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ABSTRACT 

The constituent interchange model is used to relate large and small 

momentum transfer reactions, to relate inclusive and exclusive processes, 

and to predict the form of the inclusive cross section throughout the Peyrou 

plot. Two important corrections to the triple Regge formula are derived. 

The first, important at small missing mass, allows a smooth connection to 

exclusive processes. The second, important at large missing mass, allows 

a smooth connection to the central region and to the large transverse 

momentum regime. Simple quark counting rules are given which predict 

the limiting behavior of Regge trajectories and residue functions, and the 

powers of Pi and the missing mass dependence of inclusive cross sections. 

Many experimental consequences of the model are given. 
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I. INTRODUCTION 

One of the most exciting aspects of large transverse momentum hadron 

reactiuns is the possibility that we can probe the simplest constituent structure 

and underlying dynamics of hadronic 

inclusive and exclusive processes at 

ing laws of the form l-4 

matter at short distances. Recent data for 

large pT appear to be consistent with scal- 

E do (A+B-CCX) -* (P;)-~ f(&;) 
d3P 

S 

and5y6 

de (A+B-+C-I-D) +P;)-~ f(t/s) 

from P-JAB = 5 GeV/c to 2000 CeV/c, and have given support to field-theoretic 

composite hadrons models 7-13 with the degrees of freedom of the quark model. 

In the case of exclusive processes, the observed power law behavior in pT is 

consistent with the simple dimensional counting prediction N = n - 2, where n is 

the total minimum number of elementary fields in the external particles, A, B, 

C, andD. 
14 The angular distributions of the exclusive processes f(t/s) are also 

consistent’ with the hypothesis of the constituent interchange model (CIM) - 

that the important elementary interaction between hadrons is the interchange 

and exchange of common quark constituents; hard gluon exchange between quarks 

of different hadrons does appear to be suppressed at large pT. 15 

In the case of the inclusive processes at large pT, the predicted power from 

dimensional counting is N = n - 2 where n is the minimum number of fields re- 

quired in the elementary irreducible subprocess responsible for the production 

of C at large transverse momentum. In the CIM, the minimum subprocesses 
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involve quark-hadron scattering and have n > 6, or N > 4. Again, this seems 

to be consistent with the recent measurements at the CERN-ISR1 and NAL. 2 

‘A rouzh analysis of the reactions pp - TX and pp - pX are consistent with 

values of N ranging from 8 to 12. Therefore scale-invariant quark-quark gluon 

exchange interactions (N = 2) are apparently absent, or at least not required by 

the data. 

In contrast to the possible theoretical simplicity of large pT reactions, the 

physics of small t and u processes are complicated by the coherent multi- 

particle and multiperipheral nature of Regge behavior. Nevertheless, as em- 

phasized by Bjorken and Kogut 16 and demonstrated explicitly in Refs. 8 and 17, 

there must be a continuity of dynamics from large to small momentum transfers. 

By assuming a smooth connection between these two domains, one obtains condi- 

tions on the normalization and functional dependence of the large transverse 

momentum reactions in direct analogy with the Drell-Yan 18 relation and Bloom- 

Gilman duality 19 for electroproduc tion. 

In this paper we turn the “correspondence” argument around and investigate 

the implications and constraints on low momentum phenomena in order that the 

physics in the Regge region is consistent with power-law scaling behavior at 

large transverse momentum. We emphasize here one feature of the CIM which 

is different from other parton models; once the basic irreducible amplitude is 

given, the calculation proceeds by using only hadron intermediate states in order 

to produce the full complexities of Regge behavior in the amplitude. 

This paper thus represents an attempt toward the theoretical unification of 

the underlying physics of the many kinematic domains of inclusive and exclusive 

processes (see Fig. 1). We shall attempt to clarify the relations between large 

and small momentum transfer reactions, to explore the exclusive-inclusive 
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connection, and to predict the limiting forms of the inclusive cross section at 

the kinematic boundaries. Among our new results are the following: 

(T) The domain of applicability of the simplest Regge formulae for inclu- 

sive reactions is more limited than usually supposed. The usual triple 

Regge formula, ,20 because of the restriction J’2>> It I ,cannot be con- 

tinued into the resonance region or exclusive limit. However, we shall 

present a cross section Rr valid for smallX2/s which connects 

smoothly onto (i) the large transverse momentum region, (ii) the ex- 

clusive and resonance region at any dcrn, and (iii) the triple Regge 

formula for the fragmentation region s >> A2 >> t. The formula for 

Rr respects the CIM and the $imensional counting rules at large mo- 

mentum transfer and obeys a generalized Drell-Yan/Bloom-Gilman 

duality at the exclusive limit. 

(2) The consistency of Regge behavior and power law falloff at large trans- 

verse momentum demands that the effective trajectory oAC(t) which 

appears in exclusive reactions and the triple Regge formulae for inclu- 

sive cross sections approach negative integers as t - -co. We present 

an extended dimensional counting formula for aAC (- w) for all A and C 

including exotic channels in Section IIb. 

Throughout most of the allowed kinematic domain of inclusive reactions, 

i.e., for finite ,L&‘~/s, fragmentation (hadronic bremsstrahlung) will 

occur from both target and beam projectiles. In Section IV we present 

a cross section Rc for the entire interior or central region of the 

Peyrou plot which is expressed in terms of a convolution of Rr contri- 

butions. In this case, we find that Rc connects smoothly to the central 

Regge region (s - 03, t , and u 5 0(&s )), and yields a generalized 
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multiperipheral type of description of low pT processes. On the other 

hand, we find that Rc may play a critical, unexpectedly important role 
c, 

in the triple Regge domain. These new important contributions, which 

originate (for t/s - 0) from beam fragmentation and dissociation dia- 

grams, correspond to disconnected cut contributions and cannot be 

identified with a simple Regge singularity of an exclusive process. The 

analogous contributions in inelastic Compton scattering and photo- 

production yield important background terms at large transverse mo- 

mentum and small A2/s. 

We thus find that examining the inclusive cross section from the perspective 

of the entire kinematic domain of both large and small momentum transfer leads 

to many unexpected relationships. The formulae for R, and Rc serve as a link 

between the normally separated domains of inclusive reactions. Most satisfac- 

torily, the underlying quark constituent structure which yields power law be- 

havior is only evident at large pT; our description melds into a purely hadronic 

state analysis at small momentum tran+ers. 

In addition to determining the power law behavior and effective trajectories 

oAC(t) at large transverse momentum, we can extend dimensional counting to 

completely determine the threshold dependence (A~/s - 0) of the inclusive 

cross section at any angle, including t = 0. First, some definitions are needed. 

We shall describe the most general scattering processes which contribute 

toA+B - C + X according to the classification shown in Fig. 2. The sub- 

process a + b - C + d* which produces the detected particle is by definition 

hadron-irreducible in that neither a nor b fragments (i.e. , emits hadronic 

bremsstrahlung before interaction). We define the probability of finding the 

irreducible state a in the incident hadron A with fractional longitudinal momentum 
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x (in the infinite momentum frame of A) as G a,A(X)’ D imensional counting then 

gives for x N 1 (see Section IIa), 

G ,/,(x) N (1 - x)g(a’A) ) 

where 

g(a/A) = 2 n(KA) - 1 . 

Here n(zA) is the minimum number of quark fields in the state ;A. [For a = A, 

i.e., no beam fragmentation we can formally take g = - 1. ] We find that the 

subprocess a f b -, C + d* then gives a contribution of the 

xL 
= p”,“/pEax > 01 

E da - fab, cd* @;, g(dA)+g@/B)+l I$ 
d3p s+ 

form [2/s N 0, . 

2 1-g@/B)-2zac 
y&K- 

S 1 
(1) 

where f(pc) 
2 -na -nb -nC-nd* 

for large pT and y N [g(b/B)+l]/ 

[g(a/A) + g(b/B) + 21. The threshold dependence 

pendent. Thus in the forward direction (pt/s - 

old behavior 

can be critically angular de- 

0, XL - 1) we have the thresh- 

-- 

E d o- - - (1 - XL) 
g(a/A)+2 - zoaC 

d3p 
(2) 

where z aC N oac(xLt) is the effective trajectory coupling a to C. This agrees 

with the usual triple Regge formula if A does not fragment (g(a/A) = -1). How- 

ever, in most cases, ;especially for exotic channels, fragmentation of the beam 

will be an important contribution for finite &d2/s values. In particular, if we 

consider the diffractive subprocess C + b - C + b, then zcc -r 1 at t -. 0, and 

-6- 



we obtain the direct dissociation term 

- 
-h Ed CJ N (1 - xL)g(c/A) zz (1 - XL) 

2n(??A) - 1 

d3P 
0 -0) 

in place of the triple Regge term (1 - xL) 
1-2aAc(o) 

. This gives an “effective” 

trajectory 

eff 
oAC 

= $ [i - g(C/A)] = 1 - n(??A) . 

Again we emphasize that this contribution falls outside the scope of the usual 

triple Regge analysis since it derives from beam fragmentation and is usually 

associated with the central (or double Regge) region. The definiteness of the 

CIM allows one to continue these contributions into the triple Regge region. 

