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ABSTRACT 

We study moments of the cross section for inelastic 

electron-photon scattering. Simple scaling laws would 
result if the real photon was a particle which behaves 

predominantly like a light vector meson. We discuss 
possible modifications of these scaling laws originating 

in anomalies of the structure functions of the photon; 

they occur in quark models as well as in generalized 

vector meson dominance models. 
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1. INTRODUCTION 

- Deep inelastic electroproduction experiments have shown a local 

scaling law to hold for the electromagnetic structure functions of the 
1 nucleon . For sufficiently large mass-squared of the virtual photon, 

and sufficiently high CM energy W of the photon-nucleon system, the 
2 structure functions depend only on the dimensionless ratio , 

2v/$ = 1 + (W2 - m2&/Q2. The same types of inclusive experiments with 

(anti) neutrino beams have proved the existence of a global scaling law: 

The total (anti) neutrino-nucleon cross sections rise linearly with 

neutrino energy3, even for very low beam energies. The early onset of 

this type of scaling can be explained by Bloom-Gilman duality4: The 

w2 -dependent bumps in the structure functions are smoothed out by inte- 

grating them over a set of resonances. This way, a smoothly behaved 

total cross section results which exhibits its asymptotic-properties 

already in the resonance region. 

One might ask if similar simple scaling laws show up in the 

hadron production channels of inelastic electron-photon scattering, which 

will soon be accessible in electron-positron/electron colliding beam 

machines. These experiments, some time ago proposed by S. J. Brodsky, 

T. Kinoshita and H. Terazawa, T. F. Walsh, and C. E. Carlson and W.-K. 

reveal the internal structure of the photon itself. Considering 

the real photon merely as a light vector meson, one would expect the 

structure functions of the photon to scale at least as rapidly as those 

of the nucleon. However, parton models 6-8 predict the existence of 

anomalous contributions to the photon structure functions which are no 

longer scale invariant. Furthermore, some of the diagrams which 
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describe photon-photon annihilation in this model, closely resemble the 

diagrams occurring in electron-positron annihilation into hadrons. This 
c, 

could cause additional problems for scaling 9 . On the other hand, we 

expect a breakdown of scaling to occur in generalized vector meson 

dominance models as well. Because of the quantum mechanical time-energy 

uncertainty the real photon can (for short times) transform into vector 

meson states V b-4 of very high mass. If 
g(n) >> v, Q2, we certainly 

can no longer apply the impulse approximation to the scattering of the 

electron on the constituents of the real photon because the interaction 

time is too long compared with the lifetime of this state. Only if the 

transitions of the photon into high mass vector meson states are very 

rare, an approximate scaling law should hold. It does not hold in generalized 
. 

vector meson dominance models which predict an s -I scaling law (or 

slower fall off) for the cross section a(e+e- +a11 hadrons) 10,ll . 

The number of experimental ey events available in the near 

future is not large enough to allow a local analysis of the photon 

structure functions. Hence, it is expedient, as in neutrino-nucleon 

scattering, to investigate global quantities which can be predicted 

using theoretically transparent assumptions. In order to achieve as 

smooth a behavior of these quantities as possible, they should be defined 

in terms of the neutrion-like 'cross section' 

d2$ 

dv dQ2 
= Q4 d2u 

2' 
dv dQ 

resulting from the actually measured cross section by dividing out the 

photon propagator. Besides the "total cross section" ^a , 
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these (relativistically invariant) global quantities include the average 

energy and scattering angle of the outgoing electron 12,13 , defined as 

(E’ cos2 e’ 2 (sin2 $.)) = // E' cos 2 g (sin2 $-) d2a/JJ d28 

in the laboratory system. 

Summing up all Weizsacker-Williams photons in an electron-positron 

collision, a simple-minded dimensional analysis for these functions yields 

the following dependence on the beam energy E in the laboratory system: 

and 

a(E) ccE2 

W cos2 e' 2 (sin2 $-)) a: E . 

