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Abstract 

A simple graph model is developed for binary digi- 
bl pictures on &triangular grid leading to consistent 
and intuitive definitions of connectivity and region 
boundaries as well as fast memory-efficient algorithms 
for computing boundaries and the "insidedness" tree. 
Boundary encodings are extremely compact and can be 
smoothed using a discrete implementation of minimum- 
perimeter polygon methods. Attempts to generalize the 
model to nontriangular grids explain the well-known 
"anomaly" associated with connectivity on the square 
grid. 

Introduction 

Much picture processing and pattern recognition 
research has been concerned with inputs encoded on a 
square grid. Following Rosenfeldl (p. 2), we call 
these binary digital pictures. The present paper con- 
cerns several problems encountered in transforming the 
grid format into a more structured format suitable for 
describing and/or recognizing the shapes embodied in 
the picture. The first problem is that of defining a 
concept of connectivity among points of the digital pic- 
ture so that the resulting connected components corres- 
pond well with one's intuitive sense of connectivity 
and separateness. 
by Rosenfeld.3 

This topic is treated at some length 
Having defined connectivity there is 

the problem of how to construct an efficient algorithm 
for labeling the separate connected components (or 
equivalently detecting what and where they are). Mon- 
tanarill among others has suggested a method for this 
problem. Each connected component is separated from 
adjacent connected components of opposite color by 
boundary curves whose precise definition and computation 
is the third problem. Some have preferred to construct 
border curves through extremal points of s connected 
component but we feel boundaries which fall between ad- 
jacent pairs of opposite colored points have more intu- 
itive appeal. Rosenfeldj and Zahn" represent differ- 
ent approaches to boundary curve construction, the 
latter being the forerunner of the approach developed 
here. Finally, it is of some interest to know which 
connected components are enclosed by which others, and 
this information is nicely represented by an "insided- 
ness tree" whose vertices may be components or boundary 
curves. Alg rithms for constructing this tree are &en 
by Montanari t and Buneman? See Rosenfeldl (pp.135-139) 
or2 (p. 161.) for brief discussions of these problems 
and excellent bibliographies. 

All methods cited above concern digital pictures 
on a square grid. In this paper we develop a theory 
and algorithms for the above problems assuming digital 
pictures on a triangular grid as exemplified in ig. 1. 
The triang lar grid is also known as 
"rhombic". '9 

'hexagonal" F or 
Attempts to arrive at a consistent defini- 

tion of connectivity on the square grid have encountered 
an "anomaly" which forces 8-tonne tivity for one color 
and &-connectivity for the other. T This has the effect 
of treating two connected shapes differently even if 
they differ only in color. The anomoly runs somewhat 
deeper and has been in ependently acknowledged by a num- 
ber of authors. %  Golay has emphasized the isotropic na- 
ture of the triangular grid and developed paralled pic- 
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ture processing operators for this grid. Gray8 also 
shows an appreciation for the elegance of this grid. 
In earlier work,9 we recognized several important ways 
in which the triangular grid was at an advantage but, 
until now, we had not carried these hints to their 
logical conclusion. 

FIG. 1 Triangular picture graph. 

In the following sections we develop a simple 
graph model for binary digital pictures on a triangular 
grid leading to consistent and intuitive definitions of 
connectivity and region boundaries and fast memory-effi- 
cient algorithms for computing boundaries and the in- 
sidedness tree. The boundary encodings can be smoothed 
(see Zahn'7) using a discrete implementation of the min- 
imum perimeter 

P2 
olygon methods of Montanari, ) 4 l1 and 

Sklansky et al. The resulting data-structure repre- 
sents connected regions (components) by their boundary 
curves so that shape comparis ns ca 
developed for curves (e.g., 13,14,19 

employ tecbni ues 
to cite a few k . 

Triangular Picture Graphs 

A triangular grid is an infinite planar graph each 
of whose faces is an equilateral triangle and each of 
whose vertices is incident to exactly six edges. A 
triangular picture graph is a triangular grid whose 
vertices are labeled 'black' or 'white' so that the set 
of black vertices is bounded. -Figure 1 depicts a por- 
tion of a triangular picture graph as seen through 3 
rectangular window. Although in practice all such pic- 
tures will be viewed through a bounded window, it is 
convenient for the theory which follows to consider in- 
finite triangular picture graphs. 