The comparison of these predictions with experiment is given in Section V. 

At large transverse momentum, the threshold dependence of Eq. (1) for 

the subprocesses (a + b - C + d*) is [2/s ]g(a/A)-@@/B)+ls This behavior, 

together with the predicted power law dependence in pt , and the distinctive 

quantum number character , multiplicities, and correlations of the final states, 

allows an unraveling of the contributions of the various subprocesses 

a+b - C + d* which can contribute in different kinematic domains of the in- 

clusive cross section. This will be discussed further in Section IIb, and the 

leading subprocesses are summarized in Table I. 

The organization of this paper is as follows: In the next section we present 

a useful decomposition of the inclusive cross section which separates the com- 

plications of hadronic bremsstrahlung (fragmentation) from the basic hadron- 

irreducible scattering subprocess. The properties of the hadronic structure 

function G a/A( ) x are reviewed and the threshold dependence at x - 1 is computed 

using dimensional counting. The computation of the irreducible subprocess in 
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I 

the CIM is then presented. We also give a new, general, dimensional counting 

formula for the asymptotic trajectory olAC (- m) coupling any two hadron states 

-A and-C, and the corresponding residue functions. 

In Section III we present an analysis of the exclusive-inclusive connection 

and a generalization of the triple-Regge formula. The complete cross section, 

allowing for both beam and target fragmentation, is then computed in Section IV, 

and the threshold dependence at the various kinematic boundaries is made ex- 

plicit. Additional applications are discussed in Section V. A discussion and 

conclusion section then follows. 
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SECTION II 

The entire kinematic range of high energy inclusive reactions is illustrated 

on se Peyrou plot of Fig. 1. As usual we define 

s = (PA + P*)2, t = (PA.- PCj2’ 

u=(p B - Pc)2y dhf2 =@A+PB - Pc)2, 

and 

E ‘A2/S = (1 - P,,/P,,)I 

XT = PT/P,,, XL = PL/Pmax 3 (t - u)/s . 

The resonance region and exclusive scattering limit occur near or at the kine- 

matic boundary on the circle. The position of the triple Regge region is shown 

schematically, as is the central region. 

The decomposition of the inclusive scattering process displayed in Fig. 2 

is extremely useful for separating the effects of peripheral interactions and 

hadronic bremsstrahlung (or fragmentation) from the effects due to basic ele- 

mentary processes dependent upon constituent structure. The subprocess 

a+b - C -f- d* is hadron-irreducible in that neither hadron a nor b can brems- 

strahlung another hadron before interacting (see Fig. 3). Using this decomposi- 

tion, we can compute the total inclusive cross section as 

Ed -E (A+B-CC+) 
d3p 

= g/’ dxa ,/’ dxb Ga/A(Xa)Gb/B(Xb) & (a+b-CC+*). 
, 0 0 

(4) 
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I 

The superscript I means hadron irreducible and the basic irreducible subprocess 

a+b - C + d* is evaluated at 
h 

S’ = (pa + Pb)2 = XaXbS 

t’ = (pa -p,,2 gxat 

U’ =&lb -pc)2 2 XbU 

,2 tu 2 
PT = 7 = PT ’ 

The missing mass state X in general consists of beam fragments (XZ), target 

fragments (XE) and the system (d*) which is produced in the basic irreducible 

subprocess and carries the balancing transverse momentum. 

Note that it is also possible to compute the average missing mass of the 

state d* directly from (A:.+ =s’ + t’ + u’) 

E d -+A+B 2 

d3p 
-c+xx) ‘&4@fd* > = 

= ~/ldxa/ldxbGa,A(~a)Gb,B(~b)(‘.+t’+u’) dt:E (a+b-CC+*). 
, 0 0 

. 
In general, one has 

2 u%Ld”> = pT 2 f(E , +> 

where f(e, 0) does not vanish, and f decreases as E - 0. This allows an estimate 

of the associated multiplicity (if the entire recoiling system is detected) if one 

assumes that the multiplicity of d* is linear in log < .R1%, > , as in typical 

hadronic events. l 

The function GH,A (z) gives the probability that a hadron A with infinite mo- 

mentum will emit a hadron H with fractional longitudinal momentum z, (0 < z < l), 
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as has been discussed in Ref. 8 and Section I. Note that the convolution formula 

(4) neglects the transverse momentum distribution and certain off-shell effects 

in inte;mediate states. These corrections will be inessential in the applications 

discussed here. 

The summation in Eq. (4) implicitly includes the direct contributions to the 

inclusive cross section where fragmentation from the target B and/or the pro- 

jectile A does not occur. In this case, one clearly has GH,A(z) ot 6 (1 - z). 

In general, fragmentation from the initial particles is only suppressed when we 

approach the exclusive limit &d2/s - 0. The nature of this suppression, how- 

ever, depends critically on the production angle. For processes at large trans- 

verse momentum with 4p2d s approaching 1, a finite fraction of the momentum 

of both A and B is required in the basic production subprocess, and brems- 

strahlung from both incident particles will be kinematically suppressed. This is 

the deep region of inclusive scattering which is most sensitive .to short distance 

effects and which will smoothly connect onto large angle exclusive scattering. 

On the other hand, at small momentum transfers (pi = tu/s - 0) in the for- 

ward direction, hadronic bremsstrahlung from just the projectile A will be sup- 

pressed as we approach the exclusive limit (1 - xL JN2 N - - 0); however, 
S 

fragmentation from the target is allowed. This is the triple Regge (or frag- 

mentation) region which is usually described in terms of the Regge poles aAC(t) 

in the AC channel observed in elastic scattering. 

More generally, we shall divide the Peyrou plot of Fig. 1 into a central 

region (which includes the central Regge region, roughly Ix, I <” l/2 at small 

momentum transfer) and an outer ring region. In the outer region, which is 

described by the cross section Rr (see Section III), hadronic bremsstrahlung 

from at least one hadron is suppressed. In the central region, which will be 
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described by the reducible cross section Rc (see Section IV), bremsstrahlung 

from A and B has no strong suppression and must be included. 
- 

A. The Properties of the Distribution Functions G H/A(‘) 
In order to describe the reducible contributions to the inclusive cross 

section we shall require the properties of the hadronic distribution functions 

GH/A (z). In particular, the central Regge region is sensitive to the small z 

behavior of both Ga,A and Gb,B. On the other hand, the E - 0 dependence 

requires the z - 1 behavior of either or both distribution functions. In fact, 

we shall show that all of the essential features of the G(z) can be predicted, and 

thus these are not functions to be fit to experiment, but serve as critical tests 

of the model. 

By momentum conservation, we have 

c P I H 0 dz z GH,A(z) = 1 

which serves as an overall normalization constraint. 

for quark-partons in hadron A can clearly be written 

GdA @) = 
/ 

g /;. G;,H(x/z) 
H 

(5) 

The distribution function 

as a convolution 

where the summation is over all irreducible hadron states H which contain a 

quark of type q. The deep inelastic structure function is given by the familiar 

relation 

x T 
F2H(~) = x * 2 

aqd ‘q Gq/A(x) 

where Aq is the quark charge. The notation G’ 
q/H 

in Eq. (6) denotes that it 
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originates directly from a hadron-irreducible wavefunction - computed without 

hadron intermediate states. As discussed in Ref. (16) the Bethe-Salpeter wave- 

functiG of the irreducible hadron H has asymptotic power law behavior and is 

responsible for the power law fall-off of exclusive scattering amplitudes at fixed 

angle, form fat tors , and the DrellAYan-Wes t relation. 18 

For x - 1, the threshold power g(q/A) can be introduced as 

G ,/,tx) N G;,A(x) N (1 - x)g(qiA) . 

Dimensional counting then gives the result 

g(q/A) = 2 N - 1 , (7) 

where N is the minimum number of left-over quarks, that are necessary for 

hadron A to produce the quark of type q. Now using Eq. (6), one easily sees that 

the only consistent threshold dependence of G 
H/A 

is given by . 

GH/A (x) - (1 - x)g(H’A) (x --L 1) 

with 

g(H/A) = 2n(%) - 1 (8) 

where n(gA) is the minimum number of quarks that can be produced in the pro- 

cess A + E - quarks. 

This simple yet interesting result only depends on constituent counting and 

the assumption of an underlying scale-invariant hadronic theory on the quark 

level. Sample values of g(H/A) are easily computed with the above rule: 

g@/p) = -1 [this actually represents G 
P/P 

cc 8(1 - z)] or 3, g( r*/p) =5, 

g(K+/p) = 5, g(Kp) = 9, g($p) = 11, and g(n/p) = 3. Note also g(q/p) = 3, 

g($p) = 7 for antiquarks and strange quarks in the nucleon, and g(q/r) = 1. 
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Some of these latter results have also been independently derived (in a different 

manner) by Farrar 21 ,and Gunion 22 has given a derivation of all these numbers 

using Finite momentum frame techniques. 