This behavior would obviously result if the (real) photon was a particle 

with predominantly hadron-like properties. Adopting the simple vector 

meson dominance (VMD) model for this case, we are able to predict the 

coefficients in these relations or at least to calculate their upper 

bounds. This is possible because ^o can be interpreted in terms of 

the mean square charge per constituent of the vector meson. Thus, this 

model is a usefulmeans for defining a standard measure for scaling 

quantities in electron-photon scattering. In electron-positron 

annihilation, this measure is set by the ratio of the cross sections 

cr(e+e- +hadrons)/a(e+e- + p+p-). 



However, parton models and generalized VMD models as well 

predict logarithmic deviations from these scaling rules. In order to 
-c, 

estimate their possible size, we apply a simplified version of the 

covariant parton model 14 to ey scattering. In this version, partons 

are treated as quarks with minimal electromagnetic coupling and small 
8 effective mass . Even though the model generates only logarithmic scale 

breaking terms it, nevertheless, strongly affects the coefficients in 

the standard scaling relations. The most popular class of generalized 

VMD modelslO'll suggests the same results. This leads to the interest- 

ing possibility that dual relationships between resonance models and 

quark-parton models exist in photon-photon annihilation, too. 

The outline of this article is as follows: In Section 2 we 

shall define the notation and discuss the kinematics of electron-photon 

scattering in colliding beam machines. Section 3 is devoted to the 

derivation of the scaling rules for the various moments of the ey 

cross section. To get a firm basis, we first investigate those moments 

in the naive vector meson dominance model. (In an Appendix we examine 

as well the consequences due to experimental restrictions of the electron 

,scattering angle.) Then we estimate the size of anomalous contributions 

and show how they affect the scaling behavior of the moments. Some final 

remarks and a critical summary are the contents of the last section. 



2. KINEMATICS OF ELECTRON-PROTON SCATTERING 

-The large number of almost real photons which accompany electrons 

and positrons in colliding beam machines, such as SPEAR and DORIS, allows 

3 us to study the inelastic scattering of electrons off photons . To 

lowest order in QED, this corresponds to the annihilation of a real (y) 

and a virtual (r*) photon into hadrons. 

As shown in fig. 1, we denote the electron momenta before and 

after collision by k and k', respectively; the momentum of the real 

photon,supposed to be radiated off the positron, should be p; denoting 

the momentum of the virtual photon by q = k - k', we further introduce 

the invariant variables Q2 = -q2 2 0 and v = p-q. Since the almost 

real photons are radiated off the positron with very small angles, we 

get the following expressions for all these variables in the laboratory 

frame: 

ingoing electron: 

outgoing electron: 

real photon: 

invariant variables: 

k = E(l,O,O,l) 

k' = E'(1, sin 8', 0, cos 6') 

P = Ey(l,O,O,-1) 

Q2= 4EEi’ sin2 0'/2 

v = 2Ey-(E - E' cos2 872) . 

It should be noticed that the quantities Q2 and v/2FTE can be 

determined without measuring the positron momenta. 

The expressions for the cross section become most transparent if 

one introduces the following (Lorentz invariant) scaling variables: 
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x = $/2v with 0 <_ x <_ 1 (Bjorken variable), 

- Y = v/b) with OLYLlY 

e = (kp)/2E2 with Oie<l. 

If the electron scattering angle has an experimental upper limit eo, 

the variable y is bounded from above by y < l/(1 + EX cot2 0,/2). 

As in inelastic electron-nucleon scattering, one describes the 

(real) photon (spin averaged) by two structure functions depending on 

the invariant variables v and Q2 or x and y (kp): 

. 
-&Zld4z eiqz 

spins 
HP) IrjP(g), jy(-~)lIr(~)) 

Figure 2 displays the triangle in the (v, Q2) plane where the structure 

functions are defined for the scattering process. For the sake of 

simplicity, we have neglected the pion mass on the hadronic mass scale 

and we are doing so, as well, in the following calculations. In terms 

of the structure functions, the cross section for the process e + r + e' 

+ hadrons reads: 

&4 d2, = d2ij 
dx dy b dy 

-(kp >> + y2+wh)) I - (2) 
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Actually, one measures electron-positron collisions in which the photons 

have a continuous energy distribution. Allowing the positron to be c, 

scattered into a cone with aperture 8 min < f3 < 8 - - max << 1, the leading 

term of the Weizsa.cker-Williams spectrum of the photons is given 15 by 

N(Ey) ar c 

8 
= f [l + (1-E)2] log F - [l - ;I2 log 

E2+ (1-E) ekx 

min E2f (l-e) BEin 

= H(e) $ . 

