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1. Introduction

= A high-energy, high-intensity electron linear accelerator, such
as that presently being operated by the Stanford Linear Accelerator
Center (SILAC), is capable of producing a high-intensity flux of muons
by electromagnetic pair production. Serious problems can, at times,
result from these muons since they quite easily penetrate rather
massive shields.

In 1966 a series of theoretical and experimental investigations
was undertaken to understand how to shield against muons produced by
the Stanford two-mile accelerator (Nelson 1966a,b). The calculations
did not agreerwith the experimental results (Nelson 1968), and since
an independent analytical treatment by Alsmiller (1969) essentially
showed agreement with the calculations by Nelson, a more elaborate
experiment was performed. The results of that experiment are presented
in the paper that follows this one, and we shall refer to that as
Paper 1I.

The present study (referred to as Paper I) is a definite improve-
ment over the theoretical treatment previously published (Nelson 1968,
Alsmiller 1969) in that a more up~to-date expression for the coherent
production of muons (i.e., from the nucleus as a whole) is used.
Furthermore, the production of muons from individual nucleons (incoherent
production) is incluaed in this study, although only the elastic scatter-
ing contribution is presented because of mathematical difficulties. In
all cases, the effect due to finite nuclear (nucleon) size--the form
factor effect--is accounted for. The cross section theory is that of
Tsai (1971) and Kim and Tsai (1972a,b, 1973).
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We make use of the Alsmiller (1969, Alsmiller et al. 1968)
formulation because of its generality and elegance of presentation,
éltho;éh it can be shown (Nelson 1973) that the original formulation
of Nelson (1968) approaches that of Alsmiller for the small angles

generally encountered in practice.

2. Muon Production Calculations
2.1. Differential Muon Fluence

The differential muon fluence that is produced when a high energy
electron beam is completely attenuated in matter can be calculated by
integrating the palr production cross section over the photon distri-

bution in the electromagnetic cascade shower. This can be expressed by

Eo—m

dCD(E,cp;EO)/dE = (2NOXO/AR2)£ [dgc(k,E,cp)/dQ ar][ds/dx]dk
. +

(em © - Gev T - electron-l) . (1)

In this equation, and in the equations that follow

0] is the production angle in laboratory coordinates (radians);
R is the distance from the target (cm);

E, is the total energy of the electron beam (GeV);

E is the total muon energy (GeV);

k is the energﬁ of a photon in the shower (GeV);

m is the rest mass of the electron (0.000511 GeV);

I is the rest mass of the muon (0.10566 GeV);

N, is Avogadro's number (6.022169 X 10°2 mole-l);



X is the radiation length of the target (g - cm—g);
dﬂ/dk is the differential photon track length [which is the total path
length throughout the shower traversed by photons in the incre-

ment dk at energy k (Rossi 1952)] (r.l. - cev t - electron—l);

and

dec 2 -1 -1
30 an is the pair production cross section (cm. - Gev - sr ).

The integration limits are determined by kinematics and the factor of
two comes from the fact that we include both p+ and u-. A point

source is assumed.

2.2. Differeﬁtial Photon Track Length

In a previous paper (Nelson 1968) we have examined various ex-
pressions that can be used to describe the energy distribution of
photons in the electromagnetic shower development. The formula that

appears to be the best is one that has been derived by Clement (1963%)

and is given by

a0/d = 0.964(u/k)[-1n (1-w2) + 0.686u - 0.50"]7*

(r.1. - gev' 1), (2)

where u = fractional photon energy, k/EO.

Alsmiller (1969) has used a Monte Carlo computer code by Zerby
and Moran (1962a, 1962b, 1963) to calculate the differential photon
track length for the specific case of 18 GeV electrons incident on a
cylindrical copper target having a radius of 11.5 cm and a thickness
of 24.5 cm. The Monte Carlo data are shown in figure 1 where a com-

parison is made with the Clement formula. The agreement is quite good
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over the range 3 GeV to 10 GeV, but the Clement expression might be
10-20% too high in the region 10 GeV to 18 GeV, depending on the

statistics of the Monte Carlo calculation. We will use the Clement

formula for all of our muon fluence and absorbed dose calculations.

