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I. INTRODUCTION AND SUMMARY 
h 

One of us (T. K. ) has been involved for nearly eight years in an extensive 

program of evaluating all.6th order Feynman integrals contributing to the 

electron magnetic moment (‘72 diagrams) and the muon magnetic moment (96 

diagrams). ~2~3 This article is a detailed account of the final phase of this 

program, i. e., the evaluation of 50 diagrams of three-photon-exchange type. 

A preliminary report of this work has been published over a year ago. 4 Since 

then, however, we have developed a more satisfactory scheme for handling 

infrared divergences. Hence the approach of this article is somewhat different 

from that of Ref. 4. For this reason we have evaluated all integrals from the 

scratch again obtaining results completely independent of the preliminary result. 

For reference’s sake let us classify the ‘72 diagrams contributing to the 

electron moment into four groups according to the way the vacuum polarization 

subdiagrams appear in them: 

Diagrams containing fourth order vacuum polarization subdiagram. Group 1. 

Four diagrams belong to this group. A typical one is shown in Fig. l(a). 

Diagrams containing second order vacuum polarization subdiagram. Group 2. 

Twelve diagrams belong to this group. A typical diagram is shown in Fig. l(b). 

Group 3. Diagrams containing photon-photon scattering subdiagram. Six diagrams 

belong to this group. One is shown in Fig. l(c). 

Diagrams that contain no vacuum polarization subdiagram. This group Group 4. 

will be referred to as three-photon-exchange diagrams. It consists of 50 diagrams 

of which 22 can be obtained from others by time reversal. A typical diagram is 

shown in Fig. l(d). All distinct diagrams of this group are shown in Fig. 2. 
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In this paper we report on two independent calculations of a4 (6) , the group 

4 contrJbution to the electron anomaly. In the first approach (see Sec. 5) we 

evaluate the diagrams of group 4 separately and combine the results afterwards. 

In the second approach (see Sec. 6) we classify the 50 diagrams into 10 subgroups, 

each consisting of 5 diagrams obtained by insertion of an external magnetic field 

vertex in one of the self-energy diagrams shown in Fig. 3, and use the Ward - 

Takahashi identity to handle the contribution of each subgroup as a single 

integral. 

To set up the Feynman integrals we have made an extensive use of F‘eynman- 

Dyson rules in parametric space described in Ref. 5, hereafter referred to as I. 

Most integrals thus constructed have ultraviolet (UV) and/or infrared (IR) 

divergences that must be subtracted or separated out before they are put on the 

computer. This is carried out systematically by the technique described in 

Ref. 6, hereafter referred to as II. Numerical integration of the resulting 

integrals (having 5 to 7 integration variables) is then performed using the 

integration routine RIWIAD written by Lautrup, Sheppey, and Dufner. 

The results of numerical evaluation of individual integrals are summarized 

in Table II. Values of 4th order integrals needed to obtain the contribution a (6) 
4 

of group 4 diagrams of Fig. 2 to the electron anomaly are given in Table III. 

Combining these results we obtain the result (5.43). The numerical results of 

our second approach based on the self-energy diagrams of Fig. 3 are shown in 

Table V. Together with the 4th order integrals of Table III they yield the result 

(6.29). The uncertainties in Tables II, III, V, represent the 90% confidence 

limits estimated by the integration routine. 

The results (5.43) and (6.29) are in good agreement with each other. However, 

both are outside the error limits quoted in our preliminary report. 4 Although we 
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have not compared them in detail because of different treatments of IR-divergent 

termsLit is plausible that the discrepancy is primarily due to the overoptimistic 

treatment of errors in our preliminary calculation. See Sec. 7 for details. 

Recently 10 diagrams belonging to the groups A and B have been evaluated 

analytically. 11,12 The agreement with the numerical results is very good, 

assuring the soundness of numerical approach. Until analytic evaluations of the 

remaining diagrams become available, the best estimate of a4 (6) is obtained by 

combining the analytic result for the diagrams of groups A and B and the weighted 

average of our two numerical results for groups C, D, E, F, G, and H. This 

yields our final result 

a4 C6) = 0.922(24) (1.1) 

Here, in order to reduce the danger of underestimating the statistical errors, we 

have chosen the error in a way different from others: It is constructed by 

combining the smaller of two errors in each group, instead of using their 

statistical averages. Presumably some of the systematic errors that might be 

present in the RIWIAD itself are also taken care of in (1.1). As is seen from 

Table VI, the diagrams of group D are the major source of uncertainty in (1.1). 

At present there are two other published values for a4 (6): 8 
. 

a4 (6) = 0.943(60) (Ref. 9) (l-2) 

a4 (6) = 0.74(6) (Ref. 10) (1.3) 

To establish the value of a4 (6) beyond any doubt, it is essential to compare all 

different calculations in detail. In Table VI we compare our two calculations. 

Furthermore, in Table VII we give a detailed comparison of our first calcula- 

tion (Sec. 7) with the Refs. 9 and 11. In spite of the vastly different approaches, 
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the agreement between all these calculations is in fact very good. 

Fs completeness we list the results for other groups: 

Group 1 

(Ref. 13) 

(Ref. 3) 

(Ref. 14) 

Group 2 

i 
-0.15017 (Ref. 15) 

a2 
(6) = 

I 

-0.153(5) (Ref. 3) 

-0.151(3) (Ref. 14) 

3 Group 

(Ref. 2) 

“3 (Ref. 16) 
I \ (Ref. 17) 

The values of Ref. 13 and Ref. 15 have been obtained analytically. 

The overall result for the electron anomaly up to the order o3 

at’ 3 = L “_ - 
2a 

0 * 32848 0 o! 2 
F + (1.195 rt 0.026) % 0 

(1.4) 

(1.5) 

(l-6) 

s thus 

(1-V 

where we have used the analytic results in (1.4)) (1.5)) the weighted average of 

the results in (1.6)) and the result (1.1). If we use the ac Josephson value of 

the fine structure constant 18 

a-’ = 137.03608(26) (1.8) 

(1.7) yields 

at’ = (1 159 651.71 f 2. 23) X lo-’ 

which is in fair agreement with the latest experimental value 

(l-9) 
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aexp = (1 159 656.7 f 3.5) X lo-’ (1.10) 

TIi”e uncertainty in (1.9) arises from two sources, one from the fine struc- 

ture constant (k2.2) and the other from theory (f 0.33). The theoretical uncer- 

tainty is thus 6.7 times smaller than that of (K in’(l.8). Thus an improvement 

in the g - 2 experiment will lead to a value of the fine structure constant which 

is more accurate than the value (1.8), or ones determined by the fine structure 20 

and hyperf ine structure 21 measurements of hydrogen atom, the hyperfine splitting 

of the muoniurn ground state 22 , or the fine structure measurement of helium 

atom. 23 

The present theoretical uncertainty in the o3 term of (1.7) will be eliminated 

before long by a complete analytic calculation of all 6th order contributions. Then 

the theoretical value of the electron anomaly will be known to the accuracy of 

several X lo-l1 since it has no bound state complication and all. conceivable 

effects such as the breakdown of quantum electrodynamics, hadronic corrections, 

and weak-interaction effects will be smaller than (a/~)~ in magnitude. Thus, 

further improvement in the experimental value of the electron anomaly will 

provide the cleanest and most accurate determination of the fine structure 

constant. Particularly interesting will be the comparison of o’s determined by 

the electron g - 2 measurement and the ac Josephson effect. 24 We urge strongly 

that more accurate measurements of the electron g - 2 value are undertaken as 

soon as possible. 
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II. PRELIMINARY REMARKS 

Let p - q/2 and p + q/2 be the momenta of incoming and outgoing electron 

lines and r” ’ (p, q) and TV (p, q) be the renormalized and unrenormalized proper 

vertex parts related to each other by 25 

r”” = (1 - B)-l r” (2-l) 

(1 - B)-1 = Z2 being the wave function renormalization constant. Then the 

anomalous magnetic moment of an electron a = (g - 2)/2, i. e. the static limit 

of the magnetic form factor F2(q), is given by 

a = F2( 0) = l$I = (1 - B)-’ M 

1 M = lim p Tr 
K q=o 4p4q2 - 

y2p2 - (1 + q2/2)pV) 

x (ld + d /2 + 1) ru (pj - $4/2-+ l)-! 
J 

(2.2) 

(Throughout this paper we set electron mass me= 1 . ) We also need the vertex 

renormalization constant L defined by 

1 + L = (1 - B)Fl(0) = (1/4)Tr + &pVFV] q=. (2.3) 

Charge conservation requires that the charge form factor satisfies F,(O) = 1, or 

the Ward identity 

B+L=O (2.4) 

In perturbation theory 2 is expanded in power series 

a= 2 a(2n) (:) P-5) 

Q! being the fine structure constant. Expa.tding B a,nd M similarly in (2.2)) we 
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find 27 

12) a = Mt2) 

a c4) = M14) + .(2),(2) 

16) = M@) + Bt2)Mt4) a + [Bc4) +(d2))2 j M(2) 

. . . . . . . (2.6) 

Let us examine the process of renormalization in more detail restricting 

ourselves to the group 4 diagrams, i. e. the three-photon exchange diagrams of 

Fig. 2. To each diagram we associate a contribution to the renormalized vertex 

part yV by Dyson’s renormalization prescription. For example 

fk3 = r-L3 - dark - ~~~~ - L~L~)Y~ (2.7) 

where the subscripts refer to diagram designations of Fig. 2 and Fig. 4(b), (d). 

L2 is the vertex renormalization constant of second order, and Lx arises from 

the fourth order crossed-ladder diagram. The overall renormalization factor 

LE3 is defined to satisfy 

rE3 =0 at q=O P-8) 

The magnetic moment projection of (2.7) yields 

aE3 = ME3 -L2Mx (2.9) 

where M E3 and Mx are defined according to (2.2). 

In general the anomaly term ai may be written as 

ai = Mi + r. 
1 

(2.10) 

where Mi is the contribution of diagram i in Fig. 2 and associated mass counter- 

terms and ri is the subtraction term. We list all ri in Table I. The contribution 

of all diagrams of group 4 is given by 
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(2.11) 

-&,I@) is the contribution of all diagrams of Fig. 2 and mass counterterms. M (4) , 

L(4) come from diagrams of Fig. 4(d). Bt4) arises from the qth order self- 

energy diagrams of Fig. 4(c). The integer coefficients in (2.11) have a simple 

interpretation; they represent the number of ways insertions can be made. The 

Ward identity reduces (2.11) to (2.6). 

We shall define Feynman integrals in terms of the parametric representation 

of I. Since relevant parametric functions are defined there, we shall freely 

quote them and their properties. 