The spectrum is independent of the energy of the ingoing positron; it 

depends explicitly only on the fraction E = ET/E. It will be sufficient 

for our considerations to approximate the spectrum by the simplified 

expression 

8 
H(E) % -> ; log $= % , 

min 
(34 

leaving us at most with an error of the order of 20% for absolute pre- 

dictions; some of our results will even be independent of the detailed 

form of the spectrum. 

Let us now define the neutrino-like 'cross section" 8 as 

^a=/ +H(E) // dx dy Q 4 d20 dx E (// d2ajE 

where the integration is supposed to be taken over an arbitrary region 

in the cube 0 < x, y, E 5 1 (yet not varying with beam energy). 



Considering the moment ^a instead of the cross section LT itself has 

the advantage of deemphasizing the low x, y, e-region by dividing out 

the v%tual photon propagator 4 l/Q a l/x2y2e2. Hence, we expect ^a 

to reach its asymptotic value faster than 0 itself. Other global 

quantities which are easily accessible are the average values of 

fl = E' cos2 672 (54 

and 

f2 = E' sin2 @'/2 . (5b) 

They should be defined as 

(fly,) = (ll fl 2 d2a),/(l! a2@E l 

Y 

(6) 

Investigating those quantities is particularly reasonable because they 

are simple, relativistically invariant functions of the scaling variables: 

fl = E(l-y) (5a’) 

and 

f2 =Exye. (5b’) 

From the results of inelastic neutrino scattering experiments we can 

conclude that measuring the moments ^a, ifJ and (f,) provides us 

with a useful tool for studying scaling pheonomena in electron-photon 

scattering, even at low energies. 
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3. SCALING AND 

In most 
-c, 

dominantly as a 

vector mesons. 

ANOMALOUS CONTRIBUTIONS TO ELECTRON-PHOTON SCATTERING 

photon-hadron reactions the real photon appears pre- 

hadronic particle, being a superposition of a few virtual 

The only exceptions to this rule are processes in which 

two photons are involved, as in Compton scattering7. The deviation of 

the Compton cross section from the simple VMD prediction can be attributed, 

in parton models, to contributions from diagrams where one parton directly 

connects both photons without interacting with the remaining hadronic 

flux. Similar phenomena are expected to occur in photon-photon 
6-8 annihilation . The quark-harton diagrams which contribute to this 

process are shown in fig. 3. Dual relationships 10 could exist between 

various sets of diagrams. We shall comment on this possibility later. 

Diagram A is the only diagram which has a parallel in inelastic electron- 

nucleon scattering. In the naive VMD model it can be approximated by 

replacing the quark-antiquark pair attached to the real photon by the 

lowest lying U-singlet vector meson. Obviously, if this diagram repre- 

sented the only contribution to electron-photon scattering, the absolute 

value of the moment (fl) could be predicted while {f,) and G could 

be bounded from above. A comparison with the nucleon case reveals that 

these bounds would not be far from the actual values. Therefore, devi- 

ations from those predictions would indicate how much the photon deviates 

from being a light vector meson. The remaining part of the diagrams 

(BY C, . ..) represents those disconnected pieces of the photon-photon 

scattering amplitude in which a parton coming from the real photon is 

directly connected to a parton in the virtual photon. These diagrams 

cannot be evaluated without knowing the quark propagators and the off- 
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shell quark scattering amplitudes. Simplifying assumptions, however, 

should enable us to get an idea of the possible size of these contri- 
4 

butions. Before turning to this speculative part of our considerations, 

we first derive the standard scaling rules in the simple VMD model, 

thereby ignoring non-scaling contributions for the moment. 

