqs. (1) 

and (2). That is, the terms which arise from the two different orderings of 

the operators in these particular commutators contribute to the sum rule with 

opposite relative signs. Thus, terms associated with large mass contributions 

may have little effect on the commutator due to cancellation, although each 

could be individually large. 

Without deeper theoretical understanding, it is not easy to judge the rela- 

tive importance of these two mechanisms. Conceivably, either can be true to 

a greater or lesser degree. At any rate, we have been stimulated to examine 

a phenomenological aspect of this subject, a numerical evaluation of resonance 

saturated sum rules associated with the equal time charge algebra 

(3) 

taken between arbitrary, diagonal single-particle states. This analysis is 

given in Set tion’ II. Our primary aim is simply to ascertain how the numbers 

come out in light of existing experimental data. As a matter of principle, it is 

important to keep subjecting relations like Eq. (3) to new experimental tests, 

even though previous studies2 lead us to accept its validity. The cleanest 
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signal of something wrong with Eq. (3) would be oversaturation, in which con- 

tributions to the left-hand side exceed the bound given by the right-hand side. 

We also wish to exhibit the problems one encounters in practice while attempt- 

ing to evaluate the charge algebra sum rules. What are the phenomenological 

limitations to these sum rules? Finally, we hope to stimulate experimental 

work in the difficult subject of higher meson and baryon resonances. The sum 

rules can provide, in individual cases, a quantitative measure of the extent to 

which further couplings to a given hadron are to be anticipated in order that the 

sum rule be saturated. 

A natural extension of the work (based on Eq. (3)) just described is to apply 

the same methods to the equal time commutator 

i [F:(O), a/c”(o)] =2 4) , V-1 

where r (the “sigma operator”) is assumed for simplicity to carry zero isospin. 

As will be described in Section III, this turns out to be impossible. The sum 

rules which result are not valid because the mathematical procedures used in 

deriving them are not legitimate. A method suggested by R. Jaffe and co- 

workers3 for eliminating this difficulty is discussed, and an amended class of 

sum rules is written down. The emphasis in this Section is almost entirely 

theoretical. 

Thus far, we have discussed the contribution of single particle intermediate 

states to certain commutation relations evaluated between single -particle states. 

In the interest of thoroughness, we devote Section IV to a brief survey of the 

status of “simpler” commutator matrix elements, in which one or both of the 

external states is the vacuum state. 

The paper concludes in Section V with a summary of our results and a dis- 

cussion of their significance. 
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II. AXIAL CHARGE COhIh’IUTATOR 

Our goal, to perform a phenomenological analysis involving the commuta- c, 
tion relation of Eq. (3) taken between arbitrary diagonal single-particle states, 

actually dictates that the single-particle intermediate states play a central role. 

Otherwise we would end up with formulae generally having no realistically ob- 

tainable experimental content. 

We shall begin with derivations containing enough detail to establish our 

notation as well as to make the paper self-contained for the reader. 4 Suppose 

the commutation relation in Eq. (3) is sandwiched between initial and final 

states IarG,r)>, <ol@ , r)l respectively, where r is a helicity label. In the 

numerical work to be discussed later, we shall consistently choose a! to be the 

state of highest weight in its isospin multiplet. 5 For definiteness, we shall 

assume that it carries charge f 1 in the following derivation. Let us insert an 

intermediate state consisting of some particle y, not belonging to the same iso- 

topic multiplet as a!, and also sum over the helicity r of particle ok. We find 
fi 

- <o$,r)lF5(0)ly++(~r’) > <~*(~r’)lF:(O)Iol~,r) > 
I 

+ . . . =2(2n)3 T3(cQ(2J,! + 1)Nafi3@ -F) 

where the normalization of single particle states is given by 

<a@ ,r’)lolG,r) > = (2n)3 No 5rr, S3@ -<) . 

(5) 

(6) 

The normalization factor No need not be specified any further in this Section 

because it will cancel out of our equations. Next, express each axial-charge in 
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terms of its charge density and use translation invariance to carry out the 

spatial integrals. As a result, all states a! and y have the same momentumc 

Thus: if we employ 

<og,r)l a,A~(0)lrO@t,rl)> = i(pz - p$ <cu~;r)lA~(0)f~“@rf) > , (7) 

along with the PCAC relation 

<“~,r)l$A~(0)ly”~,rl)> = 
mtFn <ol~,r)lJ~(O)I r”G,rt) > 

m2,-@,-P$ 
(8) 

where J: is the pion current6 and Fn s 94 MeV, we obtain 

c 
tm; FJ2 t I ia,~,r)lJ~(O)l r’G,,r’) > I2 - I<or~r)lJ~(0)l~~~,rr’)>12 

r,r’ (m2 .-@o-P@ 2 NaNyT3@) (~J,+~)(P;-P;)~ 

+ =l. . . . (9) 

Upon taking the limit IFI - 03, we may relate the above squared matrix ele- 

ments to decay widths if I m 
Y 

- ma! I > rnr. For definiteness, we temporarily 

take my > ma! f rnr. The association of the above matrix elements with physi- 

cal decay widths is not exact. The latter are proportional to squared matrix 

elements having momentum transfer q2 2 =m T, whereas the former have q2 = 0 

in the limit IFI - 00. We shall assume that the physical decay widths can be 

used without appreciable error. 7 This is the main point at which we employ 

the PCAC hypothesis. We can then express Eq. (9) in the form 

-3L. 
2Jr’i- 1 F2 m2 

r Y 
I lY(y 0 

T3(o) 2Ja+l k (m;-m2o )2 
- OY) - q-y++ - cYTrf) +... =1 

I 
(10) 
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where n =2 if the particle a! is a pion, 7 = 1 otherwise, and k is the decay 

momentum evaluated in the parent rest frame. There is a question as to 

whether k should be evaluated with the pion mass taken as zero or physical. 