The connectivity graph C(T) of a triangular pic- 
ture graph T is the subgraph of T consisting of all 
vertices of T and just those edges (level-) whose 
end vertices have the same label. Theheavy edges in 
Fig. 2 identify the connectivity graph for Fig. 1. The 
gra h C(T) can be decomposed into connected components 
FCK P each bearing a label 'black' or 'white' inherited 
from its vertices. For each CK let the connectivit 

as a region of the plane cOnta n- region RK be defined 
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ing all the edges in CK. If a level face is one with -- 
only level edges, then RK shall contain all level faces 
one-or more of whose edges is a level edge of CK. The 
level faces are shaded in Fig. 2. 

FIG. 2 Connectivity graph, contrast faces and 
contour segments for the triangular 
picture graph of Fig. 1 

A contrast e of T is one with differently 
labeled end vertices and a contrast face is one with at 
least one contrast edge. The contrastedges are light 
in Fig. 2. It is easily seen that a contrast face has 
exactly two contrast edges. Each contrast face con- 
tains a unique contour segment which is a directed line 
segment joining the midpoints of the two contrast edges 
in such a way that the black vertex or vertices of the 
face lie to the right of the directed line. The con- 
tour segments for all (unshaded) contrast faces are de- 
Ricted in Fig. 2. Some motivation for the term 'con- 
tour' is appropriate at this point. It is possible to 
construct a continuous piecewise-linear function FT de- 
fined on the plane so that FT(v) = 0 at white vertices. 
This is accomplished very simply by defining FT on each 
separate triangular face of T to be the unique linear 
function whose values at the three vertices of the face 
are as prescribed by the vertex labels. The contour 
set of I$ at value l/2 (i.e., points p with F~(p)=1/2) 
is then a family of mutually nonintersecting simple 
closed curves which separate black and white areas of 
the plane. The union of all contour segments defined 
above constitutes the contour set for ET. 

We would like to define a graph based on T which 
corresponds to the contour curves of FT. It is conve- 
nient to use the dual graph for this purpose. Every 
planar graph G has a dual graph D(G) constructed by 
making a vertex in D(F;)or each face of G  and connect- 
ing two vertices of D(G) by an edge if the correspond- 
ing faces of G  share an edge in G. There is thus a 
one-to-one correspondence between the edge sets of G  
and D(G) and between the face set of G  and the vertex 
set of D(G). Now let the dual graph D(T) of a tri- 
angular picture graph T inherit labeling structure from 
T as follows: Appropriate vertices of D(T) will be 
designated as contrast vertices and labeled with the 
contour segment from the corresponding contrast face 
in T. Furthermore, edges of D(T) will be directed from 
vertex vl to v2 if the corresponding edge in T is a 
contrast edge which has black on the right when cross- 
ing it from face fl to face f2 (the correspondents of 
vl and v2 respecti;ely). The-boundary @;raEh B(T) is 
the subgraph of the labeled D(T) consisting of contrast - - 
vertices and directed edges. The appropriateness of 

this definition is demonstrated by the following theo- 
rem which shows the consistency between the connectiv- 
ity graph C(T) and the boundary graph B(T). 

Theorem 1 

If C(T) = LCK is the connectivity graph of the 
triangular picture graph T with connected components 
CK defining connectivity regions RK and B(T) = I& is 
the boundary graph of T with connected components Bi 
then 

(a) Each Bi is a directed circuit and the set of 
contour segments labeling vertices of Bi forms a simple 
closed curve yi* The edge directions in Bi are com- 
patible with the contour segment directions in the 
sense that when edge (vl, v2) belongs to Bi and SK = 
pi, qK) iS the COntOUr Segment label on Vertex vK, then 
91 = Pp. 

(b) The curves [ri} form a mutually nonintersect- 
ing family of simple closed curves which partitions the 
remainder of the plane into connected regions pj each - 
containing as a subset exactly one of the connectivity 
regions RE. 