It has been shown in Ref. 16 that the small z behavior of G 
H/A 

is deter- 

mined by the leading Regge trajectory in the KA- - i?H channel, i. e. : the lead- 
crA(o)-1 

ing behavior of oxH - s . A form of GH,A that has the correct behavior 

as z - 0 and z - 1 is 

This simple 

plied by any 

(+,A(~) = z 
-a,(o) 

(1 _ z)awA) . (9) 

behavior will be used throughout this paper, but it could be multi- 

smooth function of z without modifying any of our essential results. 

Using Eq. (6), the deep inelastic structure function has the form 

I 
1 

F2,3(x) = dz i F;H(X/Z) GH/B@) 
H 

X 

I where F2H is the hadron-irreducible structure function. This equation is illus- 

trated in Fig. 4. Note, as has been emphasized in Ref. (17), that the Regge 

behavior of G H/Btz), w ic h h in turn reflects the hadronic bremsstrahlung of the 

target particle B, leads to Regge behavior for the structure function at small x. 

B. The Structure of the Irreducible Subprocess 

The most critical physics of an inclusive reaction occurs in the irreducible 

subprocess a + b - C + d* and in a certain sense, this is physically the most 

interesting object to study. The major complication of inclusive processes - 

hadronic radiation from the incident particle - is, by definition, removed. 

At small momentum transfer, the irreducible subprocess amplitude has the 

conventional expansion in terms of Regge trajectories a! at(t) for t - 0 and 
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abc(u) for u N 0, where oaC and obC are the same trajectories that occur in 

exclusive processes. This is not always true for the reducible contributions, 

as emihasized in Section IV. At high momentum transfer, the subprocess 

occurs at an energy 

S ab >, 4P2 T’ 

It is therefore sensitive to the same short distance effects which occur in high 

energy fixed angle exclusive scattering. In the large momentum transfer region 

we will use the constituent interchange model developed in Refs. 8, 9, and 17, 

which has a wide range of experimental support. This support ranges from 

5 GeV/c exclusive experiments at fixed angle to the large transverse momentum 

exclusive experiments at NAL and the CERN-ISR. 

The main hypothesis of the interchange model is that only quark-hadron 

interactions are important at short distances; direct interactions between quarks 

of different hadrons are assumed to be negligible. Exclusive scattering of 

hadrons at fixed angle is thus accounted for by the exchange or interchange of 

common quarks between the hadrons. 

By using dimensional counting and a specific choice of quantum numbers 

for the constituents, we can completely specify the asymptotic behavior of the 

irreducible CIM amplitude. At fixed angles, the exclusive amplitude M for 

A+B - C + D scales as 

(11) 

where nA is the number of elementary fields in A, etc. The amplitude can also 

be written in Regge form as 

M N PBD@) (+) aAc(t) + FBD(t) (-s)cuAc(t) + . . . 
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for fixed t, s - 00. The asymptotic behavior of the trajectory aAC at large t 

is controlled by the quark-hadron scattering amplitude at the bottom of the dia- 

gram% Fig. 5 and the ratio of the residues is determined by the quantum num- 

bers of the constituents. It is now easy to see that for t - -CO, one has (these 

results are extensions of the formula given in Ref. 14)) 

aAC(- W) = + (4 - nA - nC - nint) 

and 

(12) 

(13) 

where n int is the minimum number of exchanged quarks compatible with the 

external states. The necessary cancellations between trajectories that are re- 

quired for the fractorization of residues is derived and discussed in Ref. 17. 

Some representative asymptotic trajectories oAC(t - - CO) using quark 

counting are 

(YTT(--M) = oi(K(-w) = -1 Pomeron, p, w, $, etc. 

“PPk4 = apn(-“) = -2 Pomeron, p, w, $, etc. 

aT(-w) = -2 N, A 

“K+p (-w) = -2 h,T: 

aKy-(- w) = -1 K* 

aT+K-(- w) = cvT+&g = -2 Exotic 

oK-p’ 
--) = ‘-3 Exotic 

oPP(-+ = oP,+) = -4 
Exotic 

These results are in agreement with pp and ‘rrp elastic scattering. 23,24 
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We also can predict the limits of the resultant effective trajectories induced 

by the point-like aspect of the photon (nr = 1) : 

a,(-CO) = 0 (J = 0 fixed pole) 

y/((“) = -l/2 

ayp (- =J) = -3/2 

(although spin may modify these last two results ). Also, for the case of in- 

clusive processes at large transverse momentum, we need the values 

o!&m) = 0 

and 

cL!p) = -1 . 

In general, the signature and possible exchange degeneracy of the trajec- 

tories are controlled by the assumed types of quarks which can be exchanged in 

the t-channel. Notice that exotic as well as ordinary trajectories are specified 

bytheCIMatt ---. The iteration of the basic CIM irreducible kernel in the 

t-channel will produce a moving trajectory which then connects with normal 

Regge phenomenology at t - 0 and eventually to the particle bound states in the 

KC channel at positive t. Accordingly, it is natural to expect that the exotic 

trajectories remain quite near to their asymptotic t - - 03 values and even at 

t = 0 may not be very high above this value. 

The basic irreducible subprocesses of the CIM for inclusive processes are 

shown in Fig. 3. In Eig. 3a an irreducible hadron state a of the projectile inter- 

acts (via constituent interchange) with a quark state of hadron B. We can com- 

pute the quark probability function G 
q/B 

via hadron irreducible intermediate 

hadron state b, as in Eq. (6) or directly via Eq. (9). The quark hadron scatter- 

ing amplitude a + q - C + q in Fig. 3a yields, for deep inelastic hadron scattering, 
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an “effective current” which is the analogue of the e + q - e’ + q amplitude in 

deep inelastic lepton scattering. We thus have immediately 
4 

da - (a+B- dtdx c+x) = c G 
4 

q/B(x) $ (a+q-+c+q) ~1 =xs 
t* =t 

(14) 
where x = -t/(d2- t) = -t/(s + u) is Bjorken’s scaling variable and 

do 
T$- u) dtdx ’ 

We emphasize that we have automatically included fragmentation from the target 

particle, B, by using the structure function G q/BfX) cc F2 .(x)/x. Then by con- 

volution with G a/A( ) d z an summation over the irreducible states, a, we obtain 

the full cross section for A + B - C + D. Note that, formally, Eq. (4) can now 

be applied both when a and b are hadron-irreducible states with hadronic quantum 

numbers and also at the short distance level where a and/or b can be taken as a 

hadron-irreducible quark-parton state. 

Clearly in the exclusive limit where E - 0, we will obtain the analogue of 

the Drell-Yan relation and Bloom-Gilman duality, i.e. , we shall obtain a smooth 

connection between the inclusive reaction H + B - C + X (where H is a hadron- 

irreducible) and exclusive channels H + B - C + D (calculated via the CIM at the 

corresponding t). This will be discussed in detail in the next section. 

As t becomes small, the ffvirtualt’ hadron bremsstrahlung diagrams 4(b), 

where hadrons are emitted by a and are absorbed by C, become important and 

build up normal Regge trajectories maC(t). 

In this way, the internal quark description, which is required in order to 

understand the power law behavior and angular structure of reactions at large 
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transverse momentum melds into the conventional hadronic description at small 

momentum transfer. This effect, along with the exclusive-inclusive connection, 

“extenis the validity of the correspondence principle proposed by Bjorken and 

Kogut. l6 

Another potentially. important,contribution to the irreducible subprocess at 

large transverse momentum is the ‘tfusion’t process, which has been particularly 

emphasized by Landshoff and Polkinghorne. 10 The important fusion processes 

are evidently q + i - meson + meson*, and q + q - baryon + s. In the first 

case, assuming C is a meson, we compute 

& (q+B - C + X) = GqB(x) g%l+i -c +E*) s’ =xs ’ (15) 
t’ =t 

and then convolute as in Eq. (4) with Gq,A to obtain the full inclusive reaction 

A+B-C+X. 

In addition to quark interchange and fusion, we can also have “reverse 

fusion” based on the process M + m -q+ c. The detected hadron C is then 

emitted along the quark-jet direction, with probability given by the quark frag- 

mentation G 
q/c 

as discussed by Berman, Bjorken, and Kogut. 7 In this case 

the final state contains two jets, and should be analogous to the final state pro- 

duced in e+e- annihilation. Finally, as illustrated in Fig. 4(c), we note that 

the hadron C can be emitted as a decay product from a hadron c of higher 

momentum. However, this is often negligible in high momentum processes 

since the required subprocess must occur at a larger s ab’ and the cross sections 

have power law fall-off in sab at large angles. The Ga,A(x) are also required 

at even larger values of x. 
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By using dimensional counting, the power law behavior of the inclusive 

cross section can be related to the number of constituent fields involved in the 

basic large transverse momentum event. Representative lists of dominant 

subprocesses are given in Table I and II, together with the associated power 

law behavior. Several of the subprocesses have been discussed in detail in 

Refs. 9, 10, and 12. 