We have chosen to use the former, thus implying 

2 2 
(m -ma) 

k= yzrn . 
Y 

A relation analogous to Eq. (10) can be written down for the case 

where now, n = 2 if y is a pion. Summing over all contributions 

title states y, we finally obtain 

16n F”, c (1) 2J;l r(y”-o!7r-) - r(y++‘aa+) -q 

Y 2JQ!+1 T3(a) 

c (2) + rta --, yen+) - w2-,Y”~3 + , . . 
Y 

Tut 
3 

m30 l-3 

( ) 

I 

cl 

(11) 

mo>m +m 
Y = 

of single par- 

= 1. (12) 

The superscripts on the summation symbols refer to (1) my > ma! + rnr and 

>m +m (2) ma y n’ Contributions not explicitly included in Eq. (12) must have 

mass within a band mof m r. There are only a finite number of these. 

Equation (12) will form the basis of our phenomenological analysis. Its 

content can be clarified somewhat by writing it in terms of spin-averaged total 

cross sections Ok pertaining to the center-of-mass scattering of charged (‘) 

pions off the particle cx. Starting from a relation like Eq. (9) and taking account 

of the initial state flux factor and final state phase space, it is not difficult to 
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express the sum rule as 

2F: 

- / 

co ds 
71 -----y (i?-(s) - G+(s)) + :pite = (13) 

s-m 
2T3W 

sO a 

where s is the invariant energy and so = (m o1 The “discrete terms” in 

Eq. (13) correspond to contributions with mass less than ma! -+ rnr. We can 

recover Eq. (12) from Eq. (13) by using the narrow resonance Breit-Wigner 

formula 

wmy - 9 (14) 

where W = s “’ and k is given in Eq. (11). 

Before commencing our numerical study of Eq. (12), we wish to point out 

two features of Eqs. (12) and (13). First is the convergent nature of the sum 

rules for large mass contributions, as evidenced especially in Eq. (13) via the 

Pomeranchuk theorem. This is one of the mechanisms mentioned in the Intro- 

duction which tend to made this class of sum rules approximable in terms of 

single particle contributions. Its origin lies in the antisymmetric behavior of 

Eq. (3) under (+ - -), a property not universally shared by all commutators 

as we shall see in the next Section. A second noteworthy feature of the sum 

rules, more easily apparent in Eq. (12), is the existence of contributions not 

expressible in terms of decay widths or cross sections. These terms are 

known only in special’cases - more often, we lack even a reasonable theoreti- 

cal estimate of them. It is this, along with the fact that these terms become 

more numerous (albeit finite in number) as the mass of the state chosen for a! 

is increased, which constitutes the major limitation in confronting the sum 
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rules (12) with experimental data. As candidates for the external states Q, we 

shall consider first the baryons, then the mesons. Unless otherwise specified, 

the &ta is taken from Ref. 8. 9 Tn order of their appearance, the baryons to be 

surveyed here are N+(938), A’+(1233), N*+(1470), 8+(1189), Y,f(l384), and 

x0 (1315): 

N+(938): This is naturally the case for which, of all the hadrons, the most 

data is available. Numerics are exhibited in Table Ja. A summary of contri- 

butions is given by 

2 
gA + 0.544 - 0.975 - 0.175 + . . . =l 

v -- 
nucleon T=1/2 A(1233) T=3/2 

(15) 

where the T=1/2, 3/2 contributions group together all resonances of a given 

isospin. There are two ways in which Eq. (15) might naturally be interpreted: 

(i) Simply insert the existing experimental value for gA, thereby testing how 

well Eq. (15) is saturated. With gA = 1.25, we obtain 0. 96 +. . . = 1. (ii) Use 

Eq. (15) to compute gA. This is a traditional way of using algebras, often with 

poor success because the number of intermediate states taken into account is 

truncated too severely. From Eq. (15), we find gi = 1.606 or gA= 1.27. In 

this case, nature has supplied us with enough data to give a reasonably good 

estimate of gA. 

A”(1233): The only intermediate state contribution not estimable in terms 

of a decay width is that of A(1233) itself. The parameter which characterizes 

this contribution is a form factor FA(q2), 

<A*@,rl)lA~(0)lA’($,r) > = i -@,r’)Y5 [ YPgaP FA(q2) + l D } 

(16) 
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evaluated at q2- -0. Analogous to gA of the nucleon axial-vector matrix element, 

let us define fA E FA(0) for the A(1233) axial-vector matrix element. Referring 

“to th;values given in Table lb, we have 

27A 5H + 0.244 -I- 0.149 + 0603 -I-... =l. 
w -- b-- -- 

A nucleon T=1/2 T-3/2 

(17) 

Unfortunately, it is not realistic to expect an experimental determination of fA. 