2.3. Muon Pair Production Cross Section
a.) Weizsacker-Williams Method of Kim and Tsai

Kim and Tasi (1972b, Tsai 1971) have derived (under the Born
approximation) an expression for the energy-angle distribution of u+
(or W ) which is exact in the lowest order in o (fine structure
constant). This equation, which involves integrations with respect to
the undetected muon and nucleus (or nucleon), requires rather tedious
mathematical work and extensive computer programming to obtain cross
section values. If we use this cross section formulation, together
with the integral equations that will be presented in subsequent sections,
the evaluation of the muon fluence on the downstream side of a shield
becomes so difficult and time-consuming that it is impractical to do.

Recently, however, Kim and Tsai (1972a, 197%) have presented an
improved Weizsacker-Williams method which, unlike the usual application
of the Weizsacker-Williams method to the pair production problem (Gribov
et al. 1962), takes form factors into account. Their result for the

muon palr production cross section is summarized in the following

equations:

dgc(k,E,cp)/dQ dE = (zaB/Wk)(Eg/&)[(exg- 2x+1)(1+L)'2+ bx(1-x) L(l+L)_l+}X

(cm? - C‘TeV_l - sr—l)

) (3)



where

P (eew)? . . o
x (/) J aa J afreet W+ (Fad, W, (k)
Yt v
and where
Mi = mags of taréet,
Mf = mass of final system,
X = E/k,
L = (o),
9. = characteristic angle
= W/E,
0] = laboratory angle of detected muon relative to the incident
photon direction,
q? = four-vector momentum transfer (squared)
= Q-9
2 2
“min T 2 [ - kp - E+s(ks - Es) * p+spis] ?
s = [eep/(s-E)1
p2 = laboratory three-momentum of muon (squared)
_ EE _ ME-
k*p = product of four-vector momenta
= k(E - p cos @),
u2 = “2 + 1\/121 + 2Mi(k—E) - 2k-p,
K = (kMi - k‘ﬁ)/u,
E,, = (& + ° - M?)/Eu;
Pis - Eis B “2’



2 2 2
D. = M?(k +p - 2pk cos m)/u? s
is i
2
B, . o= (kp-w +EM)/y,
a = 1/137.0%602,
wl,Wé = form factors which appear in electron scattering from a

nucleus (Drell and Walecka 196L4).
Note: The notation q-q (or kep) specifically refers to taking the

product of two four-vectors.

When the final hadronic system is a discrete state, as in the
case of elastic scattering from a nucleus or a nucleon, the integration
with respect to Mi can be eliminated by using delta functions in Wl
and Wé. We will consider the cross section as having two contributions
corresponding to whether the initial hadronic system is a nucleus or
an individual nucleon. For the production from a nucleoﬁ the final
state can be the same nucleon (elastic scattering) or can include meson
production (inelastic scattering). The inelastic case, however, will
not be included in this study because of the mathemstical complexity
involved (Wl and Wé cannot be represented by delta functions sothat
equation (4) is not easily obtained in amalytic form). The significance

of neglecting the inelastic scattering term will be discussed, along

with other approximations, in later sections.

b.) Coherent Produétion of Muons

According to Kim and Teai (1972b, Tsai 1971), as q;in becomes
comparable to the nuclear radius but not much smaller than the inter-
nucleon distance (RO = 1.2 fermi), the most important form factors are

the elastic form factors of the nucleus. This contribution is usually
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2
referred to as coherent production because it is proportional to Z

(the nuclear charge acting as a whole). For muon pair production the

effect of atomic electron screening is negligible and the nuclear form
2

factors can be written in terms of the delta function, S(Mf - M?)

(Kim and Tsai 1972a, 1973)

W, (con) = o, (5)

Wy(eon) = 2, 806 - 10)7°(1 + ¥ /r )72 (6)

which, along with equations (3) and (4), give for the coherent cross

section

(dgo/dQ dE)Coh ==2a2?r§(m/u)2 (E2/Wmik5)(l+L)_2
x 2=y - en(1)?] + ¥, (7)
with 5
I, = ?2(1+L) (1 - &, N )P, (@)
qmin
where
y =1/x = k/E ,
ry  =2.817939 x 107 cn,
Ty = 6(hc/2n-)2 362 A28/3 eV’
R, =1.2X 1072 e,
ne/er = 1.9732891 X 10 Gev - cm.