Proof 

(a) A vertex v of B(T) corresponds to a contrast 
face f in T and f has exactly two contrast edges el 
and e2. When viewed from the center of f, one of these 
edges is a black-white directed edge (b, w) and the 
other a (w, b) pair. 
the (w. b). Then e7 

Suppose el is the.(b, w) and e2 
corresnonds to an edge of B(T) 

directed into v andLe 
Hence any vertex of B T) 7 

to an edge directed out from v. 
has exactly one in-directed 

and one out-directed edge; hence, the Bi are directed 
circuits. If directed edge (v,, v,) belongs to B(T) 
then T contains two adjac&t'c&t&st faces fl and f2 
with a common contrast edge e12 whose labeling is (w,b) 
as viewed from fl and (b, w) viewed from f2. If SK = 
(pK, qk) is the contour segment for fK, then clearly 

BtT) 
q and ~2 are both the midpoint of e12. Each edge of 

indicates that two contour segments from adjacent 
faces of T have a common endpoint and since each Bi is 
a directed circuit the set of contour segments labeling 
its vertices must form a closed curve yi. The yi are 
simple because a contrast face has one unique contour 
segment. 

(b) It is clear that the family of closed curves 
(ri3 partitions the remainder of the plane into a set 
of maximal connected regions p.. 

a ' 
Each connectivity 

region RK is entirely containe 1" one region Pj6Kihis 
since otherwise a curve yi would intersect RE an 
is impossible since RK is made up entirely of level 
edges and faces. If two vertices v1 and v 

2 
are both 

in the region pj then they can be connecte by a curve 
619 lying entirely in *i. It is an easy exercise to 
r&ace 612 by a curve u6i2 which lies entirely within 
edges of T as well as being in 0:. The curve Sl- is 
obtained by replacing each face-&ossing su'bcur$ of 
612 by a portion of the face boundary. In the case of 
a contrast face the subcurve lies within a triangular 
or trapezoidal subface but it can still be pulled over 
to the boundary of the face in an obvious way. The 
curve 612 can be transformed to Al2 which consists of 
a seauence of edges of T simply by eliminating redun- 
dant‘loops in 61;. 

- I  1 

The curve Al2 joins vl to v2 inside 
pi and consists of edges of T. Now A,,, cannot contain 
aYcontrast edge for then a point on sgze yiwould be 
inside pj. Hence, Al2 is a level path in T and so v1 
and v2 belong to the same Rk. This means that two dis- 
tinct RK cannot be in the same regi-on pj. We have thus 
shown that there is a natural one-to-one correspondence 
between the connected regions pK determined by the 

2 



curves C7i3 and the connectivity regions RK determined 
by the connected components CK of C(T). 
Endproof 

Theorem 1 shows that the regions pj and RK come in 
natural pairs (RK 5 pK) so that there is no reason to 
distinguish the indexing symbols. The connection be- 
tween pK and RK is actually stronger than what we have 

-stated above. In fact, the part of region pK not in RK 
is restricted tb‘narrow bands near the boundary curves 
for P , where narrow means no wider than one half the 
lengt E of an edge of T. The difference in area between 
RK and pK is thus approximately a linear function of 
the boundary perimeter of pK. With these remarks as 
justification, we shall now restrict our attention to 
the connected regions pi and no longer treat the con- 
nectivity regions RK directly. 

There is some more structure relating the curves 
{7ij and the regions {pKj which can be captured very 
naturally in a tree-structure. Each pK except po, (the 
sole unbounded region) has a unique outer boundary curve 
7i(K) so that there is a one-to-one correspondence be- 
tween the bounded pK and the curves of 7i. Henceforth, 
we use the same indexing symbol and assume 7K is the 
outer boundary curve for region p 
outer boundary, each pK (even pa, B 

. In addition to its 
has zero or more 

inner boundary curves separating pi from its holes. We 
define the insidedness tree m for a triangular pic- 
ture graph T as a direcmtree rooted at pco having 
vertices pK and edges corresponding to boundary curves 
7K' The pair (PK, P,$ is a directed edge of I(T) if the 
outer boundary curve 7K for region pK is also one of the 
inner boundary curves for pt. In this case the edge 
(pK,p$) carries a label 7K. An equivalent way to phrase 
the condition is that region pi is a subset of one of 
the holes in region pt. Region labels alternate in 
color as one passes up or down the tree and clockwise 
curves are just above black regions and vice versa for 
counter clockwise curves. The importance of this sim- 
ple relationship is that in the next section we will 
show how to compute the boundary curves yK for a picture 
T without directly computing the connectivity graph C(T) 
and so all information about the shape of a region pK 
and the label (b or w) of region RK must be inferred 
from the curves [7Kj# 

