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ABSTRACT 

A relativistic quantum mechanical model for a one-dimensionally 

extended composite hadron is studied in detail. The model is suggested 

by the string model, and has the same spectrum of excitations in the 

large quantum number limit, but has features which represent departures 

from the string model as well. The ground state of the system has the 

character of a conductive medium. Quasi-particle excitations in filled 

Fermi sea configurations give rise to towers of particles of increasing 

mass and spin. Lorentz scalar collective excitations with Bose statistics 

are also supported by the system, and can lead to a Hagedorn-type degeneracy 

in the spectrum. The fundamental dynamical variables of the theory are 

canonical Fermi fields, but an internal consistency requirement of the 

theory demands all physical states must have zero fermion (rrquark') 

number. The theory is relativistically covariant in four-dimensional 

Minkowski space, without requiring ghosts or tachyons. 



I. INTRODUCTION 

45 In recent years considerable effort has been directed toward 

constructing a consistent theory of strongly interacting particles along 

the lines suggested by the dual resonance.model (DRM). An important 

aspect of this program has been the development of physical models which 

give rise to the desirable features of the mathematical DRM, and hopefully 

yield more information as well. l-10 
The most elegant attempt along these 

lines is the geometrical description initiated by Nambu. 11 ' In this case 

the fundamental physical structure is a massless relativistic string. 

The propagation of the string in space-time is determined by an 

action which was first obtained 11 from the generalization of the action 

of a point particle. Alternatively, it can be obtained uniquely 12913 

by requiring that, as a function of the string variable and its derivatives, 
n 

(a) it be Poincare invariant, (b) it be invariant under the general 

coordinate transformation of the coordinates of the surface swept out by 

the string, and (c) the Euler-Lagrange equations for the string variable 

be of order not higher than two. It has been shown l2,14 that the spectrum 

as well as the ghost eliminating constraints follow from the parametrization 

(gauge) invariance of the action. One thus arrives at the gauge theory 

of the relativistic string. 12 
-- 

To quantize the theory, it is necessary to choose a gauge from 

among various poskibilities. If the choice of gauge happens to be at 

the expense of manifest covariance, one must give a direct proof of 

the relativistic invariance of the quantized theory. The quantization 

in one such non-covariant gauge, which has the advantage of being 

manifestly ghost-free, has been carried out in detail. 15 It was found 
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that the theory is Poincare invariant not in four but in 26 space-time 

dimens"lons, and even then it is necessary that the ground state be a 

tachyon. 

However, passage from a consistent classical theory to a quantum 

theory always involves a certain amount of guess work. Justification 

for any particular guess is always made a posteriori. We argue, there- 

fore, that the inconsistencies that arise in the quantization of the 

string clearly indicate that direct passage from the classical theory 

to the correct quantum description via Poisson brackets is impossible. 

Stated in another way, the string variables are not the proper variables 

of the quantized theory. At best, the string picture represents a 

nhigh quantum number limit" of the correct theory. 

To support this point of view, we elaborate here the construction 

of an explicit model, 17 which goes to the string picture in a high 

quantum number limit , but whose quantum spectrum exists without tachyons 

or ghosts. Further, it carries no extraneous variables other than those 

demanded by four-dimensional space time symmetry. The resultant trajectories 

are indefinitely rising. The basic dynamical variables are a pair of 

fermi fields, whose modes of collective excitation give rise to the 

physical spectrum. Moreover, the dynamics generating these modes has 

the remarkable property of permanently trapping the fermions, SO that 

these are not directly observable. 

This trapping feature is quite compatible with recent progress 

in the understanding of deep inelastic lepton-hadron scattering. 
16 

A variety of empirical observations in such processes can most easily 

be realized with a quark-parton picture of hadrons. On the other hand, 
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there is as yet no experimental evidence for any fractionally charged 

objecti being produced. Thus a dynamic trapping mechanism will be a 

desirable attribute in any model. (In our model, we have a U(l) 

internal symmetry, so .our quarklike objects'have only integer charges, 

say "quark number".) 