The integration can be performed analytically and the result is

Icoh =2+ (l * 2X‘min) ln[Xmax(1+Xmin)/Xmin(l+Xmax)]

-1
* (l—xminxmax>(l+xmax) * (1+Xﬁax)xmin/xmax

, (9)
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where

2
Xpin = %min/Ty

u?(l+L)2/rN .

max

c.) Incoherent Production of Muons

When q;in is smaller than the internucleon distance, RO’ one
must conslder incoherent production in addition to the coherent pro-
duction described by the above equations. In other words, for large
values of q? the nucleons inside the nucleus act incoherently, and
the cross section is proportional to the number of protons (or neutrons).

As we have stated earlier, we will only consider the elastic
nucleon case---that is, meson production is excluded and Mi = Mi = Mi
(proton mass squared). This problem has been considered by Kim and
Tsai (1972a, 1973), who give the following "quasi-elastic” form factors

for a nucleus of charge Z and atomic mass A:

. 2 el el
W.{inc) = W.(quasi) = P IW.” + (A-Z) W, 10
jime) = W (auasi) = P(e)IA) + (a-2) WEL1,  (10)
where
el .
ip = elastic proton form factor,
el .
W =~ = elastic neutron form factor,
Jjn
2 . .
P(q") = Pauli suppression factor,
and J = 1,2.

The Pauli suppression factor is due to the invocation of the
exclusion principle, and essentially limits the final state of the

nucleon to values not already occupied (Mcvoy and Van Hove 1962).



2
The function P(q ) can be derived (Kim and Tsai 1972b) by considering
two Fermi spheres of radius Pp whose centers are displaced by Q. The

fraction of the sphere volume that is non-intersecting is then P(q?).

The resultkis

P(q?) =1 wvhen Q > EPF s
(11)
2
= 3Q[1 - (Q/pF) /12]/upF when Q< 2py ,
where

Pp = Fermi momentum = 0.250 GeV/c,
2 2
o = 1L ol (12)
Mé = rest mass of the proton = 0.938259 GeV

rest mass of neutron (approximately) .

For the elastic nucleon form factors, Kim and Tsai (1972a, 1972b,

1973) suggest using the following:

el 2 2
Wiy = 2l B(L; - Mi) ¢ (2-79)° 7, (15)
el ) 2 2 -1
Woo =2 506 - 0) 6 11+ (2.79)° Al ()
el 2 2
W = 2M§ 5(M§ - Mi) Gep(l.9l) T, (15)
1 D 2 -
wgn = 2M§ S(Mi - Mi) Gep(l.9l) (1+7) * s : (16)
where
2 -2
Gep = (1+q /rp) ’
r = 0.71 GeVe,
i 2, .2
= q_ /lI-MP .



Exact calculations by Kim and Tsai (1972b) indicate that the contribution
of the neutron terms to the inccherent cross section is small except at
“larggﬂproduction angles and for high momenta; whereas, the inelastic
scattering component becomes quite significant under these conditions.
Since we have ignored‘the inelastic contriﬁution, it seems reasonable
to exclude the neutron terms too, and we will assume that Wii = ng =
in this study.‘ We will take Wig = 0 for the same reason (a discussion

0]

of this approximation will be given later). Therefore,

W,(inc) P(qe)ZWZ; , (17)

]
@]

Wl(inc) (18)

Substituting into equations (3) and (L4), we have

2 2
d"0/4Q dE); = 4 o/an dE)2p

=2aZr§(m/u)2 (Ee/wwikB)(l+L)-2

X{Qufy)EL-QLUﬁLY2]+y2hép, (19)
with
2 2
u (L) )
T, =/ 0 ag(1-af /) (1)

2
qmin

L

x B(q%) [1 + (2.79)%7]) (141)7% . (20)

Now, we make a further approximation (the significance of which will be

discussed later)

q? << MM? (or T 1) ,
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so that (1 + 1) ~1 (and Q2 ~ qe)

:E‘I/:hen
2 2
wo(1+L)™ i
4;2p = f2 q 2 dq?(l - qiin)(l + qg/rp) b
qmin
' 2 2
x B(&) [1+ (2.79)%] . (21)

Equation (21) can be integrated exactly with the result

Tp = 63r, [ey(5) - ey(e)] + [gy(t) - g,(8)1 ,  (22)

where

§(8) = o1/ + oy tan™ g+ el /(106F) ¢ 0, /(146707 4 o /(1+52)7]

(23)

P = Xpin ?

