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ABSTRACT 

The computation of a real Hadamard (or Walsh) transform can be 

simplified by first computing a pseudotransform, employing an easily 

derived auxiliary matrix each of whose elements is either 1 or 0 (in- 

stead of 1 or -l), and then applying some very simple linear corrections 

to obtain the desired transform. The auxiliary matrix is not orthogonal, 

so its square, unlike that of the Hadamard (or Walsh) matrix, is not a 

scalar matrix, However, subject to one easily satisifed restriction, it 

has an inverse, which, within a scalar multiplier, differs from that of 

the Hadamard (or Walsh) matrix of the same order in only a single 

element. 

{To be published in IEEE Transactions 
on Elec tromagnetie Compatibility) 
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Introduction 

Czmputation of Hadamard transforms by hand is very tedious, but not every 

engineer has instant access to a computer and individual assistance of a pro- 

grammer . A hand or desk calculator is of much. help, but it is so easy to com- 

mit sign errors that even then the task is tedious. The methods developed 

herein alleviate these difficulties appreciably, yet the computations are exact, 

not merely approximate D Although their objective is to simplify hand computa- 

tion, they may also be beneficially applicable to machine programming. 

In matrix form the Hadamard transform F of a discrete-data function f is 

F = Hf (1) 

where the real Hadamard matrix H is a square orthogonal matrix of order 4 m 

(where m is a positive integer), each of whose elements is either 1 or -1, and 

F and f are column matrices of 4 m elements [ 11 a In the following development 

the Hadamard matrices include the Walsh matrices W of order 2” (where n is a 

positive integer), and the formulas can be modified to apply to the Walsh trans- 

form specifically by making the simple substitution 

(2) 

* and by writing W in place of H. 

It is customary to arrange the rows and columns of W (4m = 2”) in some 

standard order, such that all the elements in the 0-th row and 0-th column of 

W are P, and such that W is symmetric and possesses certain other desirable 

structural properties [ 21 D 

The more general H (4m # Zn) does not possess all of these special proper- 

ties, and as yet no standard form has been suggested. It is convenient and 

always possible, of course, to make all the elements in the 0-th row and 0-th 

column 1. It is also convenient, if and when possible, to make H symmetric. 
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It can be shown that by modifications of Paley’s methods [3] it is possible 

to construct all known Hadamard matrices of order 200 or less, except at most 

four (92, 156, 172, and 184), in symmetric form, with all elements in the O-th 

row and 0-th column 1, and with the same number of l’s as -1’s on the princi- 

pal diagonal [4]. The four possible exceptions are of the Williamson type 151, 

which the author has not yet studied thoroughly. The only orders 200 or less 

for which Hadamard matrices are still unknown are 116 and 188. 

However, these details are irrelevant herein, except one restriction that 

will be introduced in due course. The Hadamard (or Walsh) functions may be 

in any desired order, and the set (although not individual functions) may be 

shifted if desired. In other words, the rows and columns of H may be per- 

muted arbitrarily, and H may be either symmetric or asymmetric. In the fol- 

lowing development it is assumed that the rows and columns have been so per- 

muted that H is asymmetric and that all the elements of some row r and some 

column c, not necessarily the 0-th, are all 1. The resulting formulas can be 

simplified slightly in obvious ways for either or both of the special (and more 

customary) cases . 

Simplified Computation of Transform 

The computation of (1) can be simplified by first computing a pseudotrans- 

form 

X = Af (3) 

employing an auxiliary matrix 

A = $(H+U) (4) 

where U is the universal matrix, a square matrix of order 4m all of whose - 

elements are 1, and then applying some simple linear corrections to X to 
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obtain F, using (1) rewritten as 

h F = (H+U-U)f 

= {2[+(H+ U)]- U}f 

= 2Af - Uf 

= 2X - D (5) 

where the correction term 

D = Uf (6) 

is a column matrix all of whose elements are simply the algebraic sum of all 

the elements of f. Thus the spectrum F is obtained by simply multiplying each 

element of X by 2 and subtracting an easily determined constant from it. 