In the notation of I the 2n th order contributions to the vertex part and the 

electron self-energy part are expressed in the form 

(FrrL2@ = (dn(n-I) ! “, 
/ 

$--+ 

o! 
0 

n ztzn) = _ (I!Xr(n-2) ! JF dz iF / u2Vn-l 

(2.12) 

(2.13) 

where 

dz = 6(1 - Zzi) Ildz. , zi2 0 for all i 
1 

(2.14) 

We also need an integral obtained by inserting a 6m vertex in a vertex diagram 

of order 2n 

(2.15) 

Similar expressions for GW* .Z , ,(2n)* 
V , etc. can be written down using the rules 

of I. Explicit forms of U, V, IFv , etc. are given in the following sections. 
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Renormalization constants L GW and sm(2n) are obtained from (2.12) and 

(2.13)&y evaluating them for a = 0, $ = 1. To obtain B(2n) we must evaluate 

a Z(2n) /a pE(. . This leads to 

[lE --+ +2(n-l.)GlF$] (2.16) 

where 2G = - p’ @V/al? ) evaluated at q = 0, p2 = 1, and 

III= E A.lF. 
1 1 

(2.17) 
i 

IFi being derived from IF by the replacement ( lji + mi) - $. Ai is the scalar 

current defined by (I. 74), and the sumation goes over electron lines. 

The renormalization program (2.10) can be carried out explicitly using 

these renormalization constants. From the computational point of view, however, 

this is not necessarily desirable since the subtraction terms ri are generally 

infrared-divergent and make numerical evaluation of ai difficult. In order to 

circumvent this problem systematically we have developed in II an alternative 

scheme of which we briefly summarize here. 28 

Suppose the UV divergence of a diagram G arises from a subdiagram S 

consisting of Ns lines and nS closed loops. Then the KS operation on the Feynman 

integral MG = Sdz JG is defined by the following steps: 

(a) Let all zi E S be of order E 

zz zi=I-o 
icS 

(b) Keep only the lowest power of E in all parametric functions Bij, Ai, U, V, 

etc. In particular keep only the leading term of the integrand JG. 

(c) Replace the modified V by Vs + VG,s where Vs is the function V defined 

-lO- 



on the subdiagram S alone and V 
G/S 

is defined on the reduced diagram G/S 

obtained by shrinking S to a point. 

(d) Rewrite JG in terms of redefined parametric functions and call the result 

as K J s G. The corresponding integral will be referred to as KsMG. 

As is easily seen MG is divergent in the limit E - 0 if and only if 

Ns - 2ns - ms 5 0 (2.18) 

where ms is the maximum number of contractions of Di operators within S. 

Throughout this paper we deal only with logarithmic divergence (equality in 

(2.18)). Thus the step (b) is sufficient to insure that (1 - Ks)MG is convergent 

for E - 0. Since VG,s = 0( 1) and Vs = 0( E ) , the step (c) does not affect the 

leading behavior in the E - 0 limit. Though (c) is somewhat arbitrary, it enables 

us to avoid introducing lR divergence in the subtraction terms. Furthermore it 

enables us to factor KSMG into lower order contributions as follows: 

CM S G/S if S is a vertex subdiagram 
KSMG = (2.19) 

A 
&&MT* + BSMT if S is an electron self-energy 

subdiagram 

where 2 S’ SG,, A Bs are the overall divergent parts of Ls, 6ms, Bs (see II for 

precise definitions), and T is obtained from T* = G/S by shrinking one of the 

electron lines attached to the self-energy subdiagram to a point. 

Let 9 be the set of all vertex and self-energy subdiagrams of 6. Then the 

integral 

A’MG = Ii (1 - Ks;MG (2.20) 
SiE9 

is UV-divergence-free by construction. This is a kind of intermediate renormal- 

ization andA’MG will be referred to as K-renormalized or K-finite. In II we have 
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shown that the quantity G, renormalized in the usual way can be expressed in 

termS”of K-renormalized quantities as 

ii?, = II (1 - A’%,) A’MG 
SE9 

(2.21) 

where A’?Zs is an operator extracting K-finite part of the renormalization 

constant associated with the subdiagram S. 

Infrared divergences,- which are generally present in A’MG, can be handled 

in a similar way in terms of I 
G/S 

operation defined as follows: 

(a’) 
I 

O(6) if i is an electron line in G/S 

Put zi = 

1 

O(1) if i is a photon line in G/S 

O(E) Erz d2, if i E S 

(b’) Keep only the lowest powers of E, 6 in all parametric functions. 

(c’) Modify the results of (b’) as follows: 

u-uu 
S G/S ’ v - ‘s”G/s ’ IF- FO LG/SES c 1 

where F. c 1 LG/S is the no-contraction term of the vertex renormalization 

constant defined on G/S, andIFs is the product of y-matrices and Dy operators 

for the diagram S alone. 

(d’) Rewrite the integrand JG in terms of redefined parametric functions and 

call the result as IG,sJG. The corresponding integral will be denoted as 

‘G/S”G* 
The step (a’) is a twofold limit; E - 0 by itself is just the UV limit for 

subdiagram S, and 6 - 0 corresponds to all photons of the reduced diagram 

G/S going to the IR limit. The step (c’) is arbitrary, and is chosen to insure 

a desirable factorization of the subtraction term. All modifications in (c’) are 

order 6 smaller than the leading terms so that they affect the integrand only 
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away from the divergent region. By choosing the redefinitions of (c’), we can 

avoid d&ailed study of the lR structure of the diagram G/S; in actual calculation 

we will be able to cancel such terms among themselves without computing them 

explicitly. 

Let Si be the set of all subdiagrams such that G/Si are IR-divergent. Then 

the integral 

AMG = II (1 - IG,s ) A’MG 
i i 

(2.22) 

is free from both UV and IR divergences by construction. It is AMG that we 

evaluate on the computer. 

The above procedures split Feynman integrals into a number of pieces with 

different UV and IR properties. We will use the following notation to distinguish 

between these: 

Let Mi be a Feynman integral with (logarithmic) UV and IR divergences. 

Then, 

‘i f the overall UV divergent part of Mi, is the portion of Mi which cannot be 

defined without regularization. 

A!Mi, the K-finite part of Mi, is obtained by projecting out the UV divergences 

by the KS operation. 

Ii , the overall IR divergent part of Mi, arises from the portion of Mi which 

diverges when all photons in diagram i are soft. 

AMi is the UV- and IR-finite portion of Mi where all divergences have been 

projected out by KS and IG,s operations. 

Techniques of I and II have been developed primarily for 6 th order calcu- 

lations. However, since we need renormalization constants of 2 nd and 4th orders 

to renormalize 6th order terms, we shall,first illustrate our method by applying 

it to the 2 nd and qth order integrals. 

-13- 



III. RENORMALIZATION CONSTANTS OF SECOND ORDER 
4 

According to (2.12) the second order vertex part is given by 

r\=-q 1 lFv 

/ 

dz 

u2v 

where 

lFv = yl-l (fill + m,J Y’ (Dl+ ml) yp 

/ 

xl 

q=k hf---&- , i=l,l’ 
m2 ip 

i 

(3.1) 

(3.2) 

in the notation of Fig. 4(b) , Introducing the Feynman cut-off A for the photon 7 

and carrying out the D operations, we can reduce (3.1) to 

I’\= -$/dz[2A2 z7dmf [&+ &] 

where h is the infinitesimal photon mass and 

F\ = Y’(Qi, + m-l,) YV(Qif “I)YP 

1 c1 Av F”1 = -‘z Bll’ Y Y Y Ye yp 

(3.3) 

(3.4) 

(Qf and Bij are defined below. ) We emphasize that h2 and A2 are introduced only 

to facilitate our argument: the integrals we will actually evaluate will have no 

A2 dependence, the photon mass will be set equal to zero. The vertex renor- 

malization constant L2 is obtained by evaluating (3.3) for q = 0, $ = 1. For 

q = 0 we have @i = A$ by (I. 78)) Ai being the scalar current. Noting that 

A1 = Al’ 5 Bll = Bll’ = JQ1, by (I. 40) and (I. 44), and applying the projection 
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(2.3), we find 

with 

L2 = - $/dzcz7drnf[& + &] (3.5) 

F. = - .2(1 - 4A1 +.A;) 

(3.6) 
F1 = - 2Bll 

We must now find the parametric functions Al, ,BII, U and V necessary to 

define the integral (3.5). From (I. 54) and (I. 1) we obtain 

BII = 1 

(3.7) 
u = z1 + Z1’ + z7 = zlp7 

By choosing q7 = -p, q1 = qll = 0, we obtain from (I. 2) 

A1 = z7B11/U = z7/z11,7 t3.3) 
- 

To define V it is most convenient to choose qI = qll = p, q7 = 0 in (1.3) and 

(I. 36): 
2 V = zlLl + m7 z7 - G 

G = +A1 (P” = I) 
(3.9) 

Finally we need 

dz = 6(1 - ~~~,~)dz~ dzll dz7 (3.10) 

One can of course obtain (3.5) directly without going through the steps 

outlined here. Note, however, that the general procedure of setting up a para- 

metric integral for any diagram is no more complicated than the one shown 

above. 

Since z1 and zll appear in the combined form zIll in (3.5)) we can perform 

one integration over z and reduce (3.5) to 
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(3.11) 

using the new definition of dz 

dz = 6(1 - zll, - z7) dzll’ dz7 (3.12) 

As is easily checked, only the Fl term satisfies the divergence criterion 

(2.18). We shall therefore define the UV-divergent part t2 of L2 (see (2.19)) by 

L2 = - + 
AL 

= $ (lnh - i) (3.13) 

Since the remainder is UV-finite, we can perform the m7-integration and obtain 

L2-z2=A’L2=-+ Z1l’Fo 

u2v 
(3.14) 

Carrying out the z-integration we find 

A’L2= lnh+% =I2 (3.15) 

where I2 is introduced to emphasize that (3.15) is IR-divergent. From (3.13) and 

(3.15) we obtain the standard result 

L2=22+12=+1ti+Inh+z (3.16) 

In the second order only one diagram (Fig. 4(a)) contributes to the electron 

mass operator (see (2.13)) 

E,(p) = $ IF 
JI 

dz z7dm72 -+ 
uv 

(3.17) 
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Carrying out the IF operation and putting fi = 1, we get 

- 

F. = 2(2 - Al) 

(3.18) 

Note that this F. is different from that of (3.6). Integration of (3.18) can be 

easily done, yielding the IR-divergence-free result 

(3.19) 

According to (2.16) the wave function renormalization constant is given by 

B2=;/dz j7dm+E --& +2GlF--&j (3.20) 

where G is defined by (3.9) with zl- ~11’ and IE = C y’ (Aid) y I-1 
I 

6=1 . This 

reduces to 

B,=;/dz /-z7dm/[&+ ;;+j,oj. (3.21) 

where F. is given by (3.18) and E. = - 2Al. 

Note that, if we identify zl in (3.21) and ~11’ in (3.5), all parametric 

functions defining B2 and L2 become identical. In general parametric functions 

independent of the external photon momentum q are common for a self-energy 

diagram and the corresponding set of vertex diagrams. 

The UV-divergent part of B2 (see (2.19)) is 

= -i(lnA+g) 

(3.22) 

while the remainder 
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is sti: IR-divergent. To separate the IR-divergent part, let us rewrite the 

(3.23) 

integrand of A’B2 as 

2 G F. = - 2z1(1 - 4A1 + A12) + 2z1(1 - A12) (3.24) 

The first term is identical with the integrand F. of (3.14). The second term 

vanishes for Al-+ 1 and hence is IR-finite. Thus we can write 

A’B2 = - I2 + AB2 (3.25) 

where 

AB2 =$ 
/ 

dz 
23U - Al21 3 

=- 
u2v 4 (3.26) 

Collecting all parts of B2 we find 

B2 = - L2 

in agreement with the Ward identity (2.4). 