(35xmin + 5cl te, * cB)/l6J

Py = (l9xmin + 501 te, + 05)/16,
Py = (11xmin + 5e, + e, - 7c3)/24,
o5 = (Xmin tep -, t 05)/6,

@]
I

L=1e o - (430,
p = Tl + b, /3) - (4/3)],

¢
Il

2 2
¢y = -hng /3,
X . =q Jr
min ~ %min v’
gl = Y¥nin )
-1
g = (24T ),

and

() =15+t vt ey, 1t /e, (20)
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-
i

(1 + xmin)(l+ Trp) 5

-
no
1

3+ (4 - BTrP)xmin - ETrp,

Y5 =3 - 5% ;o (2 - Trp) + o,
Ty, =1+ Xmin(u - Trp){

V5 = "¥pin’

by = (1% b))

€2 - Xmax/(l * Xmax) ’

b
Il

REEE I

The total cross section is the sum of the coherent and incoherent

cross sections.

2.4. Integral Muon Fluence and Absorbed Dose
The integral muon fluence and the absorbed dose are given,

respectively, by

B O-m- 0
®(E,@;EO) = [ [do/aE']aE" (cm-g- electron'l), (25)
E
Eo-m—p

D(E,@;EO) = é f(E')[ae/dE']JaE" (rad - electron’l), (26)

and

where do/dE' is given by equation (1) and where the upper limit of
integration is dictated by particle kinematics. The factor f(E')
converts particle fluence to absorbed dose. Generally, T ‘ig taken
outside the integral as a constant such that 10 muons/cmg/sec gives
1 mrad/hour {which is calculated by using a constant ionization loss
of 1.75 MeV-cmg/g) since the error involved in doing this is small.
A more exact method is to consider f to be a function of energy

according to the equation
12



8

f(E') = 1.602 x 10~ Sd(E') (rad-cm2) , (27)

. where Sd(E’) is the mass stopping power for muons traversing the

detector medium with energy E'. Depending on the detector geometry
and the secondary electron spectrum generated by the muons, a restricted
mass stopping power might be required in order to obtain accurate
results. Unrestricted, as well as restricted, stopping powers are

discussed by Kase and Nelson (1972).

3. Muon Transport Through a Thick Shield
3.1l. Muon Transport Using the Fermi-Eyges
Scattefing Theory: Alsmiller Formulation
Alsmiller et al. (1968) use the Eyges (1948) solution to the
Fermi diffusion equation (Rossi and Greisen 1941) to obtain the muon
current density as a function of depth and radius in a slab shield
for the case of a monoenergetic muon emitted at an angle ¢ with
respect to a normal to the slab face from a point source located at
a distance (R-d) in front of the slab (see figure 2). Alsmiller
(1969) then obtains the absorbed dose on the downstream side of the
shield by
1) averaging the current density over all azimuthal angles
of emission,
2) convertiﬁg from current density to fluence (flux density in
their terminology),
3) introducing the incident source distribution in energy and

angle, and
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M) using the fluence-to-absorbed dose conversion factor given

by equation (27) above.

Their result is

Eo-m-p

D'(G;d,EO> = ? sin ¢ 4p [ [d@(E}¢;EO)/dE1
0

E
m

X ¢{T,p;d) IO[C(T,m;d) tan 6 sin ¢ cos @]

X {-C(T,(p,-d)[sin2 p + tan2 ) cosgw]} f(Td) dE

(rad—electron-l) s

where
2
C(T)(pid) =R /EAE(T:CPBd) >
d/cos @
2 2
AE(T;Qid) = (mm /QXb) f [(d/cos @) - z]
0
1 1 1 —2 2
x [T(T" +20)/(T" + p)] ~az  (em ),
d@(E,@;EO)/dE is defined by equation (1),
IO = zero order Begsel function of the first kind,
f(Td) is defined by equation (27) ,
and
T=F- u.
Also

1) T' =E' - u is determined from the equation

T
é, ar"/s(T") = z = n(T) - n(T*) ,

where

1k

(28)

(29)

(30)

(31)



=

~—~
=3

~—
Il

range in the shield for a muon of kinetic energy T

(under the continuous slowing-down approximation)

T
[ oar"/s(T")  (em) ,
0

S(T") = total stopping power (GeV/cm) for the shield at kinetic

i energy T (includes ionization (unrestricted), radiation,
palr production, and nuclear interaction losses);
2) Td is the kinetic energy of a muon at the detector location and

is obtained from the equation

T
[ ar"/s(T") = d/cos ¢ = 5(T) - n(Ty); (32)
T.
ol
3) E =T +u where T~ 1s the kinetic energy of a muon that just

gets through the shield to the detector, defined according to
the equation

T
m

é ar"/s(T") = d/cos ¢ = n(Tm) . (33)

Now, we can obtain the integral muon fluence by letting f(Td) =1

in equation (28), that is,

¢'(6;4,E,) = D'(6;4,E,) : (34)
0] 0
f=1
If we now make the small angle approximation

sin @ = o,

cos ¢ = 1,

1
®

tan @
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in equation (28), we obtain a result derived earlier by Nelson (1968).
We will use equations (28) through (34), along with the cross sections

.

presented above, for the calculations that follow.