The computation of (3) is much simpler than the direct computation of (1)) 

because there are no signs of products to account for, only signs of terms, and 

also because nearly half the elements of A are 0. (In fact, if negative Hadamard 

or Walsh functions are used - i.e, , if every row of H is first multiplied by -1, ,_,’ , ,, ._. I ., ,’ . . 
which is permissible because the orthogonality of a matrix is invariant to ele- 

mentary matrix operbti 
i”?, 

- more than half the elements of A are 0, The re- 
I 

sult is simply a nega&ye transfo’rm, which can be corrected if desired simply 
.: % .._l,_*L--* 

by changing the sign of every element in F.) 

These features of A facilitate hand computation of transforms of somewhat 

higher order than can be done efficiently using H directly. 

Simplified Computation of Inverse Transform 

The inverse transform 

f = H-l F (7) 

can be obtained in essentially the same way. Because H is orthogonal 
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H-l = (4m)-’ Ht (8) 

whereRt denotes the transpose of H. The computation of (7) can be simplified 

by first computing a pseudotransform 

x = AtF 

employing the auxiliary matrix 

At = $ (Ht + U) 

(9) 

(10) 

where, because all of the elements of U are 1, 

u = ut (11) 
and then applying some simple linear corrections to x to obtain f, using (7) re- 

written as 

f = (4m)-l(Ht+ U-U)F 

= (4m)-’ {2[i(Ht + U)] - U}F 

= (4m)-1 (2AtF - UP) 

= (4m)-1 (2x - d) (12) 

where the correction term 

d = UF (13) 

is a column matrix all of whose elements are simply the algebraic sum of all 

the elements of F. Thus the function f is obtained by simply multiplying each 

element of x by 2 and subtracting an easily determined constant from it, and 

then multiplying each element of (2 x - d) by (4m)-‘. 
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Jnverse of Auxiliary Matrix 

For a largely qualitative study in which the interest is more in relative -c, 

than in absolute magnitudes, the pseudospectrum X from (3) may be adequate 

without the correction (6)) inasmuch as X is but a linear distortion of F. In 

such a case it is desirable to be able to obtain the inverse transform directly 

from 

f = A-IX ( 14) 

The only restriction (alluded to earlier) is that H not contain a row and/or 

column all of whose elements are -1, because A would then have a row and/or 

column of all whose elements are 0, and, thus being singular, could not have 

an inverse e 

Because A is nonorthogonal (as can be verified readily by inspection of any 

simple numerical example), A -1 , unlike H-l, does not satisfy such a simple 

. relation as (8). It can be shown that if A is nonsingular, . 

A-l = 2(4m)-1 Ht - k(4rn)-l (HUH)‘] (15) 

Later on (15) will be rewritten in a form-more suitable for the desired compu- 

tational purpose 0 

To verify (15) assume that 

A-l = 2(4m)-1 - k(HUH)t 1 
where k is a constant to be determined. From (4) and (16), 

AA-l = (4m)-l(H + er) b” - ~(HuH)~] 

which, upon expansion and substitution of (ll), can be written 

(16) 

(17) 

AA-l = (4m)-l { HHt + UHt - k (HHt)(UHt) 
C 

+ (UHt)2 11 (18) 
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As is well known, or as can be obtained by premultiplication of both sides of 

- (8) by 4@, 

Hd = 4mI (19) 

where I denotes the identiw matrix. Upon substitution of (19)) (18) becomes 

AA-I = I + (4m)-l TJHt - 
I 

k[4mUHt + (TJE+)~]] (20) 

Now, if u,, denotes the elements of U, and ht those of Ht, the elements of UHt 
jk 

are 

4m-1 

Pik = c 
u ht ij jk 

j=O 

Since all the elements of U are 1, and since all the elements of one column of 

Ht (say the c -th) are 1, while all other columns of H contain an equal number 

‘of l’s and -l’s, (21) reduces to 

. 4m-1 

Pik = c 
j=O 

(i, k = 0, 1, D *. 4m - 1) (21) 

h 6 jk kc = 4m dkc 

t 

(22) 

where 6kc is the Kronecker delta. Thus UH’ is a square matrix of order 4m 

all of whose elements are 0, except in the c-th column, all of whose elements 

are 4m. 