(3.27) 
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* IV. RENORMALIZATION CONSTANTS OF FOURTH ORDER 

(4) Two diagrams contribute to the mass operator z (p). Let us first discuss 

the contribution of diagram 5 in Fig. 4(c) 

’ Z:,(P) = - 16 li/lzc 1, dm62L 17drn: 

The self-mass is obtained by carrying out the IF operation 

2 

u2v3 
(4.1) 

and putting p = 1 

in (4.1): - _ 

&ma = -&jlz/z6Chn;/i7&n$$ +&) (4.2) 

where 

F. = 4 (-2 -I- Al + A2 -I- A3 + AlA + AlA i- A2A3 - 2AlA2A3) 

Fl = 4 B12(A3 - 2) + B13(4A2 - 2) + B23(Al - 2) 
I 

(4.3) 

Applying the rules of I we find 

B12 = ‘36’ B13 = - z2, B23 = '17 

U= z21z17 + '36) $- '17'36 

Ai = 1 - (zlBli f z2B2i + Z3B3i)/U, i = 1, 2, 3 

G = zlA1 + z2A2 + z3A3 

’ = '123 
2 2 ;tm6z6+m7z7-G 

dz = 6( 1 - 212367 )dzldz2dz3dz6dz7 (4.4) 

The Fl term of (4.2) is UV-divergent since it satisfies (2.18) with Ns= 5, 

ns = 2, ms = 1. The F. term is free from both overall and subdiagram 
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(e.g. (1, 2, 1 7j ) UV divergences. Let us denote these two parts (see (2.19)) as 

(4.5) 

According to (2.16) the wave function renormalization constant from the 

diagram 2 can be written as 

Ba= - &hzb6dm62/z7dm72 [$ +&+4G(z4+$)] 

(4.7) 
where Fo, F1 are given by (4.3) and 

E. = 4 + A2 + A3 + 2(A1A2 + AlA + A2A2) - 6AlA2A3 1 
El = 4 (B12A3 + 4B13A2 + B23A1) (4.8) 

The El term satisfies the divergence criterion (2.18) for the whole diagram. Let 

us denote this overall divergent contribution as 

(4.9) 

The difference Ba - ^Ba is still UV-divergent because of divergent subvertices 

S (lines 1, 2, 7 and 2, 3, 6). For instance, in the limit z236 = & -0, the Fl 
r 

term satisfies (2.18) with Ns = 3, ns = 1, ms , 1. The F1 term is also divergent 

for ‘127 - 0. The remaining terms of Ba are UV-finite. 

To separate out these divergences systematically we have introduced the KS 

operation described in Sec. 2. Applied to the 236-vertex, the step (b) of the KS 

operation gives 
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B12- 0, B13d0, B23 - ‘17 

4 ‘-- ‘L&/S t’s = ‘236’ ‘G/s = ‘17) 

G/S - Al-tAl = 1 - +~7 

G-e GGls = zlAIG/’ 

V-F vGiS 2 = z1 + m7 z7 - G G/S (4.10) 

A2 
G/S and AQG” appear multiplied by B13, B12 (in Fl) or z2, z3 (in V) and 

hence can be ignored. The step (c) leads to 

v-- vS + +/s , 
S 2 Vs=z23(1 -A2)+m6z6 

A2’ = 1 - z23/z236 

Thus we obtain (putting T = G/S) 

with 

F1 [$I 2 GTFo[ BTl 1 
3 

uS 
2 

uT tvs + vT)3 

(4.11) 

(4.12) 

’ FIIL~l = - 2B23 (B23S = 1) 

T Fo[ BTl = - 2(Al - 2) (4.13) 

where Fl[ Ls] is related to the UV-divergent part of L2 in (3.5) for the vertex 

S = (2, 3, 6 
i 

and Fo[ BT] corresponds to the finite portion of B2 in (3.21) for 

I the reduced diagram T = 1, 7 . 
/ I i The notation we have introduced in (4.12), 

though excessive for such a simple result, is of the form applicable to any 

divergent subvertex. 

The subvertex S’ = 1, 2, 7 leads to similar UV divergence. We can there- 
I i 

fore define the UV-finite portion of Ba by 
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(4.14) EO 2GF0 
u2v + - u2v2 + ( 1 - KS - KS’) 

2GFl 
3 

I 

Ne^xt we shall show that the integral of (4.12), i. e. , 

/z ’ / /z6drn62 ,drniKl B] Ks(Ba-Ba)=-16 dz (4.15) 

factorizes as in (2.19). For this purpose let us scale zi as 

Z m - sz m for me S 

Z. 
1 

- tzi for i E T 

where the new z’s satisfy 

c 
Z = 
m 1, c 

zi = 1 

mcS ie T 

Then (4.15) becomes 

(4.16) 

(4.17) 

where 

2G;;; BT3 

(4.18) 

dzS = 6(1 - z 236)dZ2dZ3dZ6 3 dzT = 6(1 - z17)dzldz7 (4.19) 

-1 -2 The integral over s and t in (4.18) is equal to Vs VT as is easily seen using 

the Feynman formula (I .19). Thus (4.18) factorizes as 

2GTF(,[ BTl 
2 

‘T ‘T 3 
(4.20) 

Note that the photon 7 is no longer regularized. Recalling the definitions (3.5) 

and (3.23)) we may cast the result of this calculation in the form 

A A 
Ks(Ba - Ba) = L2A’B2 (4.21) 
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Similarly we have 

Ks,(Ba - Ga) = Z,A~B, (4.22) 
a 

These are examples of the general result (2.19). The above result may be 

summarized as follows: 

Ba = iia + 2:,A’B, + A’B a (4.23) 

The term A’B,. defined by (4.14) is UV-finite. But it still is divergent in 

the (overall) IR limit where the momenta of both internal photons vanish. In the 

Feynman parametric space this limit corresponds to 

z fz 6 7 =1-a, 6-O (4.24) 

By studying the behavior of the integrand in this limit, it is easily seen that 

only the F. term of (4.14) gives rise to an IR-divergent integral 

(4.25) 

We shall postpone the consideration of this integral until we define the overall 

IR divergences of 

These vertex 

the electron lines 

the associated vertex diagrams. 

diagrams are generated by inserting an external vertex in 

of diagram a. Let us first consider the vertex renormalization - 

constant for the crossed diagram in Fig. 4(d): 

Lx=$/dz/zadm62/z7dm72[$ +$+-$$-I (4.26) 

where 

F. = 4 (1 + A22)(1 + AI + A3 - 2A1A3) + 2A2(-2 + AI + A3 + A1A3) 1 
FI = - 4 B12(l + 4A2 + A3 

[I 
- 2A2A3) + B22(- 1 - AI - A3 + 2A1A3) 

+ B23(1 + Al + 4A2 2 - 2AlA2) + 4B13(-1 + A2 - A2 ) 
I 
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F2 = 8 C B12B23 + 2B12B13 + 2B13B23 1 
The Ufdivergence is confined to the F2 term. Hence 

zx = &/“z j6dm,z /z7dm7?.& 

(4.27) 

(4.28) 

Since there is no divergent subdiagram, the rest is UV-finite. But it is still IR- 

divergent and can be divided into the overall IR-divergent term Ix and the finite 

term ALx: 
1 

/ 

FO 
Ix=16 dz u2V2 

1 ALx == F1 

u3v 

(4.29) 

Thus we have 

Lx=ex+Ix+ALx (4.30) 

For the corner diagram in Fig.$(d), the integrals for Lc, Tc, Ic, etc. are 

given by (4.26), (4.28), (4.29) again except that Fo, Fl, F2 are now 

F. = 4 1 - 4Al+ Al2 + (A2 + A3)(1 + Al)2 - 2A2A3(1 - Al + A12) 
I 

Fl = 4 
[ 
Bll(1 + A2 i- A3 - 2A2A3) + B12(-1 - 4Al - A3 + 2A1A3) 

+ B13 (-1 - 4Al 2 - A2 + 8AlA2) + B23(1 - 4Al+ Al ) 1 
F2 = 4(BllB23 - 4QB13) (4.31) 

However the difference L 
, c 

- zc is now UV-divergent due to the subdiagram 

S=/2, 3, 6). 
I 

B y the same analysis that led to (4.14) we find the UV-finite 

part of Lc to be 

FO F1 u2v2 + (1 - KS) 3 
uv I 

(4.32) 
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This can be split further into the IR-divergent and IR-finite parts: 

(4.33) 

ALc = 16 F1 dz (1 - KS) - 
u3v 

Thus Lc can be written in the form 

Lc = ^Lc + 2,. AIL, + Ic’+ ALc 

Ba, Lx, and Lc satisfy the Ward identity 

Ba+Lx+2Lc=0 

(4.34) 

(4.35) 

This means in particular that the sum Ia + Ix + 21c is free from the IR diver- 

gence. In order to evaluate this sum, it is useful to note that, if we replace 

z22, by z2 in all parametric functions of the crossed diagram, they reduce to 

the corresponding functions of the self -energy diagram a of Fig. 4(c). For this - 

reason we have not distinguished the parametric functions in (4.1) and (4.26). 

Similar comment applies to the corner diagram in Fig. 4(d). The only difference 

among these diagrams is in the phase space, which can be written as 

dz 
cl 

= zldz, 

dzx = z2dza (4.36) 

dz 
c3 

= z3dza 

where the suffixes a, cl, x, c3 refer to the respective diagrams. Thus we find 

/ 

(1) 
1 Ix + 21c = 16 dza ZIFO 

(2) 
+ Z2F0 

(3) 
+ Z3F0 

U2V2 
(4.37) 

-25- 



where Fo(‘), Fd2), Fo(3) correspond to cl, x, c3, respectively. 

This integral is very similar in form to Ia of (4.25). In fact, using the 

identity (for p2 = 1) 

2Ai(Aiti + 1) = (Ai$ ‘r l)$(A$ + 1) - (1 - A:)$ , i = 1, 2, 3 

(a) 
we can rewrite the numerator 2GF6 of (4.25) as 

2GF0 (a) = 5 ziFdi) + H 
i=l 

where 
3 

H = - czi(l - A;) H(i) 
i=l 

By simple manipulation we find 

H(l) = 4(1 + A2 + A3 - 2A2A3) 

H(‘) = 4(1 + Al + A3 - 2AlA3) 

H(3) = 4(1 + Al + A2 - 2AlA2) 

From (4.25)) (4.37)) (4.39) we obtain 

1 
Ia + Ix + 21c = - 16 

I 
dz -!!- 

a u2v2 

(4.38) 

(4.39) 

(4.40) 

Since H-O as Ai-+ 1 (see (4.40)), this is IR-finite as expected. 