3.2. Range versus Enérgy

A set of range-energy curves for muons in various materials is
provided in figure 3. The curves represent our extension of previous
calculations (Barkas and Berger 1964) to higher energies, and includes
pair production, bremsstrahlung, and nuclear interaction losses (Hayman
et 2l. 1963). This was done in a manner similar to that by Thomas
(196k). The earth curve was scaled (by density) from the aluminum

curve.

L, A Discussion on the Approximations

L.1. Coherent versus Inccherent (Elastic and Inelastic) Contributions
In Section 2.3 we arrived at an analytical expression for the

incoherent (elastic) proton pair production cross section (equations

(19) through (24)) by assuming that w?; - 0 and by making the

approximation

2
q <<MM2,
P
which allowed us to take

(1+ o /) ~ 1,
and

Q2 = qg[l + qg/lwii] ~

16



Accordingly, the elastic proton contribution to the total muon fluence
for various detector angles is given in Table 1. The shield material
andqzhickness, as well as the source-to-detector distance, that were
used to determine Table 1 (and several other tables to follow) correspond
to an experimental situation described in Paper II. We see that the
addition of the elastic proton component amounts to less than 10% for
angles smaller than 120 milliradians. As the detector angle increases
rast 120 milliradians, the ng term adds substantially to the coherent
fluence, and accounts for about hO% of the total at 150 milliradians.
The effect of the approximation, q? << hMi, as well as the
addition of the W2n term, can be seen by numerically integrating the
cross section formulas defined in Section 2.3. Tables 2a and 2b give
the various contributions for an 18 GeV photon incident on a cobper
target producing muons having total energies of 8 and 16 GeV, respec-
tively. As expected, the coherent term dominates in the forward
direction (this was apparent in Table 1 also). At large production
angles the elastic proton term (WEP) becomes comparable to, and
eventually dominates over, the coherent component. The elastic neutron
term (Wzn) 1s observed to be much less important. The approximation,

q? << hMi, causes the W term to be overestimated at large angles

2p
(about 8% at 150 milliradians). Interestingly, the approximation

helps to compensate for the fact that we toock w2n equal to zero in

our calculations of the muon fluence.

The Wip and Wln terms were not included in our calculations

either. This is Justified by the fact that whenever Wlp and wln

(and W ,» for that matter) are significant, then so is the inelastic

17



nucleon term. We are unable, in this study to account for the inelastic
contribution due to lack of an analytical expression for the cross
Asectgﬁn. Recalling the bvasic cross section formula under the Weizsacker-
Williams approximation (equation (4)), we see that the difficulty arises
because we canﬁot represent the final state as a delta function (of the
mass squared) since it is broken up into a number of articles (meson
production).

The inelastic proton cross section for the pair production of
muons can be obtained by performing an exact (Born) calculation numer-
ically. This has been done by Kim and Tsai (1972b), and, as you will
recall (Section 2.3), the calculation requires extensive computer time,
making it prohibitive to include it in equation (1). The effect in
beryllium can be seen in Table 3, which is taken from the paper by
Kim and Tsai (1972b). The column labeled Be Quasi-Elastic" is defined
according to equation (10). As usual, the coherent production dominates

at zero degrees. At 99.0 milliradians the quasi-elastic contribution,

which contains Wel, Wel, el, and Wel terms, is ten times the coherent
1p? "2p° "In 2n
component. Furthermore, the proton elastic (Wi%, WS%) and inelastic

terms are comparable to one another at this angle. It is apparent,
therefore, that the elastic and inelastic terms become significant at
large production angles, corresponding to large momentum transfers, and
it may not be corregt to keep one component and to neglect the others.

We will attempt to estimate the net effect in Section 4.2 when we compare
the Weizsacker-Williams cross section directly with the exact (Born)

calculation, both by Kim and Tsai (1972a, 1973, 1972b)
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The following conclusions are reached in this section:
1) ‘the elastic neutron contributions, described by Wy o and to a much

lesser extent, Wln’ are not very significant, so that we can take

W, =W, =0 without too much effect;
1n 2n . .