These tables are constructed in the following manner. For each inclusive 

process A + B - C + X we first list the minimal exclusive channels X =D (e. g. , 

X is a baryon resonance or baryon B* for M + B - M + X). Using dimensional 

counting at the exclusive boundary u2 fixed, pk - m) we have 

da 
W/ii2 = @2,J2-” f(t/s) ) 

where n is the number of elementary fields in A, B, C , and D. We next identify 

the leading CIM subprocesses (allowed by the exchange or interchange of quark 

fields using the elementary two-field meson and three-field baryon wavefunctions) 

which can connect to the exclusive limit channel (e.g. , M + q - M + q for 

M+B - M + B). For each subprocess we have the contribution [pk - 03, 

E = A2/s fixed] 

E do s do -=- -= 
d3p * dtd./H2 

1 P cc -E 
&IN ’ 

where N + 2 is the number of fields in the subprocess a + b - c + d*, and 

for 8 cm fixed (- 90°, for example), 

P = &a/A) + g(b/B) + g(c/C) + I = 2n spect -1 

where n spect = n(zA) + n@B) + n(zC) is the number of “spectator11 fields. 
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Note the identity 14 

N+P =n-3, 

which is the realization of the correspondence principle. The smooth connection 

between the exclusive cross section (fixed Jd2) and the E - 0 limit of the cor- 

responding inclusive cross section also can provide a rough normalization of 

each subprocess contribution to inclusive scattering. Note that the final state 

hadrons in the exclusive limit channel may recombine, but the resulting contri- 

bution is non-leading for this simpler process because it retains its overall 
2 2-n scaling law (p,) . 

Table I describes hadronic processes and Table It gives typical electrd- 

magnetic processes. The entries that are underscored are the leading sub- 

processes for pi - 03, at fixed Jd2/s. In the purely hadronic reactions, the 

leading subprocess have N = 4. Meson photoproduction has N = 3 and Compton 

scattering has a scale-invariant contribution with N = 2. 

Generally, we expect that for E not near I the dominant subprocesses are 

those that contribute to the exclusive limit channels with the minimum value of 

n. For example, if this conjecture is true, the process B -I- B - B + X will 

have a small (pi)-4 contribution which arises only from the subprocess 

q+q --c B + t. Another particularly important example to check is the process 

B+B + M + X. We emphasize that for E - 0 (e. g. , xT - 1 at 90”) a non- 

leading term in p; may become the most important because of a slower fall 

near E M 0. For B+ B - M + X, we have two main contributions at 90” : 

hl 9 -E 
@“,,” 

+ h2 5 -E 
$;f 

+ 67 &I;=-) . 

off 

Higher powers of E are predicted in certain cases, e. g. if M = K-. 
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The second contribution, which has a smaller sum N f P becomes relatively 

more important as we move toward the exclusive limit. This could readily ac- 

count Tbr why the NAL measurements2 of pp - 7r 4r show a value N - 5.5 for 

XT > 0.4 whereas the JSR measurements at x T ~0.4 for pp -~T’X give the value 

N N 4. We discuss this further in Section IV. Notice that for the second con- 

tribution, a baryon system takes up the recoil momentum of the detected meson. 

For the dominant contribution which involves the subprocess M + q - M + q, 

the recoil momentum is distributed in a “quark jet”. Therefore it may be pos- 

sible to separate these experimentally by examining the details of the final 

states and comparing with the final states in electroproduction. 

Similarly, in inclusive meson photoproduction and inclusive Compton 

scattering, non-leading terms in p;,” may be important in the small E region (see 

Table II). The vector dominance contributions are contained in the non-leading 

processes where the photon acts as a quark pair rather than a single elementary 

field. No specific references shall be made to these processes, but all our 

formulae can be applied to them by using Table II as a guide. 

C. Hadron and Hadron Decay Distributions in a General Frame 

Although the function Ga,A (x) describes the fractional longitudinal momen- 

tum probability distribution in a frame in which pA - 00, in fact, it is possible 

to determine some important features of G from measurements in a general 

frame, including the rest frame of A. This technique may be of considerable 

interest in the study of the decays of systems with a large Q value, such as the 

time-like photon in e+e- annihilation, 25 the (hadronic) system produced in EN 

annihilation, 26 and perhaps the decay of massive coherent states produced by 

diffractive excitation processes. The function Ga,A(x) is introduced to describe 

the breakup of A into off-shell states which include a and the remainder X(a). 
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However, the decay of a very unstable system can reflect many of the properties 

of G, in particular, the threshold behavior. 

g the general case, one can introduce the differential decay rate of particle 

A with mass A for the process A - a + X, expressed in terms of the familiar 

CM variable w = 2 k”,/A, as 

dr d dw= a/AtW) * (16) 

The decay is of course angularly symmetric in the rest frame of A. In order to 

bring about a closer analogy to the infinite momentum frame distributions, it is 

necessary to introduce an arbitrary (but fixed) z-axis and to define x = (ki +kt)/A. 

The decay distribution in this variable is 

dr 
az = Da,A(X) = ,: do (U” - 5) -1’2 da,A(ti) B (U -x - --$-, . 

The x distribution is peaked at x = a/A, and vanishes if x is too close to 0 or 1. 

The function d a/A( ) w is clearly the optimum distribution to measure experi- 

mentally, but as we shall show in detail, D a,A(~) is in closer analogy to the 

infinite momentum frame distributions, such as G .,,(z), which are used in 

scattering processes. 

Rather than discussing a very general model of such unstable systems, the 

physical point to be made here can be best illustrated by constructing a repre- 

sentative analytic funqtion for the probability distribution using the form factor 

diagram. The probability function is defined by (see Ref. 10 for details), 

1 

dXG ,/,tx) = i 
/ 

d4k d b2 2kl’l q2(k2 - a2)pe2) 

0 ik2 - a212i(pA - k)2 -b2] ’ 
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where the spectrum of “core” masses b2 is chosen to reflect the Regge behavior 

of the forward amplitude%A - aA, i. e. , p(b2) - (b2f, and p(b2) vanishes for 

b2< ,uZ‘but is finite at b2 =p2. The simplicity of this model arises from the 

assumption that the fall off of the vertex function @ does not depend on b2. 

We now introduce the general frame 8,1’7 

PA = (P +A2/4P, TT, P - A2/4P) 

(18) 

k = (xP+(k2+i+‘4xP, cT,xp-(k2 + k;)/4xP) 

and 

where A is the mass of particle A. This defines an arbitrary frame under the 

restriction that A is moving in the z-direction, and y =Qn2 P/A is the rapidity 

of A. The rest frame of A is given by P = A/2 and the infinite momentum frame 

by p-03. The k2 integration can be carried out and one finds 

G a/AtX) = 2(lx- x) / 
d2kT d b2p(b2) Cp2(x S) Lx S] -2 , 

where x must be between 0 and 1 and 

a2 +k -2 

‘(‘i, x) =A2 - - - T b2 +$, 

X l-x * 

This is the distribution function in x, where x = (k” + k”,/(pi + pi ), in the 

arbitrary frame defined by the parameter P. 
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If the vertex function is taken to be C#J (K2 ) = (K2 )lqn, then the CT integration 

can be carried out and one finds 
-2\ 

co 

G a/A(X) a x2-2n 
I 

d b2 p(b2) 

P2 

[S(FT, x)]‘-~~ . 

The limiting behavior of G is then found to be 

G N (l-~)~~-l for x -1 

-a! 
“X forx-0 , 

which is of the correct form and leads to the identification n = n(&), as defined 

in Eq. (8). 

The decay distribution function is most easily computed by evaluating the 

the absorptive part of the self-energy diagram. The total decay width is pro- 

por tional to 

I? a Im i 
I 

d4k db2 p(b2) +2 (k2-a2) 

Ik2 -a2l [(PA - k)2 -b2] ’ 

which, proceeding as before, becomes [S = SFT , y)] 

IT a Im 
J 

* d2kTdb2 
1-Y db2) $2cYS) [YSI-’ . 

If $I is chosen as before, then the kt integration can be performed and taking 

the imaginary part (A2> - A2 - i E ) yields 

r a /: dy y2-2n Irn 

P2 

db2 p(b2) (-)zn-’ 6(2n-3) [S(TT,y)], 
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where the (Zn-3) derivative of the delta function must be evaluated. The argu- 

ment of the delta function allows the identification of y as the familiar (center 

of mzss) variable w, i. e. , y = w = 2E /A. Then the differential rate is a 

2n-2 o(2n-3) lb2(w)l 
, (19) 

where b2(w) = (1 - w) (A2 - a2/w) L p2 and the (2n-3) derivative of p(b2) is 

needed. This threshold behavior is not the same as G a /A(x) b ecause the w 

variable is essentially a radial variable in the spatial momentum of particle a. 

It may be interesting to fit data with the model form of Eq. (19) which predicts 

relations between conjugate values of w, i. e. , those values of w which produce 

the same value of b2(w). 

One should also note that if the distribution p(b2) has a delta function con- 

tribution (corresponding to a two particle decay mode) the corresponding value 

of w is fixed kinematically so the above distribution function is not interesting. 