Computing the Tree of Boundary Curves 

Let a TV-scan triangular picture graph rC be a 
black-white labeling of a partial triangular grid formed 
by staggered rows of vertices in a rectangular window 
with the restriction that all vertex labels are white 
along the outer border adjacent to the unbounded region 
of the plane. Figure 1 is a TV-scan triangular picture 
graph. There is no loss of generality here since rC 
can always be extended to an (infinite) triangular pic- 
ture graph T in the obvious way and any T can be trans- 
formed to a rC without loss of information because the 
set of black vertices is bounded. The only difference 
between T and '.P for the previous theory is that C, 
and R, are infinite in T while they are connected to 
the outer border in p. 
regions {&I and pco 

Concerning curves (7K3 and 
there is "0 difference at all. 

Now we describe a method for computing the bound- 
ary curves [yK} and the insidedness tree I(P) for a 
TV-scan triangular picture graph P. Let ri denote the 
ith row of vertices in P reading from top to bottom 
with i in the range [O,n]; we shall usually think of 
each row ri as a sequence of edges of P. The sequence 
of triangular faces between rim1 and ri (ordered from 
left to right) we call the corridor Ci. The corridor 
sequence gi is obtained from Ci by replacing each face 
by its "undirected" contour segment value (/,\,-) 

eliminating entries representing level faces. Figure 3 
depicts a portion of corridor CL from Fig. 2 and demon- 
strates pictorially much of whay we attempt to verbal- 
ize in the next few paragraphs. 
Si be obtained from oi by deleting all flm- 
tries. Then Si = (si 1, si 2,..., si,2m into mi adjacent pai& whe& each pair a f ' 

can be broken 
ong with the 

(possibly zero) flat segments in between constitute a 
connected piece of contour intersecting the corridor. 
Within the skew sequence some segments touch the top 

ridor sequence oi 
most endpoint of segment Si 2K-1 and the rightmost end- 
point of segment si 2K. The sequences ri and gi are 
indexed from left tb right as subsequences of Si. 

Corridor 

/ /-----\ \ \ I---\ i 
Corridor Sequence 

FIG. 3 Analysis of a corridor sequence 

The following theorem shows how to reconstruct 
the directions for contour segments and how to relate 
connected subsequences from adjacent corridors. It pro- 
vides the backbone of an algorithm for constructing the 
boundary curves [7K3 from the corridor sequences of a 
picture graph T+. 

Theorem 2 
A contour segment is directed upward (f or 7) if 

it has an odd index in 7-i or Si and downward (,/ or &) if 
it has an even index in Ti or Bi. If Ci and Ci+l are 
adjacent corridors with gi = (b1,b2,...,bp) and 
(tiJt2,"*, t 

7i 1 = 

intersects a ? 
) then p=q and each pair of segments rb. t.) 
the midpoint of a contrast edge along ?-AwJ 

ri. 

Proof 

Consider the row ri between adjacent corridors Ci 
and Ci+l as a sequence of edges of '13. Since the left- 
most and rightmost vertices of ri are on the border of 
T* they are labeled w. Eliminating the level edges of 
ri we obtain a left-right sequence (el,e2,...,e2 ) of 
contrast edges such that e. is labeled (w,b) or rb,w) 
according as j is odd or e$en. Now the bottom sequence 
Bi for corridor Ci contains exactly those contour seg- 
ments of oi which touch (i.e., have an endpoint on) row 
ri . Each such segment bj must therefore have an end- 
point which is the midpoint of some contrast edge in row 
ri. On the other hand, each contrast edge ej on row ri 



I 
is adjacent to a contrast face in corridor Ci and these- 
fore its midpoint mj is the endpoint of some segment 
bj in the bottom sequence Si. We have shown that p=2u 
and that m., 

P 
the midpoint of contrast edge e 

endpoint o segment bj in the bottom sequent d' 
is an 

for cor- 
ridor Ci. An analogous argument leads to the conclu- 
sion that q=2u and mj is an endpoint of segment t in 
the top sequence for corridor Ci+l. The segment A irec- 
tions for bj and t.. depend on the labeling of contrast 
edge ej and since $,hese labelings alternate (w,b), 
(b,w), ' - - the fiirst part of the theorem follows immedi- 
ately. 