The manner in which trapping occurs in the specific model we 

discuss is only one aspect of our work which may be of interest to DRM 

non-specialists. A point which has long been implicit in DRM, and which 

our approach deals with explicitly, is the many-body nature of the 

internal dynamics of hadrons. The most important feature is not the 

traditional statement that this is required to build up an enormously 

rich spectrum, but rather that we exhibit the relevance of many body 

collective behavior in a new context for hadronic physics. One may say 

this behavior is at once responsible for trapping, for the form of the 

spectrum, and ultimately for the high energy behavior of hadron-hadron 

scattering. 

From a different point of view, our model shares certain features 

with the so-called t'bagll picture, in which fields are confined within 

finite volume $3: Indeed, our model is a mathematical prototype of a one- 

dimensional bag, but with full Lorentz covariance. Alternately, it 

may be viewed roughly as the extreme case of a bag with an infinite 

number of partons distributed uniformly, smoothly, and with no multiule -- 

occupancy on the hadron's longitudinal momentum axis. 

Still a different concept of the work is as a stud/ in the 

possible (reducible) timelike representations of the Poincare group. 10 
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We have, by construction, that such representations, representing 

'compo:ite hadrons, actually exist in the limit where the number of 

constituents is infinite. The two-dimensional structure of the dynamics 

means, of course, it is not l'simply'I field theory again. 

The paper is organized in the following manner. In Section II 

we describe how the knowledge of the geometrical description is helpful 

in providing a point of departure from the conventional string formalism. 

After choosing our dynamical variables, we discuss the general features 

of the actions which one can write down. In section III, we specialize 

to one particular model. We cast this model into Hamiltonian form, and 

discuss the necessity of imposing a charge neutrality constraint on the 

eigenstates of the Hamiltonian. In Section IV we diagonalize the 

Hamiltonian by a Bogoliubov transformation and construct its general 

eigenstates. In Section V, we give a physical interpretation to various 

operators and show that the Hilbert space of eigenstates of H carries 

unitary irreducible representations of the Poincare group. Section VI 

is devoted to a study of the spectrum, and the asymptotic value of the 

level degeneracy. Finally, in Section VII, we discuss in greater detail 

the general features of our results and what may be abstracted from them. 

II. NEW ACTIONS SU'GGESTED BY TBE GEOMETRICAL DESCRIPTION 

The novel features of the models which we will describe are 

sufficiently noteworthy to render their connection with the classical 

string model inconsequential. Nevertheless, it is instructive to see 

how one might be led to such a model from the knowledge of the 
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geometrical description. It will be recalled 12 that the motion of the 

relativistic string is most simply described in frames characterized 

by a pair of coordinate conditions 

aYp 2 ( ) c =o 
&l- 

(2.1) 

where YP(O,,) is the string variable and uL = (l/J?) (7 + Q). These 

conditions define two null vectors LW/aU~, which in h-space-time - 

dimensions can be expressed in terms of two complex 2-component spinors 

*+ as follows: 

(2.2) 

An important feature of the relations (2.2) which should be kept in mind 

is that these relations are peculiar to b-space-time dimensions. Although 

it is possible to define spinors relevant to a space of any dimensionality 

and signature, the role they play is not quite the same as the two 

component spinors associated with Minkowski space-time. This can be 

seen by noting that in the spinor description of &vectors the equality 

x0 + x3 X1 + i$ 

I 

2 
det zz x0 -?;2 (2.3) i1 - ix2 x0 - x3 

has no direct analogue in any other dimension or signature. By working 

with 2-component spinors, one is thus selecting the real four-dimensional 

Minkowski space from among the many possible ones, We shall therefore 

take the two component spinors as our fundamental dynamical variables. __I-- -- 
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We then postulate basic algebraic rela.tions in terms of these 
SI 

variables. We shall wind up with a different theory from the conventional 

scheme; in particular, [YP,YV] = 0 must be true if YM are the dynamical 

variables, but cannot hold if $ are Fermi fields. At the classical 

level of course, the two points of view are identical; (2.2) is an 

explicit realization of the light-like gauge conditions. 