We are assuming, in effect, that there is an extended type of “duality”, in 

which there is an effectively smooth mass distribution function p(b2) which 

describes the decay at any fixed w value. This assumption clearly improves 

as the ratio (A/g) increases, which allows many particle decay modes to occur 

and to dominate. 

The corresponding infinite momentum-like distribution is achieved by de- 

fining a z-axis arbitrarily and projecting all events onto this axis. Introducing 

the variable x as before, the differential rate is (neglecting final masses for the 

moment) 

1 
dr 
dx zz D ,/,tx) = g da,A(W) 
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and one finds that as x - 1, 

D a/A(X) - (l- x)2n-1 . 

This is the same threshold behavior as we found for G aiAtx)’ The -se 

behavior of p(b2) may not play a role here because the maximum value of b2(w) 

that can be reached occurs for w = a/A, and bkax - (A - a)2. This may or 

may not be in the Regge region, depending on the dynamics involved. 

One sees that a measurement of the decay functions d a/Atm) and Da/A(X) 

can provide important information on and confirmation of the dynamical assump- 

tions used in the CIM. For example, the prediction for the process NR - nX 

is n@Nw) = 2, and hence D a,NRtX) - t1-x?’ The predictions of the process 

e+e- -c 11 Y l! - TX is n(rrr) = 3/2 if the photon is regarded as an elementary 

field, and n( rr) = 2 if the photon is completely described by vector meson 

dominance. The wdistribution d n,r(w) is predicted to vanish ‘as (l-w)‘, which 

is the expected behavior in a parton model for vr2(w). We note, however, that 

the threshold behavior can be modified by spin effects. Various model calculations 

for VW; have been reviewed by Z. F. Ezawa, Ref. 14. 
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III. THE EXCLUSIVE-INCLUSIVE CONNECTION 

In this section we shall investigate the connecting links between the exclu- 

-sive Z?ross section and low missing mass-inclusive processes. Further, we 

will derive correction terms to the usual triple .Regge formula which are re- 

quired in order that the triple Regge cross section will have the correct ex- 

clusive limit at any momentum transfer. 

Let us consider the inclusive process A + B - C + X near the exclusive 

limit (E = A2/s << l), of the Peyrou plot, and we will choose xL > 0. 

we can ignore hadronic bremsstrahlung from A; only the contribution 

G 
a/A 

K 6aAS(l-x) needs to be considered. 

Let us first consider the case of large transverse momentum with 

Thus 

E <cl, 

XL > 0. Of the subprocesses shown in Fig. 3, the simple interchange sub- 

process of Fig. 3a based on A t- q - C + q is generally most important. Using 

Eq. (4) we have for 

R= da S2 s-z do 

d3p/E 
7- dtM2 

(21) 

the contribution 

1 S2 
i? s-tu x Gq/B(x) dt da (A+q-C+qcy) (22) 

(A summation over contributing quark types is assumed. ) The function G 
q/B 

includes the reducible contribution from the fragmentation of the target B. 

As we have noted, the quark-hadron cross section in the CIM takes a 

simple Regge form (s 1 - 00, t - W) 

-$- (q+A--+q+C) 1 
aA&) 

= y(t)t-u’) + 7 (t)t-s’) cyAc(t)12/sr2, (23) 
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where for large -t, the trajectory function a! AC approaches the negative integer 

czAc(-w) = 1 - (nA + nC)/2 and y(t), y(t) become asymptotically constant. For 

examze, for quark meson scattering, we have the limiting behavior 

Qp(- m) = aI=l (- W) = -1. [Alternatively, as developed in Ref. 8, we can ob- 

tain the asymptotic trajectories of’the q + A - q + C amplitude from the power law 

behavior of the form factors of A and C, assuming a quark-core bound state 

model for the hadrons. ] As the momentum transfer becomes smaller, the 

contributions from virtual hadronic bremsstrahlung (as shown in Fig. 3c) 

reggeize the amplitude and move the trajectories and residue functions away 

from their asymptotic value. This effect has been computed and examined in 

detail in Ref. 17. The detailed manner in which the 01 (t) and y(t) approach their 

limiting values, although not needed for our discussion here, can be computed. 

The effects due to the coupled channel effect of the Reggeization process is 

sometimes important, especially for the cases in which A and-C are both baryons. 

In general, we can treat aAC (t) as an effective trajectory, constrained to fit its 

experimental value at t = 0 as required by the analyses of exclusive processes, 

and its asymptotic value at t - - 03 determined from constituent s true ture. 

For the form of the quark structure function, we use the simplified structure 

xGdB (x) - F2B(~) = x 
‘-B(O) 

(l-x,2 B-1 (24) 

with ~~(0) N 1 representing the Pomeron behavior, and the threshold behavior 

given by the Drell-Yan relation for the form factor 

FB(t) N (-t)-B D 

Dimensional counting gives the value of B: 1 + B = number of quark fields in the 

simplest configuration in the state B. 
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The inclusive cross section then becomes 

1-~~(0) 2 2aA@) 
X 3 (-xu) 

- 
= s 

(25) 

where for simplicity we only display the y(t)(-u’) 
aAC tt) 

contribution. Note that 

Rr gives the Reggeized inclusion cross section including the reducible contri- 

butions from the target B, but contains only the virtual hadronic bremsstrahlung 

contributions for A. This is, of course, the same as the single diffractive 

scattering terms in ordinary Mueller-Regge analysis. 

In the triple Regge region, defined by the conditions s N I u I > > J,Q’~ > I tl , 

Eq. (25) achieves the familiar form 

(26) 

where 

$ (-t) 
2aA$) - aB(o)-l 

Note that in the triple Regge limit, the threshold behavior of F2B(~) is irrelevant 

since x = -t/(&l2 - t) - 0. 

In contrast, the exclusive limit of Rr is attained by integrating over a finite 

range of small values of the missing mass J&Y’. In this region, the threshold 

behavior of FZB (x) is crucial, and one finds 

2aA$) 
. (27) 
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This gives the correct exclusive Regge form and the correct large angle limit 

for the exclusive cross section. The complete signatured Regge trajectories 

are re^stored when we include the y(t) (-s’) 
aA&) 

terms in Eq. (23). 

This smooth joining of inclusive to exclusive scattering is the strong inter- 

action analogue of Bloom-Gilman duality as was discussed in Refs. 8 and 16. 

This kinematic region requires values of x near 1 and hence depends sensitively 

on the threshold behavior of F2B(~). S ince the triple Regge limit does not retain 

this behavior, it will not join smoothly onto exclusive scattering. To clarify 

this point, note that if we expand the structure function of the target, 

c;-t)2B-‘= (I+ -$-y’-’ = 1+(2B-1) --& +... 

then we see that this correction factor gives rise to contributions to the triple 

Regge formula at a,(O), oB(0)-1, oB(0)-2, . . . , with residues in the ratio 1, 

(2B-l)t, . . . . The proper threshold behavior is then seen to require the co- 

operative effort of at least 2B trajectories. These correction terms are im- 

portant in the small &ti2, large t sector of the triple Regge region. This is 

another example of how a power law fall+ff of amplitudes in the deep scattering 

region forces relations between the residues and trajectories of the leading and 

non-leading Regge contributions. 

Note that for fixed A2 and t, with s - 03, the threshold dependence of Rr, 

f d6Z2 n(t) = en(t) 
Rr”\ s > 

, E- o 

is related to the leading Regge behavior in the KC channel: 

ntt) = @,(‘) - 2aAC(t) 

ei 1 
- 2aACtt) l 
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This is in agreement with the t = 0 result obtained by Feynman, 27 Mueller, 19 

and Bjorken and kogut. 16 
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IV. THE INCLUSIVE CROSS SECTION IN THE INTERIOR REGION 

Except for the limited region where E - 0, that is throughout the entire 

cezral region of the Peyrou plot, the effects of hadronic bremsstrahlung from 

both the projectile A and target B must be taken into account. We can write the 

full cross section in the form 

R, (A+B -C-+X) = 
H J 

1 
dz 
-ii- GH/A (z) RJR + B - C + X’ 

zO 

) (29) 
s’ =zs 
u’ =u 
t’ =zt 

where zo=-u/(x + t), and Rr is the cross section discussed in Section III for the 

scattering of the hadron-irreducible states H. The subscript c indicates the 

central region cross section. Note that the symmetry between the particles A 

and B is not explicit in Eq. (2 9). However, in the forward direction, this is 

convenient form since it allows an expansion in the natural Regge trajectories 

in RrI-I + B - C + Xl). In the backward direction, one must interchange the 

roles of A and B. Both expressions must be used and will smoothly merge in 

the region near 90”. 