Let us define the UV- and IR-finite part of Ba by 

(4.41) 

EO H 
2GFl 

- +- 
u2v u2v2 

+ (1 - KS - KS,) - 
u3v 1 

Then we can write A’B, of (4.14) as 

A’B, = AB,. - Ix - 21c 

(4.42) 

(4.43) 

(4.44) 
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We shall now consider the self-energy diagram b of Fig. 4(c). c,(p), 6mb, 
- 

and B&are of the same form as (4. l), (4.2), and (4.7) where, however, 

F. = 4 4(1 - Al + A12) + AZ{1 - 4Al + A12) 1 
Fl = - 4 [ 3B12Al + 8(Bll - B12) 1 
E. = 4 4( - Al + 2A12) + A2( 1 - 8Al + 3A12) 1 
El = - 12B12Al (4.45) 

The parametric functions are 

B1l = ‘26’ B12 = ‘6 

’ = ‘137’26 + ‘2’6 

Ai = z7Bli/U , i+ 7 

G = x7(1 - Al) 

dz = *(l - ‘12367)‘13 dz dz dz dz 13 2 6 7 
(4.46) 

The overall UV-divergent part Smb of 6mb can be defined as in (4.5). 

However the difference 

1 
6mb-Smb=-x 

FO z6dms2 - 
U2V2 

(4.47) 

still contains a UV divergence arising from the Zig-, 0 (self-energy subdiagram) 

region. We must therefore apply the KS operation to extract the divergent part, 

whereS= 2, 6 . I I 
This leads to the UV-finite part 

1 A6mb = - 16 
/ 

FO 
dz(1 - KS) u2v2 (4.48) 
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Following the method in II we find that KS 6mb factorizes as 

- Ks6mb = %,* 6m2 + 6m2* 6m2* (4.49) 

where 6m2” is the self-energy contribution of the diagram 2* of Fig. 4(c). By a 

similar calculation we obtain 

KsGmb = g2. 6m2 + 6m2* 6m2* (4.50) 

where c?& 2* is the UV-divergent part of 6m2* . (These are special cases of 

(2.19).) Thus we find 

6mb = 62, + 6m2*A6m2* + Asmb (4.51) 

where A6m2.+ is the UV-finite part of drn2* and A’6mb is given by (4.48). 

Next let us examine Bb. As is easily seen Bb - %,, where 2, is of the form 

(4.9), contains a UV divergence arising from S = I 2, 6 ! . The .UV-finite part of 

Bb - $ is given by 

A’Bb= -&/dz(l -KS) [ 2 +s + 21 (4.52) 

Splitting this into the overall m-divergent part 

2GF0 
- KS) - 

U2V2 
(4.53) 

and the completely finite remainder ABb, we can write 

Bb = gb+ 6m2.A’B 2.+ -t ‘ij2.A’B2 + Ib + ABb (4.54) 

where AB2* is defined by the diagram 2* of Fig. 4(c). 

The vertex diagrams associated with the self-energy diagram b are shown 

in Fig. 4(d). The vertex renormalization constant Ls from the self-energy 
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insertion diagram is of the form (4.26) with redefined Fo, Fl, F2: 

Fo^= 4 [ (4Al - 2A2)(1 - Al + A12) + (- 2 + AlA2)(l - 4Al + A12) 1 
Fl = 12 4 f A2) + B12(- 1 + 6Al - 2A12) 3 

F2 = - 12BllB12 

Analogous to (4.54) we can split Ls as 

Ls = ts + 6m2*A’L2” + s2*A*L2 + Is + ALs (4.56) 

where ts is the UV-divergent term similar to (4.28), 

1 
Is = ix I 

FO dz(1 -KS) - 
u2v2 

(4.57) 

is the overall IR-divergent term, and 

1 _ ALs= 16 
I 

dz(1 F1 . - KS) - 
u3v 

is UV- and IR-finite. 

For the ladder diagram in Fig.4(d) we have 

F. = 4 8A2(1 - Al I- A12) + (1 + A22H1 - 4Al,+ A12) 1 
F1 = 4 Bll(1 - 16A2 + A22) + Bz2(l - 4Al + A12) + 4B12(l - 2Al+ 4A2 - 2AlA2) 1 
F2 = WllB22 + 5B12 2, (4.59) 

We find 

Lp =cB+z2*A’L2+ $+AL, (4.60) 

where 1 
II = i-c 

ALe = & 
. / 

F1 dz(1 -KS) - 
u3v 

(4.61) 
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Exactly in parallel with (4.42) we find 

- KS) --!!m-- 
U2V2 

(4.62) 

where H is defined by (4.40) with 

H(l) = H(3) = 4(- 2 + 4Al - 2Al + AlA2) 

Ht2) = 4(1 - 4Al + A12) (4.63) 

Note that KS 
t 

2 (2) z2(1 - A2 )H /(U2V2) 
i 

= 0 so that (4.62) is consistent with the 

definition (4.61) of Il. 

This time, however, the right-hand side of (4.62) still contains an IR 

divergence associated with the photon 7, as is easily seen by examining the 

behavior of the integrand of (4.62) for 

z7 
=1-6-l 

213 = O(6) (4.64) 

‘26= O(E), Ed2 

To isolate such divergences we have introduced in II and Sec. 2 an operation 

IG/S analogous to KS. For S = 2, 6 , the ‘G/S operation consists of the 

following steps (here we set G/S = T): 

tb’) u”z7z26 , 1 -A -+z13 /Z 
S 

1 7 , A2-tz6 zZ6=A2 / 

v- vs + Z13 2/Z7 

(c’) U-zl37z26 f v- vs + vT 

- z (1 - - - 2 A 2)H(2)~ 2 22 2 C 1 (A s)2 2 I (- 2) [ 1 4Al’ + (AlT)2 3 
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(d’) IT 
4. 

FOILT] ‘ObBS] 
z2; 21372 (vs + vT)2 

(4.65) 

In the step (c’) we have omitted H (1) and H(3) terms since they are IR-finite: 

I# - Ks)[zl(l - A12)H(l) -= I 0 N3) (4.66) 

The UV- and IR-finite part of Bb may thus be defined by 

EO z13(1 - A;)H(l) 
- - 
u2v 

u2v2 

(4.67) 

In the limit (4.64) IR divergences might also appear in other integrals such 

as (4.61). However, this is prevented by identities similar to (4.66)) which arise 

from step (c’) in the definition of IGis. 

Factorizing the integral over (4.65) as before we obtain 

IT 

We may therefore write 

(4.68) 

A’Bb = ABb - 21s - Ip + 12AB2 (4.69) 
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V. MAGNETIC MOMENT 
4. 

Parametric integrals for the magnetic moment M are slightly more compli- 

cated than those of the charge form factor because of the more elaborate trace 

projection (2.2) and the appearance of additional scalar current ai reflecting the 

q (momentum transfer) dependence. 

As is seen from (2.9)) M has no overall UV divergence. Furthermore M is 

free from overall IR divergence as is shown in II. 

Let us begin by expressing the second order magnetic moment M 12& M 
2’ 

Fig. 4(b), in our notation 

M2 = -+ 
i 

FO dz - 
u2v 

with 
F. = - 4Al(l - Al) 

(5.1) 

(5.2) 

where all parametric functions have already been defined in Sec. 3. The scalar 

currents a i, defined by Qi ’ = Aip + aiq, have canceled themselves in (5.1) 

because of the first Kirchhoff’s law aI, = aI + 1. M2 has no IR divergence 

because of the factor 1 -Al in F. . Carrying out the integration of (5.1) we 

obtain the familiar result 

a (2) = M2 = l/2 (5.3) 

In the fourth order UV and IR divergences arise from various subdiagrams. 

Let US first consider the contribution Ma of the ladder diagram in -Fig. 4(d): 

i = & /izL2z6dn$[$$ +&] (5.4) 

where 
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F. = 8 - Al)(Al - 3A2) -I- A2(1 - 3Al)(Al - A2) 
I 

4. Fl = 8 - lOA + AlA2) + Bz2Al(l - Al) 1 (5.5) 

F. vanishes for Al, A2 - 1 so that M has no overall IR divergence. The UV 

divergence from the subvertex S = { 2, 2’) 6 } can be separated by the KS operator 

which yields 

where 

Me = :,M, + A’M, (5.6) 

FO F1 
u2g + (1 - KS) u3v 1 (5.7) 

On the other hand, the renormalized contribution to the anomaly is 

aQ = Ml - L2M2 (5.8) 

analogous to (2.9). Substituting (5.6) in (5.8) and recalling (3.14) we find 

aQ = A’Mg - AfL2.M2 (5.9) 

This is an example of the general result (2.21). 

A’M still contains an IR divergence from the z7- 1 region. This can be 

isolated by an I G,S operation where G/S = {l, 3, 7 ) : 

A’Mi = AM1 + 12M2 

AMp=& FO -IG,s)-- F1 

U2V2 
+(I -KS) 3 

uv 1 (5.10) 

Combining this with (5.9) and (3.15) we obtain 

“p=AM I 
(5.11) 

Contributions from the remaining 4 th order vertex diagrams can all be 

written in the form (5.4) where 
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F. = - 8Al(l - Al)2(2 + A2) 

4. 
Fl= 8Bll(GAl-6A2+4AlA2) (5.12) 

for the self-energy insertion diagram s, 

Fo= 2AlA2(l+A2) 2 - A12(l + A2 + 2A22) - A22(3 + A2) + (2al - a,)(1 - A22) 

(5.13) 

Fl= 2BllA2(1+2A2)+ B12(2+Al-'7A2+441A2- 6A02+ San) 

- B22(1+ A1 - 3A2 + 2AlA2 - al + 3a2) 

with 

L L’ 

(5.13) 

al = - (z2B12/2 + z3B13)/U 

a2 = - (z2B22/2 + ~3B23)/U 

for the crossed-ladder diagram x, and 

F. =,.2A3(1 - A3)(1 - AlA2) + (1 -. A32)(4al f 2a3) 

(5.14) 

Fl = 2B12A3(1 - A3)+ B13(4Al + 4A3 - ~~~~~ + lOa,)+ 2B33(l+AlA2+ al+ 2a3) 

(5.15) 

with 

al = - z3B13/U , a3 = -z~B~~/U (5.16) 

for the corner diagram c. 

Unrenormalized integrals and K-finite parts of these contributions are IR- 

finite. However, IR divergences appear in the renormalized expressions through 

the subtraction terms.? Separating out the UV divergences of diagrams c and s 

by KS operation, we find 

as = AMs - A’B2*M2 

ac = AMc - ATL2. M2 

a x=“x 
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In the 6th order mosttraces become too lengthy to evaluate manually. We 

have evaluated only a few of them by hand. They were useful for testing our 4 

computer programs by which all traces have been evaluated. Since the magnetic 

moment projection (2.9) involves products of up to 16 gamma matrices and could 

generate more than 3’ terms in the intermediate stages, very careful programming 

was needed. We have worked this out in two different ways: 1) We have generated 

all integrands using the SCHOONSCHIP algebraic computation program of 

VeltrnanXg at the CDC-6600 computer of Brookhaven National Laboratory. 

2) We have also developed a program 30 combining TECO and REDUCE 2 suited 

to the PDP-10 computer at the Wilson Electron Synchrotron Laboratory at 

Cornell University. Some outputs of SCHOONSCHIP were doublechecked by this 

approach. Furthermore, results of trace calculation for all individual diagrams 

of Fig. 2 have been shown to agree with the corresponding expressions of Levine 

and Wright. 31 Additional checks have been provided by KS and IG,s operations 

which reduce the integrands to known lower order expressions. 