Having defined our variables, we may now use them to specify 

the dynamics. In doing this, we shall be guided by the requirement 

that our theory must maintain the relationship (2.2) in the classical, 

or large quantum number, limit. The string variables satisfy the 

equation 

a2Yp o 
au+ au- = * 

(2.4) 

Hence, the equations of motion for $r+ must imply (2.4). Furthermore 

they must be invariant under the arbitrary phase transformations which 

leaves (2.2) invariant. The most general linear equation of motion 

that q+ can satisfy under such conditions will then be 
- 

I 
a i--gB 

a& I 
$ =o. 

t + 
(2.5) 

me quantities B, 'are gauge fields; (2.5) is invariant under the 

transformations 

h- -> exp[ib]++ 

B+ ->B++ia+b, 
- 
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+ 
where b is an arbitrary function of r. The parameter g is real, 

but iS‘otherwise unrestricted. To effect passage into quantum theory, 

we must construct an action that will generate (2.5), and be invariant 

under (2.6). The action must necessarily involve B*, which is a new 

additional dynamical variable implied by our construction, and supply 

gauge invariant equations of motion for it. We shall construct such 

an action and study its quantization in the next section. 

Before concluding this section, we would like to commenton the 

manner in which one proceeds to quantize a classical theory which involves 

constraints. If the constraints are not of 0 = 0 type, one can either 

quantize the theory as if there were no constraints and then impose the 

constraints as weak operator conditions on states, or one can use the 

constraint equations to eliminate the dependent variables and then 

quantize t'ne independent dynamical variables. On the other hand, if the 

constraints are satisfied identically at the classical level, they have 

no bearing on the quantization. In our case it is easy to check that 

the expressions (2.2) satisfy the constraints (2.1) identically, so 

that with Q+ as dynamical variables there are no classical constraints 

which are to be carried over to quantum theory. 

III. AN EXPLICIT MODEL 

We shall now obtain an explicit realization of the general 

ideas discussed in the previous section. Consider the following 

Iagrangian density, which is invariant under (2.6), 
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g = T[ir"a, - ilTaBal$ - i FabFabb a, b = 0,l - (3.1) 

The field JI is a four component spinor which is built up from the 

spinors introduced in (2.2). The lTa are 4 x 4 matrices satisfying 

(r”Jb) = 2p; yoo = -p = 1; Tjab = 0 ) afb (3.2) 

We shall use the following representation: 19 

r” = iy”r5; I? = iy5 . 

The quantity Fab is defined as 

F ab = abBa - aaEb 
I 

(3.3) 

(3.4) 

where B a is the field introduced in (2.5). 

The Iagrangian is obtained by integrating (3.1) over the range 

0 to IT. The + fields can be chosen to satisfy either of two boundary 

conditions. We define 

(3.5) 

We may then demand 18 ' 

@(o) = x(o) ; 

or 
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j dd = xh> 
(3.7) 

Application of the variational principle to (3.1) yields 

Eq. (2.5), plus the following equation for Ba: 

a,,Fab = gja ; (3.8) 

where 
.a 
J s Fraq. (3.9) 

Equation (3.1) is thus an appropriate Lagrangian density implementing 

the ideas of the last section. The boundary conditions (3.6) imply that 

j'(0) = j'(r) .= ae Q .O 
I I o=o = %- =o. 

0=77- 
(3.10) 

The action (3.1) does not contain a mass term for q; there is thus an 

apparent r5 (= r”rl) invariance. The attendant axial current is 

j; = E ab . Jb . (3.11) 

Equation (3.10) thussays that the axial charge density vanishes at 

the boundary. Similar remarks apply when (3.7) holds. In two dimensions, 

the axialcharge is also the "spin'I of the system, Bence, with 

the above boundary conditions, the tlspin" does not leak through the 

boundary. 
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We impose the basic algebraic relation: 
- 

(3.12) 

The analysis of the theory is most conveniently carried out by intro- 

ducing the appropriate Fourier expansions of q. Using (3.6), for 

T = 0, 

1 
'PA - -z 2 {b+,(k) exp[i(k - $)@I + c:(k) exp[-i(k - $)@I) 

00 

(3.13) 

xh= F 1 (c!(k) exp[i(k - $)e] + bA(k) exp[-i(k - $)@I] 
27J IO0 

A = 1,2. 

The Fourier coefficients satisfy canonical anti-commutation relations 

CbA(k), b;,(k')] = {CA(k), +(k')] = SAA, 'kk' , (3.14) 

all other anti-commutators vanishing. This guarantees Eq. (3.E). 

Observe that JI (as well as 'ph and X,,) carries an SU(2) 

index, so that under SU(2) transformations the indices 1 and 2 get 

mixed. In addition, jf of course transforms as a spinor with respect 

to the two dimensional Lorentz group O(l,l) , which acts directly upon 

$ and X. 