Using Eq. (25), which is based on the underlying subprocesses of Figs. 3a 

and 3c, we have for xL > 0 and pk large, 

Rc(A -I- B -CCX) = c /B(O) 
2 x1 

(‘*B(‘)) 
(1 

2 B-l 

H 
-9 

pT 

1 
dz G 
Z2 

H/A(Z) 
(~::3 2B-1 (r-;) aB(o)-za,c(zt1Y2(ztJ 

zO T 

(30) 
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where the dimensionless variables are defined by 

x1 = -u/s, x2 = -t/s 

x1 
z. = 0-q ’ 

5 = m2/s =1-x -x 1 2 

As usual, the particle masses have been ignored. The longitudinal fraction xL 

(Feynman x) and xT are given by 

=x -x xL 1 2’ 
2 

XT =4x1x2, E 2 u2 = l-(x;+xL) (31) 

and the inverse relations are 

2x1 
2 112 = (x;+xL) + x 

L 

2x2 
2 l/2 = (x;+xL) - XL 

Let us now examine Rc in several kinematic limits in order to compare the 

behavior of the various contributions ,, In the central Regge or pionization region 

defined by 

1 

x1’x2-o z ( ) 
i.e., 

E -1 2 
, pT w constant , 

we obtain for large p: , 

c ‘I2 bAt”) + aB(o)l 
Rc = 

S 
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where 8 cm = tan’1 (xT/xL) is the center of mass scattering angle and the 

trajectory ZHC = oHC(zt) has been evaluated at some average point z of the 

interal (z It I > xL It I = pi ). The fragmentation of both A and B contribute 

equally to the Regge behavior of Rc - s 
&A(O) + bB(‘) 1 

-S, as expected. 

The leading contributions to Rc for the process p + p - 7~ f X will be the 

quark-meson scattering subprocesses (see Table I) with 

zHc(- co) = cYMx(-“) = -1 . 

The inclusive cross section also includes background terms arising from the 

subprocesses 

and 

q + (ml - M + B* 

q+B-q+B* 

I -M+q 

The total result is of the form 

E da = +- H”(xT, 0 
d3P PT 

cm )+ -& HB(x 

PT 
T’ ‘cm) (33) 

which for ecm N 7r/2 and x T - 1, has the behavior 

Eda- -$- (1 -xT)’ hM + +- (1 -x~)~ hBo 
d3P PT PT 

Detailed calculations” for these subprocesses have been carried out using the 

predicted form of Gx,p(z) a z-l(l - z)~ and F2,,@) cx (1 - x)3- These results 

for eCM - 90’ are in excellent agreement with the recent CERN-ISR data’ and 

in reasonable agreement with the NAL data. 2 The only important undetermined 
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parameters in this prediction are the overall normalizations. There is an addi- 

tional mass parameter 2 - 0. 71/GeV2 which occurs in the assumed meson 

form factors, but the predictions for pT > 1 GeV/c are independent of its 

value. At angles other than 90°, we must include the other topologically differ- 

ent contributions, including the full angular dependence of the quark-meson 

amplitude . That is, both the (ut) and (st) diagrams must be included in the Rr 

amplitude. Reasonable agreement can be achieved with the above form from 

25 GeV/c, O< xL 7 0.5, up to the ISR data at xL = 0. 

It is strongly suggested by the lower energy inclusive data 2,3 that there are 

-12 important contributions for large xT which fall as pT as does the second term 

in Eq. (33). As we have emphasized in Section IIB, these terms may be con- 

tributing a substantial fraction of the measured rate at the large x,(s of the NAL 

data. More extensive data at lower energies would be useful in separating these 

two types of important subprocesses. 

By exposing the internal quark lines and the underlying quark-meson scatter- 

ing subprocesses, one obtains the minimum fall off in pT at fixed E. Conversely 

for fixed pT, with E - 0, graphs with the least possible fragmentation are 

favored. Thus the direct large transverse momentum processes involving the 

incident hadrons can be important but at the expense of a larger fall-off in pT. 

The large xT (or small E ) limit can therefore be quite different from the large 

pT limit. Let us thus examine the behavior of R, in the threshold limit in order 

to establish counting rules which will allow us to enumerate the leading con- 

tributions in the various kinematic regions. 

The leading threshold (E -* 0) behavior of Rc will depend critically on 

whether x2 is large or small, as was the case for Rr. By changing the integration 
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variables-to z =zo + y(1 - z,), where z. =x1/(1 - x2), R becomes 
C 

Rc = c 
H 

(1 - z0)g+2B (1 - x2)2B-1 

+ 1 - 2a! - 2B 
X / 

1 
(l-y)g 

y2B-1 
+ dY [x27) YWz()) 1 

a,(O) 

0 
2(1-a,) + cuA(0)+aB(O) 

il - P-z(-p-Y) 1 rp;+M2 I 
ag-2a! (34) 

with GH,A - (l-z,8 z , and a! =c1! HC(zt). Using the mean value theorem, R 
C 

can be readily estimated; the controlling factors are (a,(O) = 1) 

Rc = s c (2 +p;l@l) E2B+g t1 _ xlJW-~-Eq t1 l-g 
H 

-9 

x (Et5 :y;F )2(1--n) (;l?)2”” , (35) 

where (K = o! (zt), M is a mass characterizing the form factor of particles H 

and C , and we can estimate y = 2B/(2B f g + l), z = (x1 + ye))/(l - x2). More 

generally, the contribution of any irreducible subprocess a + b -. C + d* for 

xL > 0 is given by 

- s p(a/A) + g(b/B) + 1 

1-g(b/B) - 2(1( 
ft&, ecm), 

(36) 

where the large pT power dependence of f can be obtained via dimensional count- 

ing. If x2 is large, which is the case in the transition and deep scattering 
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1 2 regions, then as E -+ 0, r xT >> ye, and 

- 

Rc 

a s EfWAJ + gtb/B) + 1 f(p2 

T’ ‘cm)’ 

Roth a and b carry a large fraction of the incident hadron momenta in this kine- 

matic region. On the other hand, for xc < < 4ye, which is required in order 

to approach the usual triple Regge region, only particle a needs to carry a large 

longitudinal momentum and 

Rc a SE 
IgtdA) + 2 - 2zacl 

f@z,) * (37) 

This can be interpreted as a triple Regge formula with an effective trajectory 

Q!eff(t) = Qac <zt) - $ I1 + g(a/A) ] , 

where z 2 xL + y(1 - xL). Notice, however, that aeff corresponds to a dis- 

connected cut contribution to the inclusive cross section (see Fig. 6) and has no 

analogue trajectory in an exclusive reaction. Note also that in the small miss - 

ing mass region, these hadron-reducible contributions of R, give rise to non- 

leading contributions to the exclusive cross section at fixed ecm. 

We have now identified two potentially important contributions to the triple 

Regge formula : one is important at low missing mass (and provides the correct 

extrapolation to the exclusive limit), and the other, the double bremsstrahlung 

contributions Rc is important at large missing mass (and provides the correct 

extrapolation into the c;entral Regge or pionization region). The situation is 

schematically represented in Fig. 1, where the various regions are labelled by 

the dominant contribution. Some applications will be discussed in the next 

section. 
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Note also that equation (35) predicts that the powers of pk are not fixed but 

should vary with @(Et) (which approaches a negative constant only at sufficiently 
-h 

negative values of its argument). For example, if the region near the lower 

limit on the z integral dominates in Eq. (30), then a! c o (-pt /l - x2), and this 

may be considerably larger than its asymptotic value. Thus the data is expected 

to show a variation in its effective power of pi not only from the above effect at 

small p;, but also from the sum over H which will contribute differing powers 

of Pi and E. 

Finally, we note that the hadronic bremsstrahlung model and the predicted 

form for G(z) allows one to understand in detail the almost kinematical origin 

of the approach to Feynman scaling. For example at xL = 0, Eq. (37) for R 
C 

can be expanded at fixed pT in inverse powers of & , and one finds 

T 
L 4 (Z-l) 

’ ‘T l-(g+2-201) 
2PT . 
- + . . . 

H 2 s /- 1 rH . 
The first term scales in the Feynman sense. The second term can be inter- 

preted as a nonleading Regge contribution and one sees that it has a very large 

r es idue. For example, in the reaction pp - ?rX, g + 2 - 2z = 9. The leading 

trajectories in exclusive and inclusive scattering must be equal; the importance 

of secondaries can be quite different, however, and the resultant approach to 

the expected leading Rcgge behavior can be vastly different in the two cases. 