Typical integrands thus generated consist of as many as 500 terms (though 

this may be shortened by judicious use of Kirchhoff’s laws and appropriate 

factorizations). To illustrate our general approach, let us examine some 

representative diagrams in detail. 

The simplest diagram is Al of Fig. 2 which contains two 2 nd order self- 

energy insertions. The parametric integral for Al is given by (see Fig. 5 for 

notation) 

FO 
-&-T+ 

F1 

2u3V2 
+Ia 

2u4v I (5.18) 

with 

F. = - 16AI(l - AQ3(2 + A2)(2 + A4) 
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MA1 has no IR divergence. UV divergences from S = { 2, 6} and S’ = {4, 71 can 

be removed by K operations. Defining the UV- (and IR-) finite part by 

1 AMA,=-= 
/ 

dz(l - K&l - KS,) [-& +;(-$p + 2)] (5.20) 

we can write (5.18) as 

A 

MAl = AMA1 + 26m2. MAI* 
A 

+ 2B2Ms - @m2) 
2 

MAI** 
A 2 

- 26m2-B2M2* - (B2) M2 

(5.21) 

where the diagrams Al* and Al** are defined in Fig. 5. Taking account of mass 

counterterms and renormalizations in Table I, we may thus express the 

renormalized contribution to the anomaly as 

aA1 = AMAl - 2A’B2(Ms - 6m2*M2.J + + (AfB2)2 M2 1 
= AMAl - 2A’B2.AMs + (A’B2)2M2 (5.22) 

The second and third terms are known from lower order calculations. Thus we 

have only to evaluate AMAl to obtain aAl. The result (5.22) is an example of 

the general formula (2.21). 

The integral for the diagram A2 of Fig. 2 is given by (5.18) with appropri- 

ately redefined Fo, FI, F2. This integral has UV divergences from the vertex 

part S ={2, 2’, 6) and self-energy part S’ = {4, 7 } . If we define the UV-finite 

part of MA2 by 
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AlMA = -& /-dz(1 -Ks,,[-j$- +;(l -Ks)(--$ +-$-)I (5.23) _ 

- we fin& 

MA2 = A’MA2 + 6m2.MA2.+ + B2M 
A -A A 

+ L2(Ms - 6m2.M2”) - L~B~M:! (5.24) 

This time AlMA is still IR-divergent. The separation of the IR-divergent part 

of (5.23) can be achieved by an IGls operation: 

AlMA = AMA2 + IsM2 (5.25) 

where Is is defined by (4.57), G/S = { 1, 3, 4, 5, 7, 8) , and 

(5.26) 

is the completely finite expression ready for numerical integration. 

Diagrams D4 and E3 have similar 4 th order IR divergences which can be 

separated in the same fashion: 

A’MD4 = AMD4 + IcM2 (5.27) 

A’ME3 = AME + IxM2 

The IR structure of the diagram B3 is more complicated. We shall postpone 

the analysis of B3 till later. 

Some diagrams have IR divergence arising from a single photon. For 

instance the diagram C!3 has an IR divergence in the limit z8 - 1. This divergence 

can be separated by an IG,s operation, G/S = {l, 5, 8 1, which yields 

‘G/SAtMC3 = 12Mx 

where Mx is given by (5.13) and (5.14). The UV- and IR-finite part of MC3 is 
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given by 

Analogously we obtain 

IG,sA’MB2 = 12AMs 

IG,s A’MB3 = 12A’Me (5.31) 

IG,s A’MC2 = 12AMc 

Some diagrams contain UV divergences arising from 4 th order subdiagrams. 

Let us first consider the 4 th order vertex part S ={2, 3, 4, 5, 7, 8}of diagram 

Hl. By (2.18) this UV divergence is confined to the F2 term. Furthermore only 

those terms of F2 obtained by contractions of lines 2, 3, 4, 5 contribute. They 

factor as 

KSF2 = F2 cLs; FO ;NlG/s ’ (5.32) 

where F2 [L,& and Fo[MG,s J are defined by (4.27) and (5.2’), respectively. This 

leads to the factorization of MHl: 

KS”Hl = zxM2 (5.33) 

where 2x is defined by (4.28). Fourth order vertex divergences from the diagrams 

B2, B3, C2, C3, Dl, El, Fl, Gl, and G5 can be handled in a similar fashion. 

Let us now consider diagrams containing 4 th order self-energy subdiagrams. 

For instance the diagram Cl has a UV-divergent subdiagram S1 = { 2, 3, 4, 6, 7} . 

It is easily seen that this divergence is confined to Fl and F2 terms; further, 

only those terms containing B23, B24, or B34 contribute. In the step (b) of K 
Sl 

operation we need relations like 
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K B . = z11,58AmSl Us1 
s1 ml 

KS 
Sl 

1 Bmn = ‘11’58 Bmn 

KsAm =Am 
1 

‘1 AIGk 

K A. 
Sl 1 

= A G/Sl 
1 

m, ne S1 

j = 1, l’, 5 

(5.34) 

which follow from (I, 91) and (I, 93). 

The diagram Cl is the only one in Fig, 2 that contains overlapping UV 

subdivergences; vertex parts S2 = { 2, 3, 7 1 and S3 = { 3, 4, 6 1 have the line 3 

in common. However, as is shown in (II, 

of the identity 

(1 - KslWs KS 
2 3 

Carrying out all KS operations we obtain 

2.26), this causes no problem because 

1 

ZZ 0 s1 =S2US3 (5.35) 

acl = AMC1 - Admao M2* - 2A1L20 AMs - APB,’ M2 + 2A’B20 AILzO M2 
(5.36) 

where 
FO - +;(l -K$(l -KS2-K 

S3 
) F1 F2 -+- 

u2v3 u”jP ‘I TJ4v/ + 
(5.37) 

Finally let us examine the diagram B3 which contains IR divergences arising 

from two sources; G/S1 = (1, 5, 81 and G/S2 = {l, 2, 4, 5, 7, 81. The IR-finite 

part is given by 

AMB3 = t1 - ‘G/s,)t’ - 1G/s2)A’M,, 

= A’MB3 - 2 InM2 - 12A’M1 + I2 M2 (5.38) 

where In and A’M, are given by (4.61) and (5. lo), respectively. Of all diagrams 
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in Fig. 2, this one requires the largest number of subtraction terms. It is 

instruokive to display AMB3 in a fully expanded form: 

AMB3=-$/d.[--&- +; (--&+A) 

- ‘G/S 
FO --;K F2 

2 u2v3 
-+- 

u4v 

- ‘G/S 
F2 

1 sl 2u4v (5.39) 

FO F1 F2 
* ‘G/s,~G/s, &3 + Ks21G/s, 2u33 + KS1 KS2 2u4v 1 

where S1 =18, 3, 3’, 4, 6, 71 and S2 ={3, 3’, 6 1. Note that, by the definitions 

of KS and IG,s operations given in Sec. 2, the functions U and V for all terms in 

each line of (5.39) are redefined in the same way. 

This example shows how to construct finite integrals explicitly for all 

diagrams of Fig. 2. In most cases the structure of the integrand is considerably 

simpler. 

By rewriting renormalized expressions Mi + ri (see (2.10) and Table I) in 

terms of their K-finite parts, we can verify directly the general formula (2.21); 

replace each term in the Dyson-Salam expression for renormalized amplitude 

by its K-finite part. Noting further simplifications 

A’Gm, = 0 , Aroma 
, 
b = Asma b 

, 

A’M2 = M2 , A’M2.+ = M2* = M2 , A’Mx c s = AMx c s 
(5.40) 

, , 3 , 

we obtain the K-renormalized expressions listed in Table I. Since these 

expressions are still IR-divergent, we reexpress in Table II all entries in terms 
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of UV- and IR-finite integrals and corresponding IR-divergent constants. Noting 

that H&divergences cancel within each internally-gauge-invariant set of 

diagrams, 32 we have regrouped our results accordingly. (In our way of 

numbering the diagrams, diagram Al belongs to -the externally-gauge-invariant 

set A, and the internally-gauge-invariant set 1. All the sets are A, B, C, D, D, 

E, F, G, G, H and 1, 2, 3, 3’, 4, 5, respectively. By the time-reversal 

invarianceD=D, G=G, 1=5, and2=4. 3 and3’differbythenumberof 

virtual photons crossing the external vertex. ) Table II also contains the result 

of numerical evaluation of ni AMi where q i = 1 if the diagram is symmetric 

under time reversal and = 2 otherwise. 33 

Summing all terms of Table II yields 

a4 (6) = c 77 i AM, - 4AB2* AM 14) - ( 3ALt4)+ 2A6mc4) 
i 

\ +2ABc4)) M2 + 5(AB2)2M2 

(5.41) 

where AB2, M2 are given by (3.26) and (5.3), and 

AMc4) - -Mx+2AMctAMp+2AM 
S 

ALt4) - - ALx + 2ALc + ALP + 2ALs 

A6mt4) = A6m a + A6m b 

ABt4) = AB + AB a b (5.42) 

Note that (5.41) is somewhat simpler than (2.11). This is due to our definition 

of I2 in (3.15) which sets AL2 = 0. 

We list the numerical values of all qth order integrals contributing to (5.41) 

in Table III. First eight entries are known analytically, and although analytic 

evaluation of the rest presents no difficulty, we have not done so for lack of 

time.Combining the results in Tables II and III we obtain 
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- a4(6) (individual) = 0.943(32) (5.43) 

as the contribution of 50 diagrams of group 4 to the electron anomaly. The 

errors from independent diagrams are combined. statistically. 
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VI. ALTERNATIVE APPROACH 
4 

In drawing the diagrams of Fig. 2 we have emphasized that they are all 

derived from the self-energy diagrams of Fig. 3 by inserting an external vertex 

in all possible ways. Vertex diagrams derived from the same self-energy 

diagram share many properties. In fact, in the limit q = 0, they have common 

functions U, V, B.., 
13 

and Ai so that it is natural to treat them collectively. 

(only the scalar currents ai associated with q are not common.) In this section 

we go even further and amalgamate these integrals into a single one using the 

Ward-Takahashi identity. In the end this approach reduces the number of 

independent integrals from 28 to 8, enabling us to save considerably the time 

and effort of computation. 

As is well-known, proper vertex and self-energy parts are related by the 

Ward-Takahashi identity 

qJ+ (p,q) = - 2 (P + q/2) + z (P - q/2) (6-l) 

where we have put 1’1-1 = yp + Al-1 . This identity holds not only for the exact 

2 and A but also for perturbation-theoretical 2: G ad + where 2 is G 

calculated from an electron self-energy diagram G and AG is the sum of vertex 

diagrams obtained by inserting an external vertex in G in all possible ways. 