Let us elaborate briefly on the significance of the SU(2) 

index of the field J~(@,T) ( or of the coefficients bh(k), c&k), etc.). 

Itwill be shown later that the Hilbert space of physical states is 
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constructed by acting on the v&cum state 10) with functions of 
- 

bilinear products of the form b:(k) ci(k'), A, h' = 1, 2. The 

SU(2) index is thus directly related to the spin of the physical 

Poincare states. This'is to be contrasted with the spinor index of 

a local field, the Dirac field, for example: 

,) b,,(P) emi"'+ va(P,h ,) c:(P) eip" I 
(3.15) 

In the latter case the index a is eventually summed over and is not 

directlyinvolvedin the construction of the physical Poincare states. 

In the Lagrangian density (3.17) we have thus given up manifest Poincare 

invariance and retained only a little group SU(2) symmetry. This is 

because $(@,T) is not a local field in k-space-time dimensions, and 

the direct action of the boost operators on ji is fairly complicated. 

The corresponding expansions for the boundary conditions (3.7) 

are 

with 

+ = q. + (Ipx) (3.16) 

cp,, = --& { {bA(k) eike + c:(k) eeike] 
277 kl (3.17) 

' = & k=l 
i {c:(k) eike -ik@ 

+bA(k)e 1. 

The bh and cA also satisfy the relations (3.14). ?Jr, satisfies 

(3.12) without the delta function. In what follows we shall carry out 

the solution for the case (3.6) explicitly. The case of (3.7) can be 
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similarly analyzed, and we shall indicate how this occurs following the 

disc^ussion of case (3.6). 

In looking for a solution, notice that the action density (3.1) 

is identical in structure to that of two dimensional spinor electro- 

dynamics (TDED), which is exactly soluble. 20 Since the use of four 

component spinors, which arise from the additional SU(2) symmetry, 

leads to the same algebraic relations as those of TDBD, we expect that 

our model is also exactly soluble. However, the usual analysis of TDED 

proceeds by examining the Green's functions of the theory, and is not 

suited for our purposes. We are interested more in the spectrum of 

the theory, and in attempting to construct four-dimensional Poincare 

generators out of the relevant operators of the theory. We therefore 

construct the solutions of (3.1) directly by means of operator trans- 

formations on the Hamiltonian of (3.1). 

We shall work in the axial gauge, 

Bl=O. 

The Hamiltonian in this gauge is 

where 

and 

H = Ho + H' 

(3.18) 

(3.1-g) 

(3.20) 

(3.21) 

The equation (3.8) becomes,with (3.18), 
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h2B0 
g-= -isjo J 

which may be integrated immediately: 

(3.22) 

B'(~,T) = - $ g J" defle - 6’1 JO(e’,T) . (3.23) 
0 

The new variables B a which we had to introduce are, in fact, not 

independent of $! The Hamiltonian then takes on the very simple form: 

H = Ho - i g2 // de de' j0(6,T)l@ - 8'1 j'(@',z) . (3.24) 

As mentioned earlier, we shall pass almost immediately to momentum 

space, and normal order our operators to have a well-defined theory. 

Iv. DIAGONALIZATION OF TIRZ HAMILTONIAN 

A. Preliminaries Regarding Trapping. 

We will diagonalize the Hamiltonian by means of a Bogoliubov 

transformation. 7,22 The details are considerably simplified if we make 

use of a consistency condition which our model shares with (TDFD) 

and which arises from the Schwinger term in the commutator .[j 0 1 ,j 1. 

Despite the fact that the Lagrangian (3.1) is massless and hence 

y5-invariant, if in the divergence of the axial vector current 

the term aj'/&c is calculated by means of the Heisenberg equations 

of motion, one finds that 
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3 j 
a 

a5 = i[H',j? + o . 