The above type of kinematic corrections, that control the approach to ultimate 

Regge power behavior, should occur in elastic scattering as well as inelastic, 

and may well be important there also. 
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V. APPLICATIONS TO LOW MOMENTUM INCLUSIVE REACTIONS 

As we have noted, the Rc term, which allows for hadronic bremsstrahlung 

‘fromxe projectile A, plays an important role throughout the entire central 

region, both in the pionization region of fixed momentum transfer (x,, xT - 

- O(l/ &)), and in the large transverse momentum domain (pT - 0(,/s ), 

E = A2/s fixed). Since the normal triple Regge formulae ignore projectile 

fragmentation,it is a natural question whether the reducible processes play a 

significant role in the triple Regge limit (XL - 0, E N 1 - xL fixed) for in- 

elastic processes. As we have shown in Section IV, the Rc cross section cor- 

responding to Fig. 7a, which is based on the irreducible subprocess 

H+B- C + X’, has the threshold behavior E 
g(H/A) + 2P - qc) 

. For the 

diffractive case with H = C, we have at t - 0, R 
(4 

- $m/A) , The threshold 

dependence of the inclusive cross section thus directly depends on the threshold 

behavior of GH,A(~). 28 

In addition, at small t we must also consider the processes illustrated in 

Fig. 7b and 7c. In 7b, the projectile A diffractively scatters into a state H = A, 

which then decays into particle C. In this “diffractive excitation” process the 

probability of diffractive scattering with fractional momentum z is (l-z) oB -2aAA(t) 
, 

and the probability of decay to C is G C,A(~L/~). Hence the overall behavior is 

given by the convolution 

R@) - 

1 
dz(l - z) 

aB - 2aAA(t) (1 _ XL) g(C’A) p) -aA 

- (1 - XL)N (x L - 1) 

where 

(39) 

N = acB + 1 - 2oAA (t) + W/A) . 
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which has the same threshold dependence as R 
(a)’ 

In Fig. 7c, the initial pro- 

jectile emits C along the beam direction and the remaining fragments of A dif- 

fracxvely scatter from the target B. Again this gives the same result 

R4) - 

(1 - x 
Ii 

)@C/A) 

in the threshold region and at t - 0. 

Equation (38) for the threshold dependence of diagram 7a, can be inter- 

preted as yielding an effective trajectory 

oeff = oHC - ; (1 + g(H/A)) (40) 

in place of (Y AC in the triple Regge formula. Although the dominant contribution 

at t - 0 usually arises from the term with H = C, so that occ(0) = 1 (Pomeron), 

one may have to pay the penalty of a large value for g(C/A). For example, in 

the reaction pp - K-X, the choice H = K- = C yields a more rapidly vanishing 

contribution (lower a! eff) than does the choice H = 7r, using the leading strange- 

ness changing ark- (presumably K*) trajectory, since g(K-/p) is four units 

larger than g@r/p). Notice however that the particle which balances strangeness 

is expected to show up in different hemispheres for these two terms, so in 

principle they can be separated experimentally. 

Let us now look at the experimental situation. We shall use the phenomo- 

logical analysis of the data3 from inelastic pp reactions at 19.2 CeV/c and 

30 GeV/c which was carried out by Chen, Wang, and Wong. 29 The comparison 

with the experimental values for the effective trajectory at t = 0 is shown in 

Table III. It should be stressed that in this data, the ratio .,&12/s was not 

small, and hence one should expect corrections of the type that we have been 

discussing. The values given for apC are the usual predictions of the triple 
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&gge formula Rr assuming the conventional trajectories of exclusive processes. 

The predictions for oeff are based on the diffractive contribution to Rc 
h 

oeff = 2 l [1 - g(C/A)l= 1 - n(??A) 

as determined by dimensional counting (see Section II). Nonleading Regge terms, 

such as the rho under the Pomeron, will also contribute, as always. The value 

“eff N -3 in the table for pp - K-p is the prediction assuming orK- M 0. 

Thus we find that the effective trajectory extracted from the data lies be- 

tween the expected triple Regge value a! 
PC 

and (II eff, and the predictions for the 

exotic channels are in good agreement with the predictions of the ClM. We there- 

fore infer that the nonleading terms discussed above are of the same order of 

magnitude as the expected triple Regge terms in this kinematic region. Clearly, 

a more extensive analysis over a larger energy and A2 range is needed before 

any definite conclusion can be drawn. 

Finally, it should be remarked that the correction to the triple Regge term 

in the small missing mass region (see Eq. (25) and the following discussion), 

introduces a dependence on momentum transfer. This can affect the effective 

trajectory that describes the missing mass dependence and may be quite im- 

portant. This should be taken into account in analyses of inclusive data at only 

one energy (or a narrow range of energies) even for quite small values of t/IV?. 
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VI. DISCUSSION AND CONCLUSIONS 

In this paper an attempt was made to unify the description and treatment of 

sing12 particle inclusive scattering throughout the entire Peyrou plot. Important 

(nonleading) corrections to the leading Mueller-Regge analysis were identified 

and described. These terms serve to join smoothly the various regions of the 

Peyrou plot. Two important results are: (a) the correction at large missing 

mass in the triple Regge region arising from the terms that dominate the central 

region and vice versa, (b) the corrections at small missing mass in the triple 

Regge region that allow the amplitude to join smoothly onto the exclusive scatter- 

ing. This connection is valid at fixed angle or at fixed momentum transfer. 

The above remarks are perhaps most easily summarized by our formula 

for the inclusive cross section (A + B - C + X) which in the triple Regge region 

has the typical form 

+ L 
a 

Ha@2,) (&!f-t ) ‘(oBZ) ( J${ ) l+g(a’A) + (A--B) I , 
(41) 

where o = oAC (t), z = o!ac(zt), and for large pb 

Ha& N (2 +p;~~=l) 

‘P (P;, 2 = tM2 +pT) 2(a! - 1) . 

Cross terms between different Regge trajectories and signatures have been 

ignored and only PPP and RRP terms are retained. The trajectories and resi- 

dues must satisfy the limits described in Section II. There is some evidence 
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fromk analysis of inclusive data 30 that there are important contributions 

that increases rapidly as X2/s (= 1 -xL) increases (x T 0.7 say). These do 

not seem to be easily accounted for from the standard PPR, PPR, RRP, RRR, 

rnP and nrR terms. It would be interesting to see ifthe additional contributions 

are consistent with (41) and extrapolate to small xL and to large pT with the 

proper normalization required by the data in these regions. It should be 

noted that for very small t and 1 - xL, our approach is not incompatible with 

conventional duality arguments for inclusive processes. Duality for exclusive 

processes is discussed in Ref. 17. 
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To amplify our general result further, the inclusive cross sections, at large 

angles in the center of mass, for the processes pp - Cx, where C = r, p, 5, 

K ~5. , are expected to be of the form 

Ek = 2-4 

d3p 
tm2 +,pT) 

2 -6 
Hl(xTp 0) + lrn2 + pT) H2(XT, 0) +.a. , 

where the variable dependence of the H’s are predicted by the theory and can be 

read off from formulas given in the text for large x T. Hz is expected in general 

to vanish less rapidly than HI as E - 0. At fixed XT, the second term will vary 
-6 as -s while the first term varies approximately as -s -4 . The presence of 

these types of terms will show up clearly by comparing experiments done at 

Serpukhov, NAL and ISR energies. Note also that the correction terms in the 

triple Regge region given in Eq. (41) are the same terms that dominate the large 

pT region. Hence one should be able to normalize them in one region and test 

this aspect of the theory in the other kinematic domain. The above form for 

the inclusive cross section, with the E dependences for HI and Hz as predicted 

by dimensional counting, gives a good description of the inclusive data from 

pL N 25 GeV/c to the ISR range for pT 7 0.7 GeV/c. The xL dependence of the 

lower energy data is also reasonably fit in the range 0 < xL < 0.5. 

One property which is unique to the CIM is the prediction on the basis of 

quark counting that all ftsimilar’l processes should have approximately the same 

differential cross sections at fixed angle; for example, all meson-baryon cross 

sections should be of the same order of magnitude at 90’) that is, 

do(TP - V) = dc@+p - K+X+) M dfip + Kp) M &,fnp N PP) = 

d&rp - Ton) NN d&p - nr) M d&p - e), etc. 
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It therefore follows that the inclusive production of various mesons and the low 

mesonic resonances will all be of the same order of magnitude in pp collisions, 

away^from the exclusive limit which is controlled by the threshold behavior of 

the G(z) functions involved. The decay of resonances can provide an important 

source of lower momentum pions as discussed by Bjorken and Farrar. 31 

In this paper a general treatment of the probability functions G a/A(Z) was 

given based upon dimensional counting and the concept of reducible and irre- 

ducible graphs. The predicted properties of the G’s can be tested experimentally 

by measuring the inclusive cross sections near their exclusive limit (including 

the fragmentation region),by measuring the particle ratios in the same region, 

and by measuring the single particle decay spectrum of very unstable systems 

(such as BE and e+e-). The important subprocesses which control large pT 

reactions can be further identified by measuring the associated multiplicities 

and the distribution of quantum numbers in the final states. 

The structure of our formulae for inclusive cross sections has a simple 

physical basis and interpretation. The leading power, N, of pi2 measures 

the minimum number of elementary fields that must be involved in the basic 

high pT subprocess. The leading power of E on the other hand, P, measures 

the “degree of forbiddeness” of the transition - that is, the amount of brems- 

strahlung that must take place in order to produce the observed final particle 

via the given subprocess. These two powers are not independent in the CIM 

since they must satisfy the relation N + P = n - 3, where n is the-minimum 

number of fields in the corresponding exclusive limit channel. The system of 

counting rules provided by the CIM plus dimensional counting yields the simplest 

possible formulae which are consistent with the observed power laws and the 

constraints of continuity with low-pT processes, exclusive processes, etc. 
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The theory thus sets a pattern for the expected behavior of strong interaction 

processes throughout the entire Peyrou plot, and predicts in a precise way that 

inclusive cross sections will depend critically on the quantum numbers of the 

detect:d particle and the beam particle. 