(a) Scaling contributions: 

We begin by imposing the hypothesis of rapid scaling on the 

structure functions of the photon in the spirit of Bloom-Gilman duality 
4 

: 

Fl,2hy(kd) -> Fl,2hm) 3 Fl ,(x1 - Y 
(7) 

As an immediate consequence we get the following global scaling rules: 

^o(E) aE2 (8a) 

(E’ cos2 0'/2) aE (8b) 

(E’ sin2 e’/2) aE . (84 

For different beam energies it is understood that the range of integration 

(Eqs. (4), (6)) within the cube 0 <_ x, y, E < 1 is chosen independent 

of the beam energy if experimental conditions do not allow one to exhaust 

the entire cube. The results agree with what one obtains from naive 

power counting if no mass parameters are involved. From neutrino-nucleon 

scattering, one has learned that global quantities display their asymptotic 

scaling properties even at very low beam energies. No lower bound for 

the variables v and has to be introduced so as to be definitely 
10 



in the scaling region. Therefore, in the simple VMD model one could 

safe&expect the same early onset of scaling in electron-photon 

scattering. 

The proportionality coefficients in -Eq. (8) can be calculated 

under weak additional assumptions. 

(i) In the present model,we can take for granted the Callan- 

Gross relation xFl = F2/2 for the photon and carry out the integrations 

in Eq. (41, (6) in such a way that the y-integration can be factorized 

OUP . Then, the slope in Eq. (8b) can be calculated: 

where 

W cos2 8'/2) = (1 - (y))E 

(Y> =I dydl- Y + $,, dy(1 - y + %, . 

(94 

The coefficient in Eq. (9a) would be 9/16 if the cross section was 

known over the entire y-interval. Notice that this relation is an 

absolute prediction derived only from the assumptions of scaling and 

lhe Callan-Gross relation. The slope does not depend on the Weizsacker- 

Williams spectrum. 

(ii) Under the same assumptions, we can derive a model-independent 

upper bound for the coefficient in Eq. (8c), if, in addition, the x- and 

e-integral factorize. Defining 

and 

(E) = / de E H(e)/1 de H(E) 

{xk) = J dx xk F2(x)/! ~JC F2(d 
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we get the inequality 

-cI (E' sin2 @l/2) = (E)(Y)(x)E (9b) 

<_ k)(y)E 

If we were able.to experimentally cover the entire square 0 <, y, E 5 1, 

we would obtain (for H = const): 

(E' sin2 6'/2) = 5 (x)E 

+E. 
(9b’) 

Comparing the results of Eq. (9a) and (gb') we easily recognize that 

small electron scattering angles are dominant even after dividing out 

the photon propagator. 

(iii) In order to determine a^(E) itself, we apply the VMD model 

to the real photon, as explained above. Since all functions in the 

expression 

a@)/~'= 167~3~ 
2 

/ dc H(E) J dy (1 - Y + 5, / dx F2b4 (SC> 

are positive definite, we obtain an upper bound (which includes all 

experimental conditions) by extending the integration over the entire 

cube 05x., y, ~51. The integral over the structure function F2 

can be well estimated. Combining the VMD model with the quark model, 

we can write the state vector of the real photon (in the SU 
3 

symmetry 

limit) as 

(10) 
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em2/f 
P P 

denotes the usual yp coupling constant. Since the integral 

over F2 measures the mean square charge per constituent, the result 

for the integral in this approximation is 

1 4 
i &-c F2bd = 3 f2,;T +. (11) 

P 

However, this must be considered as an upper bound for the actual value 

of the integral. In parallel to the nucleon case, we do not expect a 

large quark-antiquark sea to be present in the hadronic part of the 

photon, yet, there might be a substantial fraction of gluons present. 

They do not interact electromagnetically, but nevertheless, reduce the 

average square charge per constituent. Thus, from simple VMD we derive 

the following upper bound for the 'cross section' $ : . 

^o(E)/E*$a 4 emax log 8 . 
min 

(9c”> 

For an actual experiment where the scattering angle of the 

electron has a maximum value 8 0' but where no other restrictions are 

imposed upon the variables, this estimate can be sharpened. We shall 

discuss this problem in the Appendix. 