The anomaly on the right-hand side can be calculated from the definitions 

of Hr and jl, with the result that 

aaj”;(e,T) = $6 B'(@,z) . b-2) 

This result may be combined with vector current ConSerVatiOn to give 

tabab + p21 j” =o, 

where 
2 2g2 

I-L =- 
T l 

(4.4) 

This shows that the vector current,is a massive free field. Integrating 

eq. (4.3) with respect to 61 in the range (O,TJ), and recalling the 

boundary conditions (3.11), we obtain 23 

(4.5) 

where 

Q = ia de j’(Q,-r) . (4.6) 
0 

The time independence of charge is compatible with (4.5) if and only 

if Q vanishes. Since Q is not identically zero, it acts as a 

constraint to select a subset of states from the larger fermionic 

Fock space: 

'l'physical) = ' (4.7) 



This superselection rule eliminates al 1 states created by unpaired 

fermiop,s from the space of physical states,and is perfectly admissible 

provided the physical states form a complete basis for all simultaneous 

observables which conserve charge. This is,.however, precisely the 

character of a superselection rule. 

Equation (4.7) means, quite simply, that physical states have 

zero net l'quark number". In the context of our model, this is a 

sufficiently strong restriction that we may claim it is a dynamical 

realization of "trapping'l, or "containment". This is clearly adequate 

in our case, because the Fock space in question is to act as a factor 

in a carrier space for representations of the Poincare group for a 

single composite particle. 

Although it is not part of our main line of development, the 

question of what constitutes a proper general mathematical definition 

of containment is an interesting one, and a brief digression may be 

excusable in view of the importance of this question. We have in mind 

recent arguments that Q = 0 is not a sufficient requirement for 

confinement in a more general field theoretic context. 24 These arguments 

are basically classical, and begin from the observation that a state 

of "charge" zero can consist of plus and minus charges macroscopically ' 

separated. A fully local requirement of "charge" conservation must 

be imposed to prevent this circumstance. Lorentz covariance then 

implies the full local conserved current, Jn(x), must vanish. 

In quantum mechanics, however, this last restriction is incon- 

sistent with positivity of the spectrum if the vanishing of the current 

is imposed weakly on physical states, a la Eq. (4.7). Rather, we must 
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require all matrix elements of j,(x) between physical states to vanish. 
4 

However, if the currents transform as an irreducible represen- 

tation of a symmetry group generated by charges Qa, it is easily seen 

that this requirement is satisfied trivially if the physical states are 

singlets under the group. That is, it may, after all, be sufficient 

that the charges annihilate the physical states, given a fairly 

standard set of assumptions on the currents. We reiterate that the 

entire context of these arguments is quite different from the situation 

in our model. 

B. Construction of the Eigenstates 

We now proceed to the diagonalization of the total Hamiltonian 

H. First, define the "plasmon" operators 

P(P) =1 
ll 

$ de:[j'(e) cos p6 - ij 
6 0 

40) sin pel:. (4.8) 

It is straightforward to verify that 

b(P), P+(s)1 = Bpq (4.9) 

Furthermore, they commute with Q. Making use of the plasmon operators 

and dropping the terms proportional to Q (by (4.7) they do not con- 

tribute to eigenvalues of H), the Hamiltonian can be cast into the 

form 
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H=t E( Fl 
n=l A=1 

n - l/2) b;(n) bA(n) fc i(n) c ,(n)l 

& 
+A 2 

4cL i n%pfW p(n) + p(n) p(n) + p+(n) p+(n)1 (4.10) 
n=l 

where for explicitness we have used the expansion (3.2). Observing 

the following property of the plasmon operators, 

[HOddl = -p(n) , [Ho,p+(n)l = p+(n) , -(4.11) 

we construct the plasmon number operator 

so that 

T= E: w+(n) p(n) , 
n>O 

(4.12) 

[T,p(n)l = -dn>; ET,p+(n)l = p+(n) . (4.13) 

This suggests that instead of (3.13), the Hamiltonian should be split 

in the form 

Then clearly, 

[Hp(n .)I = 0, all n n 

H = Hl + H2 

where 

Hl = Ho - T 

H2 =H' +T 

(4.14) 

(4.15) 

(4.16) 

(4.17) 

Moreover, since El is already diagonal, we only have to diagonalize 

H2* This must be done in such a way that Hl remains diagonal. 
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The transformation which diagonalizes H2 must therefore be constructed 

fromT‘operators which commute with Hl, i.e., p(n) and p+(n) . 

Consider the Hermitian operator 

S=-i k g o $(k> b+(k) p+(k) - p(k) p(k)] (4.18) 

where $-md is a real function to be determined such that under the 

transformation 

iS H2 -> e H2 e -iS 

% 
becomes diagonal. By construction 

ii1 = elSHle -iS =Hl=HO-T. 