One of the main virtues of the CIM is the large number of testable predic- 

tions that follow from its calculational rules. However, it should be stressed 

that the CIM is a model and its calculational rules were introduced such that 

they are both simple and definite, and in addition, are reasonable in terms of 

more familiar theories. These rules need to be derived from a more funda- 

mental theory of hadronic matter which incorporates a mechanism for permanent 

quark binding. We assume that the very unusual property of the force that will 

not allow the constituents ta escape will also explain the rule that constituents of 

different hadrons do not interact directly. 32 

This rule may be difficult to derive from a conventional standpoint. How- 

ever, it is necessary empirically in order to remove possible “hard” vector 

gluon exchanges from the theory which could predict a s -2 
behavior at fixed xT 

in the inclusive cross section. It was originally introduced to explain the 

differences in the behavior at large angles of the differential cross sections for 

pp and pp, and also K+p and K-p at quite low energies. In any case, the con- 

stituent interchange graphs must be present in any constituent theory. We 

assume that they dominate the amplitude and thereby achieve a model with con- 

siderable predictive power. 

Recently Landshoff 
33 

has noted that in models which allow gluon exchange 

between hadrons , the multiple (Glauber) scattering of nearly on-shell quarks 

will dominate hadron-hadron scattering processes at fixed angle. If gluon ex- 

change between the quarks is scale invariant, then this ampliltude leads the di- 

mensional counting contributions by the power (&)N-l where N is the number 

of on-shell quark scatterings. However, in the CIM, gluon exchange between 
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quarks of different hadrons is not allowed, and these contributions do not arise. 

A very interesting argument has also been presented by Polkinghorne. 34 He 

noteslhat in neutral vector gluon exchange models, higher order graphs give 

an exponential factor exp (-a! log2s/h2) which suppresses on-shell quark-quark 

scattering. However, the interchange graphs, since they involve off-shell 

wave functions, may still obey dimensional counting in this type of model. 

In summary, the main physical predictions of the CIM basically arise from 

the power fall off of the hadronic wave functions. 
35 

In contrast to the typical 

exponential behavior of conventional Regge amplitudes, this allows us to con- 

tinue simply from one Regge region to another, and to the region of large trans- 

verse momentum in both inclusive and exclusive processes. The CIM appears 

to reflect correctly the behavior of hadronic matter at short distances and its 

essential degrees of freedom. Further experimental tests are necessary in 

order to define precisely the limits of validity of the model. 
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TABLE I 

Inclusive Process 
Exclusive Limit 

Channel Subprocesses 
da (e - 90°) 
d3w’E 

M-r-B-M+X M +B-+M+B* M +q-M+q (P,2)-4e3 

(n = 10) ;;+B --M+w (PJy6E1 

M +B -M+B* (P,2)-82 

B + BdB+X B+B-cB+B* 

(n = 12) 

B+ B+B+B*+M* 

(n = 14) 

B-?-q aB+ 

(qq) + (qq) 3 B + q 

B + (qq) - B + q4 

B+ B*B+B* 

q+q -cB+ 

q + (clq) - B + M* 

(qq) + B - B + M* * qq 

B + B-B+ B*+M* 

The expected dominant subprocesses for selected hadronic inclusive reactions at large transverse momentum, 
The second column lists the important exclusive processes which contribute to each inclusive cross section at 
E - 0. The basic subprocesses expected in the CIM, and the resulting form of the inclusive cross section 
Eda/d3p - (pf)-“E’ for pf - 00, E - 0, and fixed 0 cm are given in the last columns. The subprocesses that 
have the dominant pI dependence at fixed E are underlined. For some particular final state quantum numbers, 
the above powers of E should be increased. 

continued 



Table I - continued 

Inclusive Process 
Exclusive Limit 

Channel 
da (6 - 90°) ’ 

Subprocesses d3p/E 

B+B-M+X B+B-+M+B*+B* q + (qq) - M + B* 

(n = 14) q+B- q(+M + q) + B” 

q+ B-M+q+B* 

(WI) + B - M + B* + qq 

B +B-M+ B*+ B* 

B +B+M+M*.+B*+ B* 

(n = 16) 

M +q-+ M+q 

4’9- <(-M +G) + B* 

q+q-M+B* -k; 

‘M +B -M+B* 

B +B-,M+M* +M*+B* +B* qt-q-M+M* 

(n = 18) q+M- q(-M +q)+M” 

B+B-d+X B+B-z+B*+B*+p 9 +q-B* +?j(-E+qq) 

(n = 18) q+q-B*+B+qq 

‘J + (qq) - ii? + B* + B* 

(Pi” ) -6 2 

(PJ) -6 E5 

(P,2,-8E3 

(pf ) -lo2 

(PI ? 
2 -126-1 

(Pf ) -46g 

(P,2) -46g 

(PJy6 2 

(Pf)-8~5 

(Pf ) -421 

(pf)-421 

(PL2)-4c11 

(PJ-5-8c7 

(pf ) -lo2 



TABLE II 

Inclusive Process 
Exclusive Limit 

Channel Subprocesses 
da 

d3P/E 
(e - 9oP) 

y+B--y+X y +B-? +B* Y +q- y +q 

(n = 8) y +B-y +B* 

Y +B-y 4-B" -i-M* q + (W) - B” + y (P,2)-5E2 
(n = 10) q+B-BB” +y +q (PfF7E0 

<+q+M+y (p,2F3r4 

Y + &N) - B” +y +s 

Y +B -M-+X y +B-M+B* y +-cl-- M +q (PT)“E3 
(n = 9) 4+B -M+qq (P;F6Eo 

y +B-M+B* (P;)-V 

y +B- M + M* + B* Y + w8 - B*+ M+q (P,2F7E l 
(n = 11) c+q-M++* (P,2F4E4 

q + (w) - M + B” (P,2F6E2 
The expected dominant subprocesses for selected electromagnetically induced reactions at large transverse momentum. 
(See Table I) 

continued 



Table II - continued 

f 

Inclusive Process 
Exclusive Limit 

Channel Subprocesses 
do (e - 9o”) 
d3p/E 

y -t-B---B+x y +B-+B+M* Y + 0x0 - B + s (p,) 
2 -5E1 

(n = 9) q-I-B-B+q (Py co 

y +B---B+M* (P;)-7E-1 

y t-B- B + M* + M” q-f-q-- B+q (P,2)-4E4 
(n = 11) y ‘q-B+?@j- (PyP 

I Cl + (qq)-B + M* 
s 

(P,2)“E2 

I 
e+ B-e+X e+B-et-B* e+q- et-q (P,2)-2E3 

(n = 8) 

e+B- e+B*+M*+M* 

(n = 12) 

e+<- e+Tj (P,2)-2E7 



I 

C 

P 

+ 
77 

n-- 

K+ 

K- 

TABLE III 

EE ffeff 

00 -1 aporn= ?ijy, 

QN = -0.4 -2 

“A = +0.2 -2 

? (- -1) -2 

exotic N- 3, 
P -3) 

i exotic 
P -4) 

-5 

%P (Ref. 29) 

-0.1 

-1.3 

-2.0 

-1.1 

4 -3.6 

- 5.7 

Regge behavior for the inclusive process p + p - C + X. Column II gives 

the expected dominant Regge exchange at t = 0. The predictions of the 

CIM for the exotic trajectories Q 
PK- 

and a! - 
PP 

are given in parenthesis. 

The quanity aceff, as computed using Eq. (40), describes the behavior 

of R,. The final column gives the experimentally observed effective 

trajectory as analyzed in Ref. 29. 
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FIGURE CAPTIONS 

Fig. 1 Schematic representation of the various kinematical domains within -h 
the Peyrou plot for the inclusive reactions A f B - C + X. The cross 

section Rr discussed in Section III connects smoothly onto the triple 

Regge formula for inclusive reactions and the exclusive cross sections 

in both the fixed t Regge limit and the fixed angle deep scattering 

region. The cross section Rc, discussed in Section IV, should dominate 

the interior central region of large missing mass. 

Fig. 2 The general decomposition of inclusive reactions. The overall inclusive 

process A + B - C + X is written as a sum of hadron-irreducible pro- 

cesses a + b - C + d*. 

Fig. 3 The interior structure of the irreducible subprocess a + b - C + d*. 

Fig. 4 The decomposition of the structure function VW 
2P 

(x) into its hadron- 

reducible and hadron-irreducible components. 

Fig. 5 The virtual hadronic bremsstrahlung, which gives rise to full Regge 

behavior in the CIM. 

Fig. 6 The disconnected cut-contributions to the inclusive cross section which 

arise from hadronic bremsstrahlung from both projectile and target. 

The nature of the final state is shown in Fig. 6a. Alternatively, the 

inclusive cross section can be expressed as a Mueller discontinuity of 

the amplitude illustrated in Fig. 6b. 

Fig. 7 The three major fragmentation contributions to the inclusive cross 

section A + B - C + X for x L - 1 which are discussed in Section V. 
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