Hence, assum.+g the real photon to be a light vector particle 

with predominantly hadronic properties, one can well estimate the dependence 

of global quantities on the energy of the ingoing electron. They can 

serve as standard values with which experimental results can be con- 

fronted in order to extract the strength of the hadronic component 

within the photon. 



(b) Anomalaus contributions 

To study, first, the possible effect of high mass vector mesons, 

-we a&pt the following assumptions which are commonly used in generalized 

VMD models10'11'17. (Even though the model does not correctly describe 
+- 

e e +a11 hadrons for energies s 2 I2 GeV*, it might be applicable at 

smaller energies.) 

(i) Venetian0 type spectrum of the vector mesons, 
2 

m v(n) = $1 + 24; 

(ii) the V(")y coupling constant falls off like the inverse 

mass, 'i;n) am ;;n,; 

(iii) for <, Q* 2 m* ,W 
the scattering on the constituents is 

-incoherent. 

Then Eq. (11) is to be replaced by 

1 +12, + coherent part 

4E2 - f coherent part . 
2m2 

P 

(11') 

Numerically, the coefficient in front of the logarithmic terms is 
1 

"'ii cY- The interesting feature of this representation is the hint to 

a possible occurrence of scale breaking terms by including higher vector 

mesons in the virtual energy fluctuations of the real photon. The (new) 

dimensional constant which governs the scale breaking terms is the 

hadronic level spading 2mE. However, it is not possible to estimate 

the coherent contribution in this model, and we turn to the quark-parton 

model where more definite predictions can be obtained. This step might 

be justified by invoking a dual relationship between generalized VMD 

models and quark-parton models. 
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Farton contributions to fl annihilation are expected to be 

of the same size as the simple vector meson contributions 
6-8 . This 

-h 
can easily be shown in a model where fractionally charged quarks with 

light effective mass are minimally coupled to photons. This model can 

certainly not be applied to e+e- annihilation for energies s 2 I2 Ge v? 

However, below this value it might have a chance to be, at least, approx- 

imately, correct. Because we are interested in quantities which are not 

sensitive to energies I? 2 10 Ge V2 either, it is not unreasonable to 

apply this model to v annihilation. The corresponding diagrams are 

shown in fig. 3. (Int er erence terms do not disturb the following f 

discussion' .) Approximating the propagators of exchanged quarks by 

free fermion propagators with effective mass m. (- 0.3 GeV) one 

finds three features which distinguish the set of diagrams B, . . . 

from the simple vector meson dominated diagram A8: . 

W in the transverse amplitudes, logarithmic scale breaking 

terms are present; 

(ii) the contributions from virtual scalar photons do not vanish 

anymore; 

(iii) the piece Fg of the structure function vanishes linearly 

in x for x +c> 0. 
8,18 

The detailed calculation gives the following result for the box diagram : 

Fg=Zei* xi [x2 1 + %x(1-x) > (124 
B 

F2 
- 2147: = C ei-$ x2(1-x) . (=‘b) 
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The ei denote the quark charge quantum numbers and W is the invariant 

energyaf the w* pair. Integrating F2 over x, one recognizes a 

surprising numerical agreement between the leading logarithmic term in 

the generalized VMD model Eq. (11') and the -present quark model 

(C et = 2/3 for colored quarks): 

1 
/ dxF;=al 
0 

3~ (C e:) log 4E2 + a.. 

N- 1"4 log 42 + . . . (1-3) 

Even though this agreement could be accidental, it offers the interesting 

possibility of giving a dual relationship to generalized VMD models and 

quark models. Notice that the low lying vector meson contribution alone 

cannot be expected to be dual to the box diagram because the shape of 

the corresponding pieces of the photon structure functions are different. 

In the present example, a dual relationship can exist only between the 

quark model and asymptotic vector meson states. 
B The logarithmic scale breaking term in F2 is biggest for 

x 2 l/2 and W2 large. Unfortunately, this region is not easily 

accessible experimentally. Furthermore, the limited statistics in 

coming experiments will not permit detection of such weak deviations 

from scaling. Yet there might be some hope to investigate the presence 

of scalar contributions in the y distribution 

da 
--(l-y+ 
dy 

<) + (1-y)R . 04) 

R is the ratio of the longitudinal to the transverse cross 

section. It becomes'as large as 30$ in this model. 
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By contrast, for a simple hadron-like photon with spin l/2 con- 

stituents, the second term would be absent. This might no longer be 

true?f high mass vector mesons give considerable contributions in the 

generalized VMD model. 