Rather than anticipate Eq. (17) will provide a good value for fA provided that 

we assume the above numbers already saturate the sum rule, we prefer instead 

to adopt the more conservative stance of testing the degree of saturation in (1.7) 

by obtaining some estimate of fA. This is done by first expressing fA in terms 

of the coupling constant grAA via a Goldberger-Treiman relation and then using 

SU(6)w to relate grAA to the known quantity grNN. We find fl z 2.1, where- 

upon the sum rule (17) reads 0.82 + . . . = 1. 

N*+(1470): This state is the lowest in mass of the essentially continuous 

spectrum of highly excited nN resonances. As such, it represents the first 

case where our ability to test the sum rule (12) becomes seriously hindered. 

There is a band of width 2mn surrounding N*(1470) for which contributions to 

the sum rule cannot be estimated experimentally. This band contains the states 

N*(1520) and N*(1535) with spin-parity J P -1- = g , 2 respectively. Of course, 

there is also the contribution of N*(1470), expressed in terms of a parameter 

gi entirely analogous ,$o gA’ The sum rUk? reads 

2 
gA + 0.126 - 0.207 + N*(1520) + N*(1535) + . . . = 1. 

N*) 
‘V -- 
nucleon A(1233) 

(18) 
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Naturally, for the more massive states CY, the amount of data pertaining to 

resonances which decay into a! plus a pion gets scarcer. This explains the 

pau&y of numerical information in Eq. (18) relative to that in Tables Ia and lb. 

However, this does not constitute a fundamental difficulty like the discrete con- 

tributions just discussed. If experiments in hadron spectroscopy continue, we 

can hope that transitions from one higher resonance to another can ultimately 

be unravelled. This is not easy but at least it is possible. At any rate all we 

can infer from the numbers in Eq. (18) is that the sum of the discrete contri- 

butions equals 1.1, given the nucleon and A(1233) contributions. 

8+(1189): This state is of interest because it has the lowest mass for which 

the sum rule (12) is testable in a channel with non-zero strangeness and baryon 

numbe 1: one . There are two discrete contributions, so that the sum rule reads 

f (gf+‘“))” + $(gf+AT + resonances.= 1. (19) 

We use SU(3), with an F/D parameter Q! = 2/3, to estimate the quantities 

F+x”) 
gA and gf+A). The resonance contributions are exhibited in Table Ic. 

Altogether, the numbers are 

0.174 + 0.231 + 0.142 + 0.055 + . . . =l 
-- -.- -- -.- 

2 A T=O T=l 

(20) 

or in total, 0.60 +. . . = 1. There remains a fairly substantial contribution to be 

made from as yet uno;bserved decays of hyperchange zero baryon resonances 
+ 

into XT. Note that the low mass k 
+ 

and i contributions to the proton sum rule 

add to 0.588 whereas for the 2’ sum rule they give 0.442. However, the higher 

resonances for the intensively studied nN system sum to 0.369 whereas the more 
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complicated system of hypercharge-zero’ higher resonances contributes only 

0.16. 

x:(1385): The problem of unobservable contributions to the Yr(1385) sum 

rule is not serious. There is the contribution of YF(1385) which we can estimate 

from SU(6)w just as we did for the. A+(1233) contribution to the A*(1233) sum 

rule. In addition, the unitary singlet state Yz(1405) can contribute in principle. 

However, this transition proceeds only through SU(3) breaking effects. Thus, 

we can hope that its effect on the sum rule is minor. Our numerical analysis 

gives 

0.383 -I- 0.120 + 0.019 + 0.086 + 0.008 + 0.013 + = . . . 1 
v - ----/‘- 

A 2 Yo(1520) Yo(1815) Yl(1765) 
(21) 

or 0.62 + . . . = 1, which is a reasonably high amount of saturation considering 

the large mass of the external state. 

Z”( 1315): Despite the experimental effort which has been put into the 

hypercharge - I baryon channel, distressingly little is known about the particle 

spectrum at this time. Our Z 0 sum rule reads 

0.173 + 0.196 + . . . = 
- -w 

E E* ( 1530) 

(22) 

where we have used SU(3) to estimate the E-(discrete) contributions. Equation 

(22) sums to 0.37 -f . . . = 1, so the dominant contributions to the Z” sum rule 

remain to be detected. We can only await a correct interpretation of the reso- 

nant behavior around energy 1820 MeV, which has for so long resisted efforts 

at classification. This concludes our survey of the baryon sum rules. 
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The main difference between the structure of the baryon and meson sum 

rules is that those intermediate states y which lie in the same isotopic spin 

mul&plet as the external state a! are forbidden to contribute to the latter by 

G-parity. We shall consider, in turn, sum rules for the following meson 

states, 7r +, p+(765), A;(l310), K6(494), Kf(892), KfT(l421), where the sub- 

scripts V,A, T denote vector (l-), axial (l+), and tensor (2+) respectively. 