If qik are the elements of (UHt)2, then it follows from (22) that 

4m-1 ’ 4m-1 

91& = 
c 

Pij Pjk = c ‘ij 6jc pjk 6kc 
j=O j=O 

4m-1 
= P. 1c c ‘jk 6kc = (4m) 

2 
6kc 

j=O 
(23) 

-7- 



Thus (UHt)2 is a square matrix of order 4m all of whose elements are 0, except 

in the c-th column, all of whose elements are (4m)2e Consequently - 

(UHtj2 = 4mUHt 

and (20) can be written 

AA-I = I+ (4m)-l 1 - 2k(4m) 1 UHt 

IfA and A-l ’ m (17) are interchanged, the resulting equation is 

A% = I + (4m)-’ 1 - 2k(4m) 1 HtU 

(24) 

(25) 

(26) 
L 

in which the roles of rows and columns are interchanged, and HLU is a square 

matrix of order 4m all of whose elements are 0, except in one row (say the r-th), 

all of whose elements are 4m. 

It can be seen from (25) and (26) that if 

then 

AA-I = A-$ = 1 

and (15) is verified. 

Simplified Computation of Pseudotransform 

For computation (15) can be rewritten in a more suitable form by observing 

that HUH is a matrix all of whose elements are 0, except a single element. If 

h ij’ ujk’ and Q denote the elements of the respective factor matrices, the 

elements of the product are 
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4m-1 4m-1 

-cI ‘ii = x L hij ‘jk hkJ 
j=O k=O 

4m-1 4m-1 = c h’.. u 11 jk c hke (i, d = 0, 1, m ., . 4m-1) (2% 
j=O k=O 

Since all the elements of U are 1, and since all the elements of one row of H 

(say the r-th) are 1, while all other rows of H contain an equal number of l’s 

and -l’s, 

4m-1 4m-1 4m-1 

sic = mz hrj c hM = 4m6rj c hke 

j=O k=O k=:O 
(30) 

and since all the elements of one column of H (say the c-th) are 1, while all 

other columns of H contain an equal number of l’s and -l’s, . 

4m-1 

% 
= 4m6 

r j III hkc 
k=O 

= (4m) 
2 

6rj *kc (31) 

Therefore, 

HUH = (4m)2 6 6 U rj kc (32) 

is a square matrix of order 4m all of whose elements are 0, except the single 

element in the r-th row and c-th column, whose value is (4m)20 Consequently 

(15) can be rewritten as 
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A-l = 2(4m)-1 
C 
Ht - i(4m) (6 rj 6 kc U)t] (33) 

Interestingly as well as conveniently, A-l can be obtained from Ht (within the 

scalar multiplier) simply by subtracting 2m from the single element of Ht in 

the c-th row and r-th column (carefully observing the transposition of 6 rj 6kc v). 

Finally, in essentially the same way as before, the computation of (14) can 

be simplified by first computing a pseudotransform 

y = AtX (34) 

employing the auxiliary matrix At as defined by (lo), and then applying some 

simple linear corrections to y to obtain f, using (14) rewritten as 

f = 2(4m)-l .6 rj kc u)t x 1 
i (Ht + U) 

J 
-‘- f (4m) (GrjSke U)t]x 

= 2(4m)-l (2AtX - UX) - (6rj Gkc U)t X 

= 2(4m)-l(2y - el) - e2 (35) 

where the correction term 

el =ux (36) 

is a column matrix all of whose elements are simply the algebraic sum of all 

the elements of X, and the correction term 

e2 = (“rj ‘k@ u)t X (37) 

is a column matrix all of whose elements are 0, except the single element in 

the c-th row, whose value is the value of X in the r-th row. Thus the function 

f is obtained by simply multiplymg each element of y by 2 and subtracting an 
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easily determined constant from it, then multiplying each element of (2y - el) 

by 2 (4m)-I, 
-h 

and then subtracting from the c-th element of 2(4m)-l(2y - el) the 

r-th element of X. 

Conclusion 

The foregoing formulas are more general than is required in most applica- 

tions. As mentioned in the introduction, the Hadamard or Walsh matrix is 

written most often in some form that is symmetric, with the 0-th row and 0-th 

column those all of whose elements are 1. 

If H is symmetric, then the superscript t may be deleted wherever it ap- 

pears. Also, as mentioned in the introduction, the formulas can be altered 

slightly to apply especially to the Walsh matrices of order 2n if desired, 

simply by substituting (2 ) wherever applicable. 

The reader can readily verify, by means of a numerical example of his 

‘own, the author’s claim that these formulas and methods greatly facilitate the 

hand computation, with or without the help of a hand or desk calculator, of 

transforms of somewhat higher order than can be done efficiently using H 

directly. 
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