Endproof 

Figure 3 indicates that once the correct segment 
direction has been selected for the initial segment in 
each connected subsequence (i.e., the segments which 
have odd index in the skew sequence) then the remainder 
of the segments inherit directions in the obvious way. 

of no consequence. It does seem more natural to con- 
struct I(V) this way since the {7 
which have been computed by algori 4 

] are the objects 
hm B. 

Algorithm I 

(1) For each curve on the list of boundary 
curves, obtain its top segment s and then find the seg- - 
ment previous to s in the same corridor sequence. If s 
is the initial segment in a corridor sequence, then 
link its curve y(s) to the fictitious curve at co called 
YaS* If se@nent t precedes s in the same corridor se- 
quence, then link y(s) to the curve y(t) containing seg- 
ment t. The linkage symbolizes the fact that y(s) and 
y(t) can be connected by a curve which does not inter- 
sect any other boundary curves. If 7(s) and 7(t) en- 
close regions with identical labels, then the link im- 

plies that 7(s) and 7(t) are siblings in the insidedness 
tree (i.e ., 7(s) and y(t) have a common immediately en- 
closing curve). Otherwise 7(s) will be a child of 7(t). 

We now outline algorithms to construct the bound- (2) 
ary curves (7E] in a TV-scan triangular picture graph 

When each curve has been given a link it 
remains only to transform sibling links into the appro- - 

T+ and to link those curves into the insidedness tree priate child link. This can be done by tracing se- 
I(Tx) * quences of sibling links until a child link is found 

and then letting all the intermediate siblings inherit 
Algorithm B 

(1) Pass over the picture rC in TV-scan order 
generating a corridor sequence for each pair of adja- 
cent horizontal rows and inserting end-of-corridor 
codes. Add an end-of-picture code as the final symbol. 
Call this the full sequence of contour segments. 

(2) Process the full sequence from left to right 
parsing it into corridor sequences and further into 
connected subsequences by identifying consecutive (odd, 
even) pairs in each skew sequence. For each segment 
of the skew sequence determine its direction and assign 
it to the top or bottom sequence for the corridor. 
Segments assigned to the top sequence are linked to 

‘the appropriate segment in the bottom sequence con- 
structed during the processing of the previous corridor. 
Segments assigned to the bottom sequence are placed in 
a list for use by the next corridor. The direction of 
the initial segment of each connected subsequence is 
propagated through the remainder of the subsequence 
and appropriate links are made between adjacent seg- 
ments. 

(3) Pass once through the full sequence looking 
for the next untraced contour segment. When such a 
segment s is encountered, then trace through the linked 
sequence of segments (marking themas traced) starting 
at s and returning to s. Give this new curve a name 
and place the name in a list of curves with a reference 
to segment s as the 9 of the curve. The initial seg- 
ment s will always be of type / and if it is linked 
along the curve direction to the next segment (-) in 
the full sequence, then the curve encloses a black 
region; otherwise, it encloses a white region. This 
information is recorded with the curve name and refer- 
ence to s. Then the search for an untraced segment 
resumes directly after s in the full sequence. This 
is repeated until the end-of-picture code is encoun- 
tered. 

this child link-to their common parent. Since all the 
links point backwards in the full (TV-scan) sequence 
there will always be an end to sibling links. The child 
links thus determined define the insidedness tree of 
boundary curJes. 

The regions pi are implicit in I(rC) in the sense 
that each vertex with its children represent the outer 
and inner boundary curves for some region Q. The de- 
gree of tUUltipk COIXIeCtiVity of pK is given by the num- 
ber of such boundary curves. 

If the position of regions is not important com- 
pared to their shape, size, orientation and degree of 
multiple connectivity, the algorithm B suffices. How- 
ever, if the position of curves is required the follow- 
ing modifications to algorithm B will do the job. 