Differentiating both sides of (6.1) with respect to 8 and dropping terms quadratic or 

or higher in q, we obtain 

Au tp>q) = - 8 aA (p,q) 
[ I a”g 

V q=o 
-y 

V 
F.2) 

This is the starting point of our consideration. 
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If we put q = 0 in (6.2)) we recover the familiar Ward identity (2.4). It is 

instructive to examine how (2.4) is realized in the parametric space. As an -n 
example we shall show that 

Lx+ 2Lc = - Ba (6.3) 

For this purpose it is convenient to parametrize the integrals for Lx and Lc in 

a slightly different fashion. (See Fig. 4(d). ) First we note the identity 

C$j, + mi) Yv (di + mi) 1 

(yi2 - mi2)2 
= 2 D” (Di + mi) 

:P2 - mi2)2 
(6.4) 

i 

which follows from 

PFPV i i PV 

(pi2 - mi2)2 
=D;D; ’ 

(pi2 - mi2)2 
+ 

2(P.2 1 - mi2) 
(6.5) 

where Dy is defined in (3.2). As is seen from the Feynman formula (I. 19)) 

repeating the denominator ( pi2 - mi2) 
-1 

will lead to the appearance of the zi 

factor after parametrization. If we now parametrize Lx according to the 

procedure of I-See. 3, we find from (6.4) 

1 Lx = 16 l- dz.2z2pvD; lF 1 

J u2v2 
(6.6) 

where p, is part of the projection operator in (2.3) and IF , dz, U, V are all 

defined for the self-energy diagram 2 of Fig. 4(c). Parametrizing the two Lc 

diagrams in the same way we obtain 

3 1 dz p, c2ziD; IF - 
i=l u2v2 

(6.3 ) 

Let us now carry out gi operations. The term in the parentheses contracted 

with any gj in @gives 
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I 

3 1 
C 2zi(PDi)~. - 
i=l J u2v” I contracted 

Aim 
= 

(n-1)U2Vn-l 
(S-8) 

taking account of (I. 37) and (I. 74). On the other hand, if DL is not contracted, 

we obtain 
3 

C 2zi(P* Di) 
i=l 

G being defined by (I. 36). Thus we find 

Lxf2Lc = & 
/[ 

dz I&--- 1 

u2v 
+2GlF- 

U2V2 3 
(6.10) 

where E is defined by (2.17). As is seen from (2.16) this is identical with - Ba, 

verifying (6.3). This argument is generalizable to any order. It hinges on the 

relation (6.4) which is applicable to any vertex in which external qp vanishes. 

Let us now consider the extraction of magnetic moment term from (6.2). 

For this purpose it is convenient to deviate from the convention of (I. 10) slightly 

and exhibit the dependence on the external momentum q explicitly. Namely, let 

us denote the electron momenta as 

pj * q/2 if j is an electron line to the left 
\right Of the (6.11) 

external vertex 

while the photon momenta are unchanged. pj is then a linear combination of the 

external electron momentum p and integration variables r 
k’ 

Before parametrizing qp ( 8Acc/aqv ) in (6.2)) let us carry out the differen- 

tiation with respect to q, explicitly using (6.4) and the identities: 
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” [ 
a 1 

8% 1 p1*:/2 -113’ 
= ~ 1 (fi+m)y’($+m) 

q=o 2 (P2 - m2)2 

(6.12) I 
a 

L b 
1 

aq V 
+ d/2 -m ‘l’l 12m 

-1 

.- 1 2prvt$+m) - ($+m) yvyp 
qr()= 2 (p2- m2)2 

For instance, for the integrand of A: = AZ (p,q) for the corner diagram, we 

obtain 

a I a! 1 
aqv ly d3 + d/2 - m3 yp$ pi/i-m ypd $2-m Y 

3- 3 2- 2 O1 %- 1 yp 
a q=o 

= - Z;” + 2 5 E3j#3D; IF 
1 

j=l 3 
(P,2 - mi)i=$ (PH -mf) 

(6.13) 

where 

E.. = - &.. = 1 
‘J Jl 

ifi<j (6.14) 

and Z[’ is obtained from IF by replacing (0, + m3) by [“y” (D3 + m3) 

- (sd3 + m3)yvyp 1 /2 . 

If we now parametrize q,$aAz /aq, ) according to the method of I-See. 3, we 

find 

Similar results are obtained for the crossed-ladder diagram Ai and the other 

corner diagram A; . Summing up these contributions we get 
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where AP = AP + AP + AP and a 1 2 3 

zf = f$ j3, zjqv 

I In projecting out the magnetic moment contribution of (6.16), it is seen that 

the only contributions arise from the case where q and D’J: are both contracted 

with the Dk operators within IF. Thus the magnetic part of (6.16) can be written 

as 

$ di 
/ 

1,2,3 

c & Z.Z. B! 
i, j,k,e 

ij 1 J lk 
B’ q npv 2 

ja I-L k1 u2v (6.18) 

where h?~I is obtained from IF by replacing ($ + mk) and (b, + ml) by yP and 

YV 9 respectively. 

This result can be easily generalized to the any order self-energy diagram G 

and associated vertex diagrams. For simplicity let us define 

where 

@” = qp ccijlFi(v 
i<j 

2n-2 2n-1 

% = - -$ c c 
k=l J=k+l 

“kZl tBikBie - B;a Bik) 

(6.19) 

(6.20) 

Then we find 

mag. mom. part 

= V 1 

(n - 1)U2Vn-l 3 
(6.21) 

taking account of tiki = - Il$i . If we now project out the magnetic moment 

term from (6.21) and the second term of (6.2) with the help of (2.2) , we finally 

obtain 
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/[ 
dz lE+aJ 1 1 - 

n- 1 u2p-1 + (2GlF+ZZ) - 
U2Vn 1 (6.22) 

as the<ontribution to the electron anomaly from all vertex diagrams associated 

with the self-energy diagram G of order 2n. lE , (L: , IF, liz are magnetic 

projections of lEV , au , p” lF, z’/‘, respectively. 

The integrand of (6.22) looks more complicated than those of individual 

vertex diagrams. However, actual trace calculation is much simpler because 

only (c” and zv depend on q, and that in a very simple fashion. After the trace 

calculation is carried out, the numerators turn out to be of similar lengths as 

those of individual vertex diagrams. Since each integral of the form (6.22) 

replaces 2n - 1 individual integrals, this application of Ward-Takahashi 

identity amounts to a manifold reduction in the time and effort of computation. 

In (6.22) parametric functions C.. 
iJ 

replace scalar currents ai in individual 

vertex contributions. Calculation of Cij is greatly facilitated by’ the topological 

formula discussed in I-Sec. 4(g). This calculation is trivial in the 4 th order. 

Since it becomes fairly tedious in the Gthorder, however, we have computed 

them on the PDP-10 computer, using TECO and REDUCE-2. Note also that C.. 
iJ 

are related to each other by relations derived from Kirchhoff ‘s laws for B... 
iJ 

These relations are useful for their computation and crosschecking. In the 

Appendix we give examples of computation of C. . . 
13 

As an illustration of (6.22) we give explicit formulas for the 4 th order 

magnetic moments Ma and M b associated with the self--energy diagrams a and 

b of Fig. 4(c). Ma is of the form: 

2GF0 + Z. 

&p + 

2GF1 + Zi 

u3v I 
(6.23) 
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where 

E,. = 8(2AlA2A3 - AlA - AlA - A2A3) 

Co = - S(C,l + C31 + C32) = - 24z6z7/U 

F. = W’Wo - 4(Al+ A2 + A3 - 2) 

z. = 8zl(- Al + A2 -I- A3 -I- AlA + AlA - A2A3) 

+ 8 z2 (2 -Al + A2 -A3 -AlA2+AlA3 -A2A3+2A1A2A3) 

+ 8 z3 (Al -I- A2 - A3 - AlA + AlA + A2A3) 

Fl = 4 
II 
B12(2 - A3) +- 2B13(l - 2A2) + B23(2 - Al) 1 

Z1 = - 8 z1 
[ 
B23Al - B12A3 + B12 + B13 1 

- 8 23 Bl2A3 - B23A1+ B13 + B23 
[ 1 

+ 8 z2 B23(l - Al) - 4B13A2 + B12U - A3) 
3 

The integral for Mb is also given by (6.23) but with 

E. = 8 Al [ 4(A2 - Al) - AlA 1 

co = - 8A2 

F. = - 4 [ 4( 1 - Al + A12) t- A2( 1 - 4Al-t A12) 1 a / 

8 
t- 

z. = z13 Yl - A2( 1 + A12) 1 + 8 z2A2( 1 + A12) 

Fl = 32(Bll- B12) + 12Al B12 

Z1 = 24(z13 - z2)A1B12 (6.25) 

(6.24) 

For the 6th order we have again generated the integrands of (6.22) by 

SCHOONSCHIP. Renormalization and IR-divergence separation can be carried 

out by KS and IG,,s operations as before. -However, the I 
G/S 

operation now 
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requires much more careful treatment than the previous case as a consequence 

34 
- of the use of formulas such as (6.4). We list the renormalization terms for -n 

6th order calculations in Table IV, and K-renormalized expressions in Table V. 

The contribution from all diagrams of group 4 i-s given by 33 

(6) = 
a4 i c qi AMi - 3AB2*AM (4) 

g 
- 2AL(4) 

( 
+ 2A6m(4) + AB(4)) M2 -t 2(AB2)2M2 

(6.26) 

where the summation is over all self-energy diagrams of Fig. 3, and all lower 

order quantities except AM (4) 
g 

are defined in Sec. 5. AM (4) is given by 
g 

AM(4)=AM +AM 
g a b (6.27) 

where AMa and AMb are related to the qth order quantities defined in Sec. 5 by 

AMa = Mx + 2AMc 

AMb = AM1 + 2AMs - AB2M2 (6.28) 

We have evaluated AMA, . . . ,AMH numerically using RIWIAD. The result is 

summarized in Table V. Collecting the results of Table V and Table III we 

obtain 

ad’)(group) = 0.893(42) (6.29) 

where the error comes mostly from the diagrams B and D. We have not tried 

to cut down the error of diagram B further for reasons discussed towards the 

end of Sec. 7. On the other hand, it would be necessary to use a substantially 

larger number of subcubes in order to improve the accuracy of the diagram D 

because of the oscillatory structure of the integrand in the central region. 
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VII. ANALYSIS OF NUMERICAL RESULTS 

We have evaluated the integrals for individual and grouped diagrams 

prepared in Sections 5 and 6 using the integration subroutine RIWIAD described 

in Ref. 7. It is a Monte-Carlo integration program with self-adjusting subintervals 

(or subcubes) which generates an estimate of the integral. and a 90% confidence 

limit of error. A selected set of these values for each integral are then averaged 

by the maximum-likelihood method. The reliability of our results depends of 

course on the quality of RIWIAD outputs and the selection criteria. 

There are two ways to improve the accuracy of RIWIAD integration: One 

is to make an appropriate mapping of integration variables, and the other is to 

increase the number of subcubes and iterations. To proceed systematically we 

have evaluated each integral in three steps; 1) set-up stage, 2) confirmation 

stage, 3) evaluation stage. 