7T +: - This sum rule, also studied in Ref. 1, gives 

0.292 + 0.047 -I- 0.097 + 0.47 + 0.043 +... =l (23) 
-- -/ 

E(700) e’(lOOQ) f(l260) ~(765) gt1680) 

where 7r7r total widths I’(enn) = 300. MeV, l?(e’nn) = 50. MeV have been 

employed. 10 The above contributions come close to saturating the sum rule, 

yielding 0.95 + . . . = 1. Thus the lowest mass baryon and meson states have 

their resonant-dominated sum rules saturated to within five percent. 

p+(765): The anly contribution to the p+ sum rule which is not directly 

measurable comes from the w intermediate state. However, we may use Eq. 

(9) in conjunction with the Gel1 Mann-Sharp-Wagner model 11 ofthew- ny 

transition to estimate it. We define a coupling constant g 
UP= 

for the process 

46 r') - p(T,r) I- n6) with a momentum space interaction amplitude 

g 
WPT %WV 

k”EP(k rl)qP etV(q,r) , . 

The p+ sum rule can then be written as 

+ 0.078 + 0.189 + 0.042 + . . . =l. 

7r Al(llOO) A2(1310) 

(24) 

(25) 
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A recent determination 12 
of g 

UP= 
is quoted as g 

UP* 
= 14.4 GeV-‘, so the 

degree of saturation of the p+ sum rule is 0.62 + . . . = 1. 

gi(l310): This is the largest mass non-strange meson whose sum rule we 

shall analyze numerically. The extent to which contributions from states lying 

within energy m, above’ or below the A2 mass affect the sum rule is not clear 

because of our relative ignorance of the particle spectrum at these energies. 

An amusing example of the difficulty in estimating one of these contributions is 

provided by the axial-vector meson B(1237). In principle, A2(1310) can decay 

into B(1237)n because the finite widths of these resonances provides a certain 

amount of phase space. 13 The decay A2 - ~~7r has been observed, 14 and noting 

that B - w7r is essentially the only decay mode of B(1237), we can obtain an 

upper bound on the rate for A2 - Bn. This upper bound would imply a whopping 

contribution from B(1237) of 0.78 to the A2 sum rule. However, it would also 

imply a dimensionless p-wave coupling constant g2(A2Br)/4?r ‘E 70, which in 

our opinion is too large to be believed. Therefore, we summarize the present 

situation as 

0.024 + 0.01 + B(1237) term + . . . =I 

~(765) 77 (549) 

(26) 

for the Ai sum rule, with the “B(1237) term” - < 0.78. 

K(494): There is data at present for us to take the contribution of just two 

resonances into account, 

0.375 + 0.084 +... =l, 

KT(142 1) 

(27) 
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or 0.46 c . . . = 1. The analogous two states contribute 0.57 to the pion sum 

rule, so at this level the difference in convergence between the 7r and K sum 

rules-is not large. However, the predominantly isoscalar meson E (700) con- 

tributes significantly to the pion sum rule but not at all to that of the kaon. The 

kaon sum rule must make up the difference with the more massive states, 15 a 

situation which suggests a deep relation between the chiral algebra and the 

spectrum of hadron states. 

&(892): The status of the KV( 892 sum rule would be clarified if more ) 

information on the axial-vector kaons in the mass range 1200-1400 MeV were 

available. For our calculation, we have assumed that the axial-vector kaon 

with mass 1242 decays into KV(892)r with a width of 127 MeV. 8 We find 

0.0168 + 0.0272 + 0.33 + = . . . 1 (28) 
-.- -- 
K(494) KT(142 1) KA (1242) 

or 0.48 f . . . = 1, a fair degree of saturation. 

_KT(1421): Like its SU(3) partner Ai(1310), the Kc(l421) has but two well 

determined contributions to its sum rule, 

0.017 -I- 0.027 +... =l 
? 

K(494) KV(892) 

(29) 

or 0.044 + . . . = 1. The O- and l- states are thus seen to contribute almost 

negligibly to the sum rules of the tensor mesons Ai(1310) and Kf,(l421). 

Further comments on the analysis just presented are reserved for the 

Conclusion. In the next Section, we consider an algebra, which at first sight, 

appears amenable to a similar treatment. 

- 15 - 



III. SIGMA OPERATOR 

The sigma operator has been defined in terms of an equal time commutation 
- 

relation in Eq. (4). Not much empirical knowledge exists regarding matrix 

elements of this operator. The nucleon matrix element is thought to be given, 

to a good approximation, by the combination of isospin-even pion-nucleon ampli- 

tudes A(‘) + v B(+) evaluated at s = rni, t = 2mi. A variety of recent phenomeno- 

logical efforts 16 points to a value 40 5 < Nla IN > 2 70 MeV although a definitive 

evaluation has yet to be performed. The pion matrix element can be estimated 

in terms of a low energy theorem to be < 7r I al T > 4 rni. This evaluation is 

suspect because it involves extrapolation over a distance rnz of a quantity itself 

of order 2 m *. However, it does provide an order of magnitude estimate. 