Calculating the contribution of the box diagram to the moment 

8, one cannot expect to see a large deviation from the general scaling 

law a(E) aE2. On the other hand, in the colored quark model, the 

proportionality coefficient changes by a factor of about 2 relative to 

the hadronic contribution: 

8 16 ‘max 
Box 2 7 

a 4 E 2 
log z (15) 

transverse longi- 
tudinal 

pieces . 

However, this happens only if one integrates over the entire x, y, E 

cube. The influence of this diagram depends crucially on the maximum 

electron scattering angle, as one can see from Eq. (A.2a) in the 

Appendix. If most of the Itcross section" comes from the small x-region, 
B the box diagram is negligible since F2 vanishes linearly in x. The 

same applies to the other expectation values (E' Cos2 Ef/2(sin2 0'/2)>. 

The last diagram (C) we have to consider is likely the most 

troublesome one. It could even destroy the general scaling-law 

a(E) aE2 (up to 1 g o arithmic terms) as it might do for o( e+e- -> hadrons). 

Attempts have been made to estimate its contribution to e+e- annihilation 

by putting the quarks on their effective mass shell 19 . Applying the 
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same approximation to diagram C, one obtains a 254 correction to the 

box diagram if one describes the quark-antiquark interaction in a con- 

ventional Regge picture. In the spirit of the original covariantly 

formulated quark par-ton model 14 , one could indeed assume the quarks 

to be kept near their effective mass shell. However, the extension of 

this assumption to large timelike parton momenta is not straightforward, 

but leaves us with a major uncertainty in the quark-parton analysis of 

photon-photon processes. This problem is intimately related to 

coherence effectsingeneralized VMD models. 

Apart from the latter problem, anomalies in the photon-photon 

scattering amplitude result in a weak violation of the basic scaling 

rules Eqs. (8) within the quark model. Yet, collecting all anomalous 

contributions to 8 changes the proportionality coefficient in 

8(E) aE2 considerably when compared with the simple VMD prediction. 

The change amounts to a factor of about 3 and would clearly exceed the 

upper bound Eq. (9~~). However, if experiments are sensitive only to 

small x values, this effect is much smaller and harder to detect 

experimentally. In particular, the cross section u itself cannot be 

expected to be influenced significantly by anomalous contributions in 

the present context, and its estimate by Brodsky et al. and Walsh5 is 

not to be changed. 

4. CONCLUSION 

Studying inelastic electron-photon scattering is primarily 

motivated by the desire to investigate the structure of the real (as 

well as virtual) photon. The first stages of experimental analysis can 

include such global quantities as moments of the cross section, properly 
18 



defined average energy losses and average angles of the scattered 

leptons. Considering the real photon merely as a light vector particle 
-h 

with predominantly hadronic properties, as suggested by the success of 

the simple vector meson dominance model, we have obtained simple 

scaling rules for all those quantities: they grow with beam energy 

with the same power as their dimension; the slope of the growth can 

be calculated or at least estimated. These rules should be valid even 

if v and Q2 are not restricted to the scaling region. Therefore, 

they can serve as a useful standard measure for scaling effects in 

inelastic ey scattering. 

However, the simple VMD piece of the photon-photon annihilation 

cross section might be superseded by anomalies attributable to a 

possible quark-antiquark substructure of both the real and virtual 

photon or, in a dual picture, to the excitation of high vector meson 

states in the photon. Those anomalies are not accounted for by the 

simple vector meson dominance model. From the conventional assumption 

of the covariantly formulated parton model that only quark lines with 

finite mass couple to hadrons, we have derived two consequences: 

(i) The general scaling behavior of the moments is still valid (up to 

logarithmic corrections); yet, the coefficients in these relations 

are changed. (ii) Exp eriments which are sensitive only to the small x 

region should essentially reproduce the simple vector meson dominance 

predictions; this applies in particular to the cross section itself. 