2) the approximation, q? << hMi, is of minor significance (less than
8% effect), and is in the direction that overestimates the cross

section. If anything, it compensates for making the approximation,

w2n = 0;

3) the WEp contribution is not important in the muon fluence
(absorbed dose) estimates for angles less than 120 milliradians.
At detector angles greater than 120 milliradians, the elastic

proton contribution from W2p becomes significant (about L0%);

4) the Wip contribution has not been specifically locked at, but if

it is important so will be the inelastic nuclear effects.

L.2. Comparison of the Weizsacker-Williams and the Exact (Born) Cross
Sections (Elastic Only)

In this section we compare the Weizsacker-Williams approximation
of the differential muon pair production cross section with the more
exact (Born) method, both due to Kim and Tsai (1972a, 1973, 1972b).

The Born-data were obtained by using Tsai's computer code, .slightly
modified by us to t;eat the present problem. Figure 4 plots both cross
sections for 18 GeV photons incident on a copper target. Two muon
energies, 8 and 16 GeV, are shown. A comparison is made between the

coherent term alone and the coherent and incoherent (elastic) components
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added together. All of the elastic form factors (W

1
el el el

1p° ng, Win’ and ng) are used in the Born calculation; whereas,

(coh), Wé(coh),

W

the Weizsacker-Williams estimate plotted in figure 4 only uses W.(coh)

o
and WS%. Furthermore, the approximation, q? << hMi, is made in this
version of W.W; -

At small angles and for muon energies that are not close to the
incident photon energy, the agreement between the W.W. and the Born
cross sections is reasonably good. This corresponds to small momentum
transfers. As q? gets larger, the difference gets bigger, as can be
seen in the region near 80 milliradians for the E = 16 GeV curves.
At this angle, the total Born curve is 33 times higher than the coherent
W.W. for E = 16 GeV, but only 32% higher for E = 8 GeV. It should
be pointed out that the elastic inccherent contribution vanishes at
some point due to kinematic limitations (e.g., at 120 milliradians
on the E = 16 GeV curves).

Although the difference between the exact and W.W. cross sections
is substantial in some regions, particularly when E is near k, the
net effect is relatively insignificant in the calculation of the multiple
scattered muon fluence (or absorbed dose). This can be understood from
the fact that the production of the lower energy muons is more probable.
For example, the E = 8 GeV cross section is two to three orders of
magnitude higher than the T = 16 GeV one, as is apparent in Tigure k.
To observe the efféct directly, we need only re-examine Table 1,
which gives the percent increase in the muon fluence as a result of adding
the ng component to the coherent component. Table 1 corresponds to

the solid lines in figure L. The largest increase in Table 1 is about L40%.
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The most we can expect from an exact (Born) calculation (according to
figure 4) would be about twice this, or 80%. Furthermore, the inelastic
proa;ction, as indicated in Table 3, cannot contribute too much

more. All in all, an increase of 100% over the coherent W.W. calculation

of the muon fluence or the absorbed dose might be reasonable at large

angles (say, 130-150 milliradians).

5. Cocmparison of Present Theory with Previous Calculations and with
Experiment

A comparison has been made in figure 5 between the present method
of calculating the transport of muons through a shield with that of Nelson
(1968), and with Alsmiller (1969). In order to make this comparison,
the 0ld cross section formula of Tsai (1971) (see equation (6) of Nelson
(1968)) was used. The calculations were based on the following data:
E, = 18.0 GeV, P = 16.2 kW, © = 258 min, R = 519 cm, d = 427 cm. The
unrestricted stopping power for 7LiF was used.

The calculation by Nelson (1968) made use of an approximate
form for As- Whereas, the present formulation (see Section 3) is precisely
the same as that of Alsmiller (1969), and we now have agreement at small
angles and a slight disagreement (20%) at the larger angles.

In Figure 6, we compare the present study with the experimental
data of Nelson (1968), where we now use the latest cross section formulae
(coherent production only) and the restricted stopping power for 7LiF
(the energy cutoff for the detector geometry used in the experiment was

estimated to be 0.8 MeV). It is quite apparent that the present method

of calculation is much better at small angles. At zero milliradians
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the new cross section accounts for a 39% decrease in the calculated
absorbed dose, and the use of a restricted in place of an unrestricted
Mstoﬁging power accounts for a further decrease of 22%. At 70 milli-
radians the corresponding decreases are 67% and 13%, respectively. In
addition, as wé have seen in figure 5, the-present transport theory
formulation increases the absorbed dose from that calculated by Nelson
(1968) by 47% at 70 milliradians, and makes no difference at zero milli-
radlans.