1. Step We typically use 60,000 subcubes and 5 iterations and try to reduce 

the “error” of integration by a change of variables of the form 

yi = fi(Xi) , 0 ,< xi ,< 1 , 0 5yi (1 , i=l, 2,.. (7.1) 

where 

fitxi) fix% - x)n&fj)lxmu - x)ndx (7.2) 

This mapping is designed to stretch the ends (xi = 0 and/or xi = 1) where the 

integrand grows rapidly, by a suitable choice of nonnegative integers m and n. 

After mapping the integrand will be “flatter” and will lead, with some luck, to 

a smaller variance. Unfortunately such a mapping will not help if the integrand 
, 

has a rapidly varying structure in the central region (not on the edges of the 
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unit cube integration domain) or a peak in some direction in the multidimensional 

domain of integration (other than one along an axis). In such cases it is difficult 
- 

to obtain a good result by such a simple mapping as (7.1). In our application, 

however, such mappings have yielded results with reasonably small variance 

in the majority of cases. A notable exception is the integral for the grouped 

diagram D whose error we could not bring under control because of an oscil- 

lating structure in the central region. 

2. Step In this step we try to check the adequacy of the step 1 by increasing 

the number of subcubes to about 180,000 (with 5 iterations). In most cases the 

value of the integral is found to stay within the stated error, and the error 

itself is reduced by - l/J3 , as is expected. In some cases, however, we 

have found that the value of the integral had drifted beyond the errors of the 

step 1. (Integrals D2 and F2 had such drifts. ) In these cases we had to increase 

the number of subcubes to about 360,000 or even more before no further drift 

could be detected. 

Step 3. We now perform integrations using 360,000 to 1,000, 000 subcubes. 

The limit on the number of subcubes is dictated by the practical restriction on 

computing time {each job is limited to a maximum of one hour computing time). 

The number of iterations ranged from 4 to 10. Since the interval structure of 

the previous run could be used to start the next job, the effective number of 

iterations was usually larger than 10. 

In most cases the values of integrals obtained by the steps 1, 2, and 3 were 

consistent with each other and their errors decreased. We took this as an 

indication that RIWIAD was giving us reliable results. Still, it is our impression 

from experience that the errors given by RIWIAD tend to be ovkr-optimistic 
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when the number of subcubes is small. For this reason we decided to use only 

the results of step 3 in our final analysis. 

As was mentioned already, in some cases (D2 and F2 in particular) the 

value of the integral obtained with 360,000 subcubes drifted considerably beyond 

the errors of earlier step. Presumably, when the number of subcubes is too 

small, RIWIAD fails to explore some important portion of the domain of inte- 

gration due to a peculiarity in the mechanism of optimization of axis subdivision. 

Although such a drift appears to have stopped for 720,000 subcubes, we have not 

been able to confirm this by running with larger number of subcubes for lack of 

computing time. For diagrams F2 and D2 we have included only numbers with 

720,000 subcubes in our final results in Table II. 

In our preliminary calculation4 we did not go much beyond the step 1 of the 

above procedure. We evaluated each integral a number of times, changing the 

mapping of variables each time, but using only relatively small number of 

subcubes (about 180,000 at most). For each integral many of these values were 

then averaged by the maximum-likelihood method (using the RIWIAD-supplied 

errors for weighting) and the compounded error was calculated from c c-i2 
i 1 

-l/2 
. 

i 
Later recomputation of these integrals with larger number of subcubes revealed 

that the errors thus obtained were too optimistic presumably because in some 

cases RIWIAD systematically fails to explore certain parts of the domain if the 

number of subcubes is too small. If we reanalyze the integrals of our prelim- 
4 inary report retaining only those computed with the largest number of subcubes, 

we find ai6) = l.OOS(Sl). In this manner we can remove the apparent discrepancy 

between the previously reported value 1.02(4) and the result of the present 

calculation. Different treatments of IR divergences in Ref. 4 and th& present 
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paper prevent us from going into more detailed comparison without further 

computation. - 
(6) Since we have computed a4 in two independent ways, we are in a position 

to crosscheck the eight integrals of Sec. 6 with the sums of the corresponding 

vertex diagrams of Sec. 5. Such a comparison is shown in Table VI. The 

agreement is excellent except for the groups B and D, where the differences 

between the two results are 0.032 and 0.014, respectively. Actually the latter 

is acceptable since the RIWIAD error for group D is 0.020 (recall the earlier 

remark that this is the most difficult group to integrate). The discrepancy in 

the group B can be traced to the fact that our integration program for the B 

diagram suffered from a computer overflow which forced us to exclude from the 

integration small regions of the integration domain. (Only other diagrams with 

the same problem were D and E; however no discrepancy with the results of 

Sec. 6 arose in those cases. ) Since there already exist analytical results for 

the group B, however, we have not attempted to resolve this difficulty. Replace- 

ment of AMB by the analytic value of Ref. 11 changes (6.29) to 

a4 t6) = ,910(30) (7.3) 

which is in good agreement with the result of the approach of Sec. 5. 

We have also compared our integrals for individual diagrams with the 

results of Levine and Wright9 and Levine and Roskies. 11 They are shown in 

Table VII. The agreement is very good in general. Since we have not computed 

the qth order infrared integrals Ix, Ic, Is, and I1 explicitly, we have not been 

able to compare all diagrams directly with the values of Refs. 9 and 11. Instead 

we have compared various combinations within which such 4 th order integrals 

cancel. We have not been able to compare our results with those of Ref. 10. 
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Appendix. CALCULATION OF C.. 
11 

Although (6.20) is adequate as a definition of C 
W 

it is not convenient for 

actual calculation; in the 6 th order there are 10 distinct C..‘s for each electron 
11 

self-energy diagram, and there are 10 terms in the defining summation for 

each C ij. When (6.20) is evaluated explicitly, however, most terms are found 

to cancel each other. Thus a more convenient formula may be expected for 

C . . . 
11 

A major simplification results from the use of formula (I. 96) for the terms 

in (6.20): 

Bij Bkr - B! B’ 11 kj = UB ij, kl i#j#k#l (Al) 

where B ij, k! is given by (I. 97), or the equivalent formula 

i#j#k#a (~2) 

obtained from (Al) noting that B 
ij, kll does not depend on z., z 1 j’ zk, and ze . 

Here i and .e should not belong to the same chain, since the denominator vanishes 

otherwise. 

If some indices of B ij,k1 are identical, we can use an even simpler 

formula (I. 101). 1 

Further simplification follows from the Kirchhoff’s first law (I. 44) for 

B . . . 
13 

Suppose we have 

B. -B. =Bkm im Jm (A3) 
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Then we find by substitution in (6.20) 

cm - c. 
Jm 

=cl,-+ 
c “1 Bbm/l E(i-I)- E (j-a)- &(k-8) 1 .kpe 

where pe is the continuous path of internal electron lines and 

(A+ 

1 i>B 
E(i -1) = 0 i =Q !A5) 

-1 i <L 

Thus most Cij can be expressed using some basic set of Cij and ziBij/U. 

Let us now give some explicit examples of C... No Cij appears in the 2nd 
11 

order self-energy diagram since it has only one fermion line. The simplest 

Cij is found in the mass-insertion diagram 2* in Fig.4(c). We find 

c31 = z7/z137 = A1 W) 

Cij in qth order are still trivial to calculate; for diagram 2, Fig. 4(c), we have 

c21 = CQ1 = c32 = Z6Z7/U 

and for diagram b, Fig. 4(c), we find 

(A7) 

‘21 = ‘37 6 z /u c31 = (z7z26 - z2z6)/u ‘32 = ‘17 6 z /u (As) 

Sixth-order Cij are not as compact. As an example let us give C.. for the 
11 

self-energy diagram H, Fig. 3. First we calculate three “basic” C 
ij 

c21 = [‘36’7’8 + 23,$5z6z7 + z 34’5’67 + z3z4(2z5 + “a)] iv 

c31 = -[z2z4(2z5 + z78) + z2z5z67 + Cz2 - z6)z7z8 ] bJ 

C32 = [z1z4(2z5 + z73) + (z1s7 + z4z6)z53 + z6z7Z3] /u 

tA9) 
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using (A2) and (I. 101). The rest can be obtained by Kirchhoff’s first laws: 

CT 
3j - ‘2j = C5j + (ZlBij -t z~B’~)/IJ 

C3j - Clj = C4j - (z2Bbj + Z,B~j)/u (AlO) 

From (A9) and (AlO) we’find 

Cql = CQ1 + (z2B12 + z5B15)/U 

C42 = C32 + C21 - 1 + (z2B22 + Z5B25)/U 

c43 = C31+ (Z2B23 + z5B35)/U 

C 51 = CQ1 - C21 + 1 - (zlBl1 + z4B14)bJ 

C 52 = C32 .- (zlB12 + z4B24)/U 

‘53 = ‘32 - (z1B13 + z4B34)/U 

C54 = - C43 + C42 + 1 - (zlBl4 + z4Bd4)hJ 

(All) 

Cij for other self-energy diagrams of Fig. 3 can be obtained in the same fashion. 

They are usually simpler than the above example. This is especially true for 

diagrams with self-energy insertions, such as diagram A, Fig. 3. 
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Table I. Subtraction terms ai- Mi and ai- A’Mi in the usual renormalization 

and K-renormalization. 

diagram ai- Mi ai- A’Mi 

Al 

A2 

A3 

Bl 

B2 

B3 

Cl 

c2 

c3 
Dl 

D2 

D3 
D4 

D5 

El 

E2 

E3 

Fl 

F2 

F3 

Gl 

G2 

G3 

G4 

G5 

Hl 
H2 
H3 

-2B2( MS- 
2 

6m2M2*)+B2 M2 

-B2MQ-L2tMs- 6m2M2d+B2L2M2 
-2B2( MS-6m2M2*)+B2M2 

-B2iMs-6m2M2*)-(Bb-am2B2*)M2 
-( 6mb-6m2Sm2,)M2,+B22M2 

-B2M1-(Ls-6m2L2*)M2+B2L2M2 
-L2Mp -L1M2+L22M2 

-2L2(Ms- 6m2M2*)-BaM2+2B2L2M2 

-6m,M2* 
2 

-L2M1-LcM2+L2 M2 

-LxM2 
-B2Mc-(Ls-8m2L2*)M2+B2L2M2 

-B2Mx 
-B2Mc-L2(Ms-Sm M .+)SB2L2M2 

22 2 
-L2Mc-L2Mp+L2 M2 

-B2Mc-L2( MS-Gm2M2,)+B2L2M2 

-B2Mc-(Ls-Gm2L2*)M2+B2L2M2 

-B2Mx 

-L2Mx 2 
-L2Mc-LcM2+L2 M2 

-L2Mx 2 

-2L2Mc+L2 M2 2 
-L2Mc-LpRI12+L2 M2 

-L2Mx 
0 

0 
2 

-L2Mc-LcM2+L2 M2 

-LxM2 
0 
0 

-2 A’B2AMs+(A’B2)2M2 
-A’ B2A’Me -A’ L2AMs+A’B2A’ L2M2 

-2A’B2AMs+{A’B2)2M2 

-A1B2AMs-AsmbM2* 
2 -A’BbM2+(A’B2) M2 

-A’B2A’Mg-A’LsM2+A’B2A’L2M2 

-A’L2A’Mp -A’LeM2+(A1L2)2M2 

-AsmaMZc -2A’L2AMs-A1BaM2 

+2A’B2A’L2M2 

-A1L2A1Mi[g-A1LcM2+(A’L2)2M2 

-A’LxM2 
-A’B2AMc-A’LsM2+A’B2A’L2M2 

-A’B2 Mx 
-A’B2AMc-A’L2AMS+A1B2A’L M 

22 2 
-A’L2AMc-A’L2A’.M1+(A’L2) M2 
-A’B2AMc-A’L2AMs+A’B2A’L2M2 

-A’B2AMc-A’LsM2+A’B2A’L2M2 

-A’ B2Mx 

-A’ 12Mx 
-A’L2AMc-A1LcM2+(A’L2)2M2 

-A’L2Mx 

-2A’L2AMc+(A’L2)2M2 
2 -A’L2AMc-A’LpM2+(A’L2) M2 

-A’L2Mx 

0 

0 

-A’L2AMc-A’LcM2+(A’L2)2M2 

-A’LxM2 

0 
0 
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Table II, Contributions of individual sixth order diagrams. (Factor 2 included for 

asymmetric diagrams. ) 

diagram ? iAMi finite parts IR-divergent parts 

A3 

D3 

F3 

-3. ;985(62) 