However, we are not able to predict the rescattering correction from 

far off-shell quarks (diagram C in fig. 3) and coherent scattering 

contributions of virtual high mass excitations of the real photon. At 
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high energies they might introduce scale breaking pieces of the same 

size as the scaling VMD contributions. Thus, measurements of the 
-h 

energy dependence of such global quantities as average energy loss and 

average angle of the scattered electron are as interesting as the 

magnitude of the cross section itself (which is hard to predict more 

accurately than a factor of 2). The knowledge of their behavior is a 

useful correlate to the information obtained from electron-positron 

annihilation into hadrons. 
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APPENDIX 

LIMITED EIZCTRON SCATTERING ANGLE 
-h 

Two reasons require the limitation of the electron scattering 

angle in an ey experiment to a value below 30" in the present energy 

range: (i) The differential cross section do/da:! is expected to fall off 

rapidly with 8, and high Q2 regions are sparsely populated compared 

with low Q2 regions. (ii) The 2y process in ee -> eeX is for 

large Q2 superseded by radiative correction of the type ee -> ee + y* 
20 (-> hadrons with C = -) . Therefore, it is necessary to discuss 

briefly the consequences of a limited scattering angle for the moments 

of the cross section. 

In the framework of the naive VMD model, we can completely exhaust 

the entire, kinematically allowed region with 8' 5 e. (hatched triangle 

in fig. 2); we are not forced to introduce cuts which eliminate 10~ Q2 

and low v events. In this'case, the scaling laws Eqs. (8) do not 

change, but the coefficients do if one varies 8 0' In Eqs. (4,6) 

the y integration alone is restricted, in a scale invariant fashion, 

to the interval 0 5 y 5 (1 + EX cot2 eo/2) -1 while x and E vary 

independently between 0 and 1. These are the results: 

(i) In the (unrealistic) case 7-r/2 <, e. < TT the coefficients 

in Eq. (8) read: 

^o(E)/E2 _ 3 
8 

-%3log~ (1-S (x) 
min 

cot2 >, 1' dx F2(x) (AJa) 
0 
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D’ cos2 g, = 3 {I. + f (x) cot2 $1 E (A.lb) 

( E' sin2 5) = $ (x) (1 3 (x2, 
- ;4 (x> =Ot 280)E. 2 (A.lc) 

In the quark-parton model, the average longitudinal parton momentum (x) 

is approximately l/2 and deviations of all quantities from their values 

at e. = 77 are to be small. In fig. 4, the moments are shown for 

(x) = l/2. 

(ii) On the other hand, for small (but still finite) e. we 

obtain quite a different behavior of the coefficients 21. . 

Z(E)/E~ z 
8 

32c? log $= F2(0) 
8 8 2 

min 
$ log $ 

I 

W 

(E' 

(A.2a) 

(A.2b) 

(A.2c) 

F2(0) can be estimated from the proton structure function 5 as: 

F2(0) : bn/uyp) $0) z -3/300 . (A-3) 

(iii) In the transition region, one cannot calculate the precise 

value of the moments. However, it can easily be shown that all moments 

are monotonic in Qo. Thus, from the curves in fig. 4 (the dashed part 

is interpolated by hand) we can read off the approximate size of the 

moments for intermediate scattering angles with a sufficient degree of 

accuracy. 22 
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FIGURE CAPTIONS 

1. Inelastic scattering of electrons off almost real photons in 

electron-positron collisions. 

2. (v,Q2) plane for E = 4 GeV and ET = 1 GeV. Events with scattering 

angle 8' 5 e. fall into the hatched triangle formed by the 

lines Q2 = 0, 8' = e. and Q2 = 2v (the pion mass is neglected 

on the hadronic scale). 

3. Imaginary part of the m forward scattering amplitude in the 

covariant quark-parton model. 

4. Predictions for the moments of the inelastic electron-photon scatter- 

ing cross section as functions of the maximum electron scattering 

angle eO* They are derived from the simple vector meson dominance 

model of the real photon, with spin.1/2 constituents carrying half 

of its momentum, (x) = l/2 and {x2) = l/4. 
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