We may use the methods of the previous Section to derive a class of sum 

rules for the sigma operator matrix element taken between single particle 

states. Upon doing so we find 17 

7t2) rta! - y”r+) 
-L 

++ - 
+r(a-y T) 

m2 3 
m a! l- + 

( ) 

I 
+ . . . (36) 

mY 

where the superscripts on the summation symbols have the same meaning as in 

Eq. (12). The constant 

1 mesons 
qa! = (31) 

2mo baryons 
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occurs because meson and baryon matrix elements of the sigma operator have 

different units. A formula relating the sigma operator matrix elements to 

cross-sections, analogous to Eq. (13) can also be derived, 

2F2 
+a <a~A)Icr(O)ta~,A),> = - 9 

/ 
discrete 

ds (S(s) + G+(s)) + terms * (32) 

There are several features of Eqs. (30) and (32) that warrant immediate 

discussion. The widths and cross sections are seen to add whereas in Eqs. (12) 

and (13) they contribute with opposite relative sign. This is not a mistake, but 

rather reflects the behavior of the commutation relation (4) under the inter- 

change (+ - -). Of greater significance is that, given existing estimates (e. g. , 

Regge) of the asymptotic behavior of hadronic cross sections, our formulae for 

the sigma-operator matrix elements are seen to diverge. Even if these asymp- 

totic estimates turn out to be wrong and the integrals in (32) actually converge, 

the situation is still bleak because the dominant contributions to (30) and (32) 

are of the wrong sign. 18 As an example, the resonances exhibited in Table Ia 

give <Nl a(O) E - 0.92 mN according to Eq. (30). In the same manner, we 

calculate < 7r I o(0) I7r > = - 36 rni upon using the 7rr resonances listed in the pre- 

vious Section. Neither of these values can coexist with the estimates discussed 

at the beginning of this Section. 

It turns out that one can employ a rather different derivation for the q2= 0 

sum rule (32), the result of which exhibits remnants of its original form, 

while at the same time patching up its weak spots. Much of the work is already 

done in Ref. 3 so in the following, we shall just outline the necessary steps. 
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First, we rederive Eq. (32) as a q2= 0 sum rule involving structure func- 

tions for neutrino scattering. 19 Consider the spin-averaged quantity 
4 

WPV(qp) =& , 
/ 

d4x eiq’ x <a($)I [J:(x), J:(O)] lo@ > (33) 

where Jt is the AY = 0 weak current which raises the hadronic charge. The 

sigma-operator matrix element is obtained by contracting Eq. (33) with qv and 

setting c = 0, 

/ 

co 

oa! <cz~)la(O)Ia!~) > = - dq” q” Wootqo,p) . 

If we define a set of kinematic singularity free structure functions 20 

P@P” wpv = -gpvwl + - 
m2 a! 

,PVWp q 

w2-i 2m2 
a/3 

w3 
o! 

(ppqv + pvqp 
+qm;vW4 + 2m2 )W5 

o! a 

where Wi =Wi(q2 3 v ), v =q. p, and use the crossing property 

w;(q2,v) = v -w2 ts2,-v) , 
we obtain 

(34) 

(35) 

(36) 

co 

$b,<cr~)l~(O)lIcy) > = - 5 / 
v dx ~w;to,x) + w2 (0,x)) . (37) 

Q! 0 

But if the lepton mass is neglected, we can use the q2=0 relation 

2m2 F2 
w,vyv(o,v) = T&T (38) 
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I 

(whereW =s l/2 , k=(s - mi)/2s) in conjunction with Eq. (37) to regain Eq. 

(32). In other words, the steps leading to Eq. (37) are not valid. 
* 
The method suggested in Ref. 3 to deal with these difficulties is to consider 

the spin-averaged amplitude 

. TPV(q2,v) = i 
s 

d4x eiqS x 0(x0) <c~(p)I[J~(x), Jo] la(p) > 

f seagull terms , (39) 

where 

b-nTPL” 2 (q ,v) = 27rWPV(q2,v 1 * 

The seagull terms are polynomials in q which might be needed in order that 

TPV be a legitimate second-rank tensor. The decomposition used in Ref. 3 

for WPv is the same as our Eq. (35) except for the presence of 

m2 2 . 

wi = w4 - + w1 - 5 w2 
4 q 

wk = w5 + % w2 
q 

(41) 

in place of our W 
4,5’ 

The above decomposition, although not kinematic singu- 

larity free for q2 - 0, has the advantage that only Wi 5 contribute to qPWPv . 
t 

The amplitude TV’ of Eq. (39) has a similar decomposition in terms of ampli- 

tudes Ti, i = 1,. . , 5. The key point is that appropriately subtracted dispersion 

relations can be written for each of the T; (q2, v ). Thus, the high energy 

(v - m) behavior is properly accounted for. In particular, the dispersion rela- 

tion for Ti(q2, v ) is seen to contain a subtraction constant Ti(q’, 0). Informa- 

tion regarding the sigma operator is obtained by taking the BJL limit of 
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qv Tpv (q2, v ). It is found that 

- $pqp)la(0)l0!@)2 = -L- lim 
22 q2-- 

g”Ti (q2, 0) , (42 ) 

where the quantity -?;4(q2,0) is that part of Ti(q2,O) which varies as q -4 in the 

limit q2 - 00. At this point, the situation for expressing < a! lo la! > in terms of 

measurable quantities admittedly looks hopeless. 