6.0858(104) 

-2.6564(58) 

Al 

Bl 

-2.1232(20) 

0.6918( 16) 

Cl -0.1708(16) 

Dl 1.7824(54) 

D5 -0.5360(36) 

El 1.7502(34) 

Fl -0.9118(58) 

Gl 0.5888(16) 

G5 0.9092( 58) 

Hl -0.4218(22) 

A2 

B2 

c2 
D2 

D4 

E2 
F2 

G2 

G4 
H2 

3.5280(48) 

-0.8774(28) 

2.0714(34) 

-3.4932( 96) 

-2.3774(78) 

0.3212( 72) 
4.3184(136) 

-0.5596(34) 

-0.3182(72) 

-1.7464(76) 

B3 

c3 

E3 

G3 

H3 

1.8491(50) 

-2.1950(58) 

-1.2157(33) 

1.8572(86) 

-0.0307(27) 

-2AB2AMs+(AB2)‘M2 
-2AB2AMc 

-4AB2AMs+2(AB2)2M 
0 2 

-2AB2AMs+2(AB2)&M2 

-2(Asmb+ABb)M2 

-2(ASllla+ABa)M2 

-2AB2AMc-2ALsM2 

-2AB2AMc 

-2AB2AMc-2ALsM2 

-2ALcM2 

-2AL1M2 
-2ALcM2 

-2ALxM2 

-2AB2AM1 

-2AB2AMg -2ALsM2 

-2ALcM2 

-2AB2Mx 

-2AB2Mx 

-ALfM2 

-ALxM2 

2 +212(AMS-AB2M2)+12 M2 
+212(AMc-AMS+AB2M2) -2122M2 

-212AMc+122M2 

+412(AMs-AB2M2)+2122M 
22 +212(AMs-3AB2M2)+212 M2+2!21s+Ia)M2 

+212(AMQ-AMs)+21sM2 

+212(AM1+AMS) -21sM2 

+212(AMc-AM& -21cM2 

+212Mx 

-212(AMc+AM$ +21cM2 

+212Mx 

-212Mx 

-212Mx 

+12Mx-IxM2 

-12Mx+IxM2 
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Table III. Finite parts of renormalization counterterms. 

- - 

term value defining equation 

ALX 

ALc 

ALP 

ALS 

ABa 

‘a, 
A6ma 

A6mb 
3(ALx+2ALc)+2A6ma+2ABa 

3(ALpf2ALs)+2A6mb+2ABb 

2(ALx+2ALc)+2A&na+ABa 

2(ALQ+2ALs)+2Asmb+ABb 

0.5 (5.3) 
0.75 (3.26) 

-0.4677 (5.17) 
0.3430 (5.17) 
0.7775 (5.11) 

-0.2950 (5.17) 
0.2183 (6.28) 

-0.1875 (6.28) 

-0.4796(25) 
-0.0007(18) 

0.1236(8) 

0.4070(10) 

-0.0317(44) 

-0.3946(39) 

-0.3015(10) 

2.2059(29) 

-2.1055(22) 

6.4410(5) 

-1.5928( 19) 

5.8991(4) 

(4.29) 
(4.33) 
14.61) 

(4.58) 

(4.43) 

(4.67) 

(4.6), (5.40) 

(4.48), (5.40) 

(5.41) 

(5.41) 

(6.26) 

(6.26) 
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Table IV. Subtraction terms for grouped diagrams in the usual renormalization. 

- 4 

. 

group 

A 2 
-2B2CMb-Gm2M2*)+B2 M2 

B -B2(Mb-6m2M2~)-2(6mb-6m26m2~)M2+-(Bb-6m2B2~)M2+B22M2 

C -2L2(Mb-6m2M2*)-26maM2*-BaM2+2L2B2M2 

D -L2(Mb-6m2M2*)-B2Ma-(Ls-6m2L2.+)M2+2L2B2M2 

E -B2Ma-2( Ls-6m2L2.+)M2+2B2L2M2 

F 2 -2L2Ma-2LcM2+3L2 M2 

G -L2Ma-L1M2-LcM2+2L;M2 

H -2LxM2 
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Table V. Contributions of grouped diagrams of sixth order. (Factor 2 included 

for as$nmetric diagrams. ) 

group rl iAMi finite parts IF-divergent parts 

A -1.3546(52) 

B 0.8762(81) 

C -0.0350( 97) 

D 0.9334(201) -2AB2AMa-2ALsM2 

E 1.2006( 106) 

F 0.7479( 95) 

G 2.4698( 52) 

H -2.2014(38) 

-2AB2AMb+(AB2)2M2 

-AB2AMb+( AB2)2M2 

-( 2A6mb+ABb)M2 

-( 2Asma+ABa)M2 

-AB2AMa-2ALsM2 

-2ALcM2 

-2ALJ,M2-2ALcM2 

-2ALxM2 

+212!AMb-2AB2M2)+3122M2+21sM2 

2 +212(AMb-2AB2M2)+212 M2 

+2c Is+y”2 

+12(AMa-2AMb+2AB2M2) -4122M2 

t-2( 21c+Ix)M2 

+212(AMa-AMb+2AB M ) -3122M2 
.22 

+2uc-1p2 

+12(AMa+2AB2M2) -21;M2-21sM2 

2 +212AMa+312 M2-21cM2 

2 -212AMa+412 M2 -2( $+I,) M2 

-21xM2 
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Table VI. Group-by-group comparison of contributions to the electron anomaly 

kalculf;ated from the second and third columns of Tables II and V with the help of 

Table III. Infrared divergent terms are not included since they are common to 

both results. 

group from Table II from Table V difference 

A -0.7887(81) -0.7921( 52) 0.0034 

B -0.7779(78) 0. 7947(312) 0.0168 

C 0.2793(85) 0.2823(99) -0.0030 

D 0.2126(174) 0.1990(201) 0.0136 

E 0.6357(87) 0.6299( 106) 0.0058 

F 0.7509(160) 0.7486(97) 0.0023 

G 2.3547( 133) 2.3469156) 0.0078 

H -1.7193(87) -1.7218(45) 0.0025 
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Table VII. In order to compare with the results of Levine and Wright9 and Levine 

and Roskies’l, n iMi of Table II are rewritten in the form A + B(lnh) + C(lnh)‘. 

The coefficients A, B, C are listed in columns 2, 5, 6, respectively. 

diagram present Levine 
calculation et. al. difference 

coefficients of 
lnh {lnh)2 

Al -2.4632(20) -2.46323 0.0000 

A3 -3.3685(62) -3.37431 0.0058 

B3 1.7873(50) 1.79028 -0.0030 

D2 -3.9609(96) -3.951(40) -0.010 

D3 6.5413( 104) 6.541(13) 0.000 

D5 -0.0805(36) -0.083(6) 0.003 

E2 -0.1465(72) -0.153(6) 0.007 

F2 5.4876( 136) 5.515(25) -0.027 

F3 -2.7326(58) -2.746(7) 0.013 

G2 0.6096(34) 0.613( 13) -0.003 

G3 1.8572(86) 1.854( 13) 0.003 

G4 -0.3182(72) -0.330( 13) 0.012 

H2 -1.7464(76) -1.763(20) 0.017 

H3 -0.0307(27) -0.021( 100) -0.010 

A2+B2 
-B2+Dl 

A2+Dl 

A2+El 

C2+D4 
-C2+G5 

C3+E3 

Dl-El 

3.7986(56) 

2.3378(61) 

6.1364(73) 

6.1042(60) 

-4.1928( 87) 
0.6291(67) 

-3.1709(68) 

0.0322(64) 

3.79838 

2.342(13) 

6.140( 7) 

6.103(6) 
-4.206(25) 

0.630(25) 

-3.174(14) 

0.037(14) 

-1.195( 14) 

-l-836(13) 

-3,418(20) 

0.036(26) 

0.0003 

-0.004 

-0.004 

0.001 

0.003 
-0.001 

0.003 

-0.005 

-0.009 

0.015 

-0.003 

-0.003 

2 XE3+Hl -1.2043(74) 

Fl-G5 -1.8210(82) 
B1+2xFl+Hl -3.4206(80) 

Cl+BxFl-I-Hl 0.0330( 135) 

2p4 1 

h4 l/2 

2Pl 
b3-I-14 -1 

P3-P4 -1 

2Pl 
-2/-Q 

-I3 l/2 

-2p1 . 

41*2 
-2P2+P3-P4 -1 

2P2+P3-P4 -l 

2P2+P3-P4 -l 
-4P2 

2P2 -2P3 1 

-a-5 

4P2-P3+3P4 2 

-2P3-2P4 

pl = M, = -0.4677 , y2 = AM,= 0.7775 , /J~=~(AM&/~)M~)=-O. 5640 , 

p4 = 2(AMs+( 1/2)M2)=-0.0900 
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4 FIGURE CAPTIONS 

Fig. 1. (a) A typical diagram containing fourth order vacuum-polarization 

Fig. 2. 

Fig. 3. 

Fig. 4. 

Fig. 5. 

subdiagram. There are three more diagrams of this type. (b) A 

typical diagram containing second order vacuum polarization 

subdiagram. There are 12 diagrams of this type. (c) A typical 

diagram containing photon-photon scattering subdiagram. Six 

diagrams belong to this group. (d) A typical diagram of three- 

photon-exchange type. There are 50 diagrams of this type. 

28 distinct diagrams of group 4. The remaining 22 diagrams can be 

obtained by time reversal. 

Three-photon-exchange electron self-energy diagrams. 

(a) Second order electron self -energy diagram. (b) Second order 

vertex diagram. (c) Fourth order electron self-energy diagrams a 

and b and the self-mass counter term 2* for the diagram b. (d) Fourth 

order vertex diagrams of the crossed-ladder (x), corner (c), ladder 

(Q), and self-energy-insertion (s) type, and the self-mass counter 

term 2* for the diagram s. 

Diagram Al and its self-mass counter terms Al* and Al**. 
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