The agreement between the present theory and the experiment by
Nelson (1968) now appears to be reasonable at small angles. As the
detector angle increases, however, the experimental points are more
than a factor of three higher than the calculation. As we shall see
in the paper following this one (Paper II), this discrepancy can be
accounted for, in part, by a photon background contribution to the
total absorbed dose measured by the LiF detector. Only a very small
part can be accounted by the approximationsin the cross section theory,
as discussed in Section L.

Two additional comments are in order at this point. First, as
we have indicated in Section 4, the coherent contribution should
account for most of the muon dose. Our calculations indicate, in fact,
that inclusion of the incoherent-proton contribution accounts for less
than a 2% increase 9f the dose in figure 6. Second, if we allow the
nuclear form factor to approach unity (thereby reducing the nucleus to
a point), the present does calculation reduces to the dose calculation

using the old cross section, as expected.
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6. Conclusions

The present method of calculation is far superior to the
original calculation of Nelson (1968). The more general transport
formulatioh of Alsmiller (1969) and more reliable muon production cross
sections are used. Coherent pfoduction-—that 1s, production of muon pairs
whereby the nucleus acts as a whole--is the dominant source. For the
calculation of absorbed dose,it appears as if one should use a restricted
rather than an unrestricted stopping power. This depends, of course,
on the detector system used in the measurement.

Comparison of absorbed dose calculation and measurement is
reasonably good at small detector angles. At large angles the absorbed
dose measurement is much higher than theory allows, even considering
the approximations inthe cross section theory. In an attempt to resolve
this disagreement, the experiment described in the papef following this

one (Paper II) was performed.
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TABLE 1
- COMPARISON OF THE COHERENT MUON FLUENCE WITH THE INCOHERENT

*
(ELASTIC PROTON, W ONLY) MUON FLUENCE FOR GAP A *

2p
(mradians)  (cm =-Coul™™)  (em “-Coul ™) ( INCOHERENT /COHERENT )%
0 2.155 x 10°° 0.02k x 10%° 1.1
10 1.811 x 1olo 0.020 x 1070 1.1
20 1.133 x 1000 0.014 x 10%° 1.2
30 5.941 x 107 0.080 x 10° 1.3
40 | 2.856 x 107 0.0k2 x 107 1.5
50 1.310 X 107 0.025 X 107 1.9
60 5.793 X 108 0.107 X 108 1.8
70 2.446 x 108 0.061 X 108 2.4
80 9.901 X 107 0.239 X 1o7 2.4
90 3,814 x 107 0.116 x 10' 5.1
100 1.397 x 107 0.055 x 107 3.9
110 L.876 x 106 0.262 X 106 5.k
120 1.630 X 106 0.142 X 106 8.7
130 5.270 X 105 0.753 X 10 14,3
1ko 1.68L x 10° 0.395 X 10° 2574
150 5.398 X 1ou 2.138 x JLoLL 39.6

*
Gap A refers to a typical experimental situation described in Paper II
(following this paper), where: R = 555.19 cm and 4 = 509.91 cm (iron).

R
"With the approximation, q- << MM; (see Section 2.3).

Note: Wgp is really a "quasi~elastic" incoherent form factor defined
by equation (10) in the text.
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" Figufe 1

Figure 2:

Figure 3.

Figure L.

Figure 5:

Figure 6:

FIGURES

Comparison of the Clement photon track length expression

with Monte Carlo data.

a) Shielding diagram showing the source at T and the
detector positions at P (unscattered) and P’
(scattered).

b) Downstream plane of shield with relative positions of

points O, P, and P' (looking towards the target).
Range-energy curves for muons in various materials.
Comparison of the Born and the Weizsacker-Williams cross
sections for k = 18GeV and for E = 8 GeV and E = 16 GeV
(copper target).
Comparison of the Alsmiller and Nelson calculations with
the present calculation--using the old photoproduction
cross section (see equation (6) of (Nelson, 1968)),

and the unrestricted stopping power (for 7LiF).

Comparison of new and old calculations with experiment.
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