One way out of this impasse is to conjecture the existence of J =0 fixed 

poles 21. in the Ti, 5 amplitudes. The fixed poles can be extracted from Ti 5 by 
, 

subtracting off from these amplitudes all Regge contributions in the range 

1 2 o(0) > 0. One finds for their residues in the limit q2 - -to, 

co 

C4(s2) -Ti(q2,0) - -; dx 

q4 
(?[ + F4 ) - 

X3 

4rni co 
C5(s2) - - 

J q2 0 
(y + q ) g 

X2 

(43) 

where F4,5 are the scaling limits of v 2 W /m4 (R) 
4,5 a’ and ?4,5 = F4,5 - F4,5 

where F(R) 4 5 are the Regge fits which include all singularities with 1 > a(O) > 0. 
, - 

Notice that Eq. (43) gives information on the subtraction constant Ti(q2,0). 

The C4,5(92) can be related to fixed pole residues Pi(q2) (i = 1,. . ,5) of the 

kinematic singularity free amplitudes by an equation identical in form to (41). 

With the assumptions that the Pi(q2) are polynomials in q2 and that v2Ti 5/m40 
, 

scale, it follows from Eqs. (42), (43) that 

00 

lim 
q2 ---co 

q4TJ+q2, 0) = - miP2(0)’ + 8 m4o 
s 

-; dx (Fy,+F4) -. (44) 
0 X3 
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But by its very definition, 

al 
c, 

P,(O) = + 
s 

dx x(qO,x) + 6$ (0,x)) l 

mo! 0 

Finally, we have 

00 

+p(p)lqo)kqp) > = 4mt 
J 

-J dxx(F;+F4) 
0 

co 

-$- / 

“Y 
dx x @;to,x) + w2 (0,x)) * 

a! 0 

(45) 

(46) 

Upon comparison with the original formula Eq. (37) for the sigma operator 

matrix element, Eq. (46) is seen to solve the divergence problem as well as 

include the necessary positive contribution. However, the triumph is rather 

hollow because even for the nucleon, the structure function F4 will be extremely 

difficult to measure. That is, the formula (46), while sound in principle, is 

not likely to be of any use in practice. 
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IV. VACUUM MATRIX ELEMENTS 

Thus far, we have studied diagonal single-particle matrix elements of the 

axial-charge and sigma operator commutation relations. The sum rules 

thereby generated are expressible in terms of pion cross sections and structure 

functions pertaining to neutrino-induced processes. We have shown that at 

least two of the axial-charge sum rules are almost entirely saturated by single 

particle intermediate states and that several others give promise of behaving 

accordingly as more data becomes available. In this Section, we allow one or 

both of the external states to be the vacuum. 22 Again, we focus on the contri- 

butions of the single particle intermediate states and also clarify the physical 

content of the’algebra sum rules. 

First, we treat the vacuum-vacuum matrix elements. Suppose we have an I 

algebra in which some charge operator Q is commuted at equal times with local i 

operator A(0) to produce local operator B(O), 

i [Q(O), A(O)] = B(O) . (47) 

Sandwiching this commutator between vacuum states and inserting single- 

particle intermediate states yields 

<OlB(O)IO> = - 7 d io[aPJP(0)ly > <ylA(O)IO > 
Y 

(48) 

where aP JP is the divergence of the current associated with charge Q. The sum 

rule (48) can also be derived as a low energy theorem associatedwith the propa- 

gator 

A(q2) = i 
/ 

d4x eiqwx <OlT8PJP(x)A(0)I0 > . (49) 
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Therefore, this type of sum rule relates the vacuum expectation value of a 

local operator to the zero-energy value of a related propagator. 

^Let us briefly explore the consequences of single particle dominance in a 

model where the chiral non-symmetric part of the energy density is 

GO =u +cu 0 8 (50) 

and the trace of the energy momentum tensor is 

e = (4-d) (uO+cu8) (51) 

where u o 
, 
8 transform as O+ isoscalar members of (3,3*) + (3*, 3) with dimen- 

sion d. Letting operators $JP and A of Eq. (49) become 3 AP, 3 AP , first 
P-I Pb 

witha,b =1,2,3, thenwitha,b=4,5,6,7, wefind 

m2F2 = &+c 
7rlr - 3 ( qi <oIuoIo~ +<OIu*lO.>) (52) 

and 

mKFK 2 2 2d2-c = - yJ <OluO1O > - - 1 

2 &3 2 43 

(53) 

If the vacuum is taken to be approximately SU(3) invariant, c 0 I u8 IO > = 0, 

then the approximate numerical relation 

13(FK/Fr)’ - 1 
C Ez a 2 1Tz 

26(FK/F?,)2 + 1 I 
(54) 

is obtained. 2 3 Next replace $JP of Eq. (49) by the operator 6 and for A sub- 

stitute first 0 , then P We therefore find 

(55) 
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and then 

F7r FE = gc ’ (56) 

where F E, ge are defined by 

~01 elm> = rn:Fe 

and 

<ola(O)l~(p)> = miFrgE . 

(57) 

We have obtained Eqs. (52)-(58) by approximating zero energy two point func- 

tions in terms of O-(n,K) and then O+(e) intermediate states. The overall pit - 

ture given by Eqs. (54) and (55)-(58) is that c is near -& and that F* and Fe 

are of the same order of magnitude. 