(la) Proceed as in step 1 of algorithm B with 
some additional information encoded into the corridor 
sequences. Before the first corridor sequence we enter 
the index of that corridor (i.e., the first corridor 
containing a contrast face). Subsequently, a corridor 
index is inserted before a new corridor sequence if and 
only if the previous corridor sequence contained no bot- 
tom segments. Within each corridor every adjacent pair 
of the form (/ -) will have inserted after it the hori- 
zontal position within the corridor of the segment /. 

(3a) Proceed as in step 3 of algorithm B except 
keep track of the corridor index by incrementing it for 
each corridor sequence which has a bottom sequence and 
resetting it from the encoded index otherwise. 
of each curve is a pair cfthe form (/ -) so the ~!~i~~ 
can be determined from the current corridor index and 
the encoded horizontsl position. The reader is referred 
to Zahn17 for a discussion of data structures and short- 
cuts for the implementation of Algorithms B and I. 

Smoothing Boundary Curves 

Algorithm B determines the geometry (except posi- 
tion) of each boundary curve 7K in the picture p and 

When discrete grid systems are used to represent 
curves in the plane there occurs the distasteful phenom- 

also identifies the label of the immediately enclosed enon known as guantization e, the most undesirable 
region PK. The following algorithm constructs a tree effect of which is that perfectly straight lines are 
which is'-almost identical to I(??); the difference is represented by zigzag polygons. -In an attempt to undo 
that the tree computed has vertices corresponding to this mischief several authors15,4,12,14 have proposed 
boundary curves 7K and is rooted at a fictitious curve m&hods for smoothing digitized curves. In particular, 
at co called yo,. As a simple consequence of the one- 
to-one correspondence [YE] * {&] this difference is 

Montanarill and Sklansky et all2 define a minimum perim- 
eter polygon which has the same digitization as a given 



curve. In the terminology of Montanaril l the triangu- 
lar grid is a complete convex digitization scheme 
(CCIX) and the normal digitization of a boundary curve 
is the sequence of triangular contrast faces corres- 
ponding to the segments of YE' The minimum perimeter 
polygon (MPP) is then the shortest polygon which lies 
entirely in the same faces and encounters them in the 
same cyclic order; intuitively visualize a rubber band 
woven through the contrast faces of YE+ Although Mon- 

-tanari4 gives a general method for computing the MPP of 
a digitiiation,?t involves the solution of a nonlinear 
programming problem. For the special case of the tri- 
angular grid, we have obtained some simple rules (see 
Zahnl7) which can be used to generate a good approxi- 
mation to the MPP of a digitized boundary curve. 

General Picture Graphs' 

We can attempt to extend the previous ideas to a 
more general class of picture graphs as follows. Let 
a planar picture graph (Fig. 4) be a binary vertex- 
labeled planar graph and let the connectivity graph, 
level and contrast edges etc. be as for the triangular 
grid. Let a planar picture graph be called convex if 
each face is convex. Each contrast face is bounded by 
an even number of contrast edges, but for non-triangu- 
lar faces there can be four or more such contrast edges 
and the pairing up to form segments of boundary is no 
longer unique. We can choose to join each pair of con- 
trast edges bounding a sequence of level' black edges 
around the face. This choice produces the solid arrows 
in Fig. 4. Pairing across white edge sequences pro- 
duces the dashed arrows. Either choice gives a dis- 
joint family of simple closed boundary curves, but 
neither is compatible with the connectivity graph in 
the sense of Theorem 1. There is a white vertex in 
Fig. 4 which is isolated in the connectivity graph but 
is not separated from the other white vertices by any 
solid boundary segments. The solid boundaries are com- 
patible with an asymmetric definition of connectivity 
in which black vertices must share an edge, but white 
need only share a common face'. The need for an asym- 
metric connectivity on the square grid3 is a special 
case of this phenomenon; 8-connected is equivalent to 
face-connected scross the diagonal of a square. 

regular triangular planar tesselation and has the addi- 
tional nice property of being relatively isotropic. 
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FIG. 4 A convex planar picture graph 

These considerations indicate that the previous 
theory can only be extended to planar picture graphs 
with triangular faces. The triangular grid is the orily 
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