There is nothing outlandish about the results just derived, They are in 

qualitative accord with estimates of c and F?/Fe arising from, at least, 
24 nominally different approaches. In fact, given the structure of the vacuum- 

vacuum matrix elements, dominance of the r, K, E states in the relations (52)- 

(56) can be given an aura of respectibility by appealing to the “near-by singu- 

larity” argument of analytic function theory. However, in our opinion, justifi- 

cation for these single-particle truncations is not so clear. Unfortunately, be- 

cause of the difficulty in detecting low spin hadrons with high mass and then 

revealing their properties, it is not likely that more than a few intermediate 

states can be explicitly taken into account in the vacuum-vacuum sum rules (48). 

Thus, calculable corrections to these relations are not expected to be forth- 

coming. This is in marked contrast to the sum rules of Section II. Moreover, 

the “near-by singularity” justification mentioned above is probably specious. 
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In a recent paper, 25 Baluni and Broadhurst have used rigorous theoretical 

bounds on K13 form factors along with reliable experimental data to show that 

-the drmension of the (3,3*) + (3*, 3) operators more than likely exceeds the 

value two. Since the high q2 behavior of two-point functions goes as (q 2 d-2 ) , 

this means that spectral representations of the (3,3*) + (3*, 3) propagators 

must be at least once subtracted. Thus, the singular high energy behavior is 

capable of upsetting zero energy estimates by introducing an unknown sub- 

traction constant into the calculation. The only means of evasion from this 

dilemma is to view propagator pole and cut contributions perturbatively in the 

context of chiral and scale symmetry breaking. It is then argued that any effect 

arising from the cut is of second order in symmetry breaking and hence negli- 

gible relative to the pole. However, this argument is certainly not compelling 

for the kaon channel and even less so for the E channel. 

It is instructive to consider commutation relations of various of the 

(3,3*) + (3*, 3) operators taken between a vacuum and a single particle state. 

The problems associated with truncating the number of contributing intermediate 

states remain but without the “successes” of the vacuum-vacuum matrix ele- 

ments. It will suffice to give some examples. Employing the notation of Eq. 

(47), the general form of the “vacuum-single particle” sum rule becomes 

- <OIB(O)la!& = 
<OlA(O)ly@> <y(~)l~~J~(O)lc~@~> 

2P!$$ - PZ) 

+ 
<Ola,J’(O)IP(O) > <P(O)lA(O)Ia!$) > 

. (59) 
P 2m2 

P 
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I 

III the following we shall choose the charge operator to be Fz, a =1,2,3, and 

we shall take the limit IFI - 03. If hadronic form factors of local operators 
- 3 

vanish for infinite momentum transfer qU - 00, then a truncated form of the 

second term in Eq. (59) will not contribute, The physical content of the sum 

rule at this level of app’roximation is seen to involve relations between q2 = 0 

form factors and various constants associated with vacuum-single particle 

matrix elements of local operators, 

- < OIB(O)la@) > = 
t- - < OlA(o)ly~) 
la 

> <y@la J’(O)Ia@ > 

2 2 (60) 
Y mY-ma! 

In our examples, $ JP will be the axial-vector divergence, so we can estimate 

the q2 = 0 form factors by means of Goldberg-Treiman formulae. Substituting 

a AP (b = 1,2,3)for A, (T for B, and E for a! in Eq. (60), we obtain 
I-1 b 

gc = 
F7rgE mr 

2 2 m -m E 7r 

+ . . . . 

whereas the replacements ofor A, - a,A”, for B, and 7r for a! yield 

1 = gc F7TgE 7r7r 
,2-,2 +--- - 

E 7T 

@la) 

@lb) 

From the estimate I’(e7rn) z 300 MeV, we obtain Fp;ern/rnt G 0.5. Thus 

Eq. (6la) implies ge = 0.5 whereas (61b) gives ge z 2.0. This disagreement 

can probably be blamed on the deficiency of the truncation approximation - 

not enough of the intermediate states have been taken into account. A more 

striking failure of the truncation approximation emerges upon making the re- 

placements 0 for A, -(4-d) $A: for B, and E for o. Then we find from 
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Eq. (60) that 

(61~) 

The left hand side is an order of magnitude or so smaller than the right hand 

side of this “equation”. A result like this increases one’s appreciation for the 

success of hard-meson off-shell methods. 26 

We have derived Eqs. (59)-(61c) by considering scalar operators and 

states. Analogous relations can be obtained for operators (like VP ,A’, BP’ ) 

and states (like p, Al, f) which carry spin. 27 Similar negative results are 

found. 
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V. CONCLUSION 

The underlying theme of our study has been to survey the contributions of 
* 

single-particle intermediate states to sum rules generated by various commuta- 

tion relations. 

For the class of axial-charge sum rules catalogued in Section II, considered 

as a whole, single-particle contributions afford the only realistic phenomeno- 

logical test. Aside from using theoretical estimates for certain nonmeasurable 

terms, our analysis was phenomenologically oriented. In particular, we made 

no effort to classify intermediate states according to algebraic representations. 

We found almost complete saturation for two sets of external states (n, N), and 

varying degrees of saturation of all the rest: 82% for A(l233), roughly 60% for 

Z ,Y,(1385), p, somewhat under 50% for K, KV(892), and under 40% for z(l315), 

and not much information for the remaining cases examined. Notice from Eq. 

(13) that if the asymptotic equality of particle and antiparticle cross sections 

were not valid, we might expect to see some effect of non-convergence in our 

sum rules. However, in none of the cases was oversaturation detected. We 

are optimistic that, with further experimental effort in hadron spectroscopy, 

enough information can be gathered to allow almost complete saturation of the 

A(1233), 2, Yl(1385), p, K, and Kv(892) sum rules, and substantially more 

information regarding the E( 1315) sum rule. In principle, there is nothing to 

prevent this. However, we do not envisage there being substantial phenomeno- 

logical applicability of the sum rules associated with external states, o, of 

higher mass. Since contributions for which the mass of the external state 

exceeds that of the intermediate state do not appear to be large, decay widths 

where a! appears in a final state will be needed. These are hard to measure. 
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Moreover, the number of non-measurable contributions will increase. Whether 

our theories of hadrons will improve enough to allow calculation of these is a 
c, 

matter of conjecture. 

The work of Section III essentially speaks for itself and warrants little 

discussion here. While’ it is commendable to see that the q2 = 0 sigma-operator 

sum rule can be written in such a way that its original diseases are cured, the 

resulting phenomenological disfigurement is such that the sum rule loses almost 

all its attractiveness . In particular, the low energy pion-nucleon system will 

remain the best area in which to attempt determination of the nucleon matrix 

element of the sigma operator. 

Despite the rather extensive employment by previous workers of the 

vacuum-vacuum and vacuum-single particle sum rules of the general type in 

Section IV, it is our conclusion that these systems are far from being under 

theoretical control. At the very least, the probable need for subtraction 

constants 25 in the (3,3*) f (3” ,3) propagators is an ominous signal that the 

usual truncation procedures adopted might be inadequate. In addition, there is 

the recent ee annihilation data, which, for example, shows that the p contribu- 

tion to Weinberg’s first sum rule is only l/30 that of the higher mass continuum 27 

in the vector current propagator probed so far by the experiments. It remains 

to be seen whether other calculations based on single particle dominance of the 

vacuum-vacuum and vacuum-single particle matrix elements will fail so 

resoundingly. 
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TABLEIa 

Resonance contributions to axial-charge sum rule with 
h 

proton external state. The first four columns list 

properties of each intermediate state and the final two 

columns give individual and cumulative contributions to 

the sum rule Eq. (12). 

Mass Spin Isospin 
Partial 
Width Individual Cumulative 

1470 0.5 0.5 140 0.125 0.125 

1525 1.5 0.5 64 0.089 0.215 

1550 0.5 0.5 37 0.023 0.238 

1678 2.5 0.5 58 0.067 0.305 

1685 2.5 0.5 86 0.097 0.402 

1715 0.5 0.5 120 0.041 0.443 

1755 0.5 0.5 40 0.012 0.455 

1815 1.5 0.5 64 0.032 0.488 

2130 3.5 0.5 74 0.035 0.522 

2223 4.5 0.5 44 0.0214 0.544 

1233 1.5 1.5 115 - 0.975 -0.431 

1655 0.5 1.5 46 - 0.019 -0.451 

1695 1.5 1.5 36 -0.026 -0.477 

1880 2.5 1.5 48 -0.030 -0.507 

1858 0.5 1.5 68 -0.015 -0.522 

1955 3.5 1.5 99 - 0.069 -0.591 

2385 5.5 1.5 34 -0.015 -0.606 



I 

TABLE Ib 

Resonance contributions to axial-charge sum rule with 

A+(1233) external state. 

Mass Spin Isospin 
Partial 
Width Individual Contribution 

939 0.5 0.5 115 0.244 0.244 

1470 0.5 0.5 58 0.052 0.296 

1525 1.5 0.5 35 0.035 0.331 

1678 2.5 0.5 80 0.039 0.369 

1685 2.5 0.5 38 0.018 0.387 

1755 0.5 0.5 60 0.006 0.393 

1655 0.5 1.5 57 0.008 0.402 

1695 1.5 1.5 62 0.014 0.416 

1858 0.5 1.5 27 0.001 0.418 

1953 3.5 1.5 36 0.005 0.423 



TABLE Ic 

Resonance contributions to axial-charge sum rule with 

2+(1189) external state 

Mass Spin 

1405 0.5 

1520 1.5 

Partial 
Lsospin Width Individual Cumulative 

0. 0 40 0.094 0.094 

0.0 7 0.010 0.104 

1670 0.5 0. 0 11 0.003 0.107 

1690 1.5 0. 0 31 0.015 0.122 

1815 2.5 0.0 9 0.004 0.125 

1830 2.5 0.0 42 0.016 0.141 

2100 3.5 0. 0 5 0.001 0.142 

1385 1.5 1.0 4 0.037 0.179 

1670 1.5 1.0 20 0.016 0.195 

1765 2.5 1.0 1 0.007 0.196 

2030 3.5 1.0 5 0. 002 0.197 