Write 

e iS pcnj .-is 
= P(n> ch #(n) + p(n)+ sh g(n) 

(4JP) 

(4.20) 

(4.21) 

Then, after some algebra, one finds that G2 will become diagonal if 

all k . (4.22) 

With this choice for g(k), the transformed Hamiltonian will take the 

i Ti ,iSHe-iS = Ho -T+cO+ i E 
k=l 

(k) p+(k > p(k) (4.23) 

where 
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- 
4 

I 

is the shift in the ground state energy;and 

c(k) ='[II' +k ] . 2 l/2 

(4.24) 

(4.25) 

The spectrum of i thus consists of "quasi-particle" excitations con- 

stituting Ho as well as the plasmons. Quasi-particles are partons of - 

our model. -- 

Before proceeding, it may be helpful to motivate the choice of S, 

Eq. (4.18), somewhat further. The form of H2 suggests we think of the 

problem in terms of a functional eigenvalue problem, with p(q) = S/Sp+(q). 

Looking at the number of derivatives that appear, a Gaussian in the 

"coordinate" p + is clearly indicated as a candidate for the ground state. 

If we require that the ground state be neutral, and 'Lorentz invariant' 

in the two-dimensional space, we might try the configuration space expression 

In> = exp[i $/ dx dx' f(x-x'):jP(x) jP(x'):] IO) , 

In momentum space, this has just the form e -is/O), with $(k) related 

to the Fourier transform of f(x-x'). Hopefully this argument makes the ansatz 

for S less mysterious than it might otherwise seem. 

We next construct eigenstates of i, using a1ge.brai.c methods. 

For consistency, these eigenstates must satisfjr the constraint (4.7). 

Since the operators p+(k) p(k) commute with both Hl and Q, we shall 

construct eigenfunctions of as tensor products of the eigenstates 
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of H1 and p+(k) p(k). We first construct neutral parton pair states 
- 

IF) = IF 
ij } = i b:(n) 

n=l ' 
i#j. (4.26) 

These states have the property of acting as 'vacuumIf with respect to 

the plasmons: 

p(m) IFij) = 0 ; all m. 

These states are eigenfunctions of ii: 

where 

Note that 

(4.27) 

(4.28) 

(4.29) 

QIF) = 0 . (4.30) 

A general eigenstate'of i can now be constructed as the tensor product 

of states IF) with states created by plasmon operators: 

A general eigenvalue of H is then obtained as 

ilNp,P,F) = &Np,P,F) 

(4.30 

(4.32) 

where 
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(4.331 

It can be seen from (4.24) that the ground state energy is finite and 

negative definite. The fact that the ground state energy of the inter- 

acting system is lower than the energy of the free vacuum state indicates 

the presence of bound states. Henceforth, we define energies with respect 

to the true ground state by dropping eOy i.e., we write 

E=e-eO (4.34) 

The redefinition of the ground state energy is possible since one is 

not forced to any particular value by such requirements as Poincare 

invariance. This is to be contrasted with the analogous situation in 

the conventional string model. 

All of the analysis carried out in this section may be applied 

to the case of (3.7) as well. The results are the same; we merely have 

additional terms involving 0 .$ . For example, the plasmon operator 

p(p) defined in analogy to (4.8) now contains terms involving (q$ + $) 

and (4' f $+). This means that states of neutral partons pairs defined 

as in (4.26) will no longer be annihilated by o(p). We must therefore 

modify our definitions of the ground state. We shall continue to assume 

the existence of a vacuum state lo), where with 

(4.35) 
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we demand 

cp@ = x.ylo) = 0. (4.36) 

The presence of such zero mode operators, a peculiarity of the 

case (3.7), implies an ambiguity in the definition of the ground state. 

We may define two distinct states 

(4.37) 

both of which satisfy condition (4.7). .(The bi are 2 X 2 Pauli matrices.) 

However, only one of the states can be used to build up the "filled sea" 

states in analogy to (4.8). An explicit evaluation shows that while 

those "filled seaw states constructed fromlO,l)i are annihilated by 

o(p), defined by (4.26), those based upon 10,0> are not the ground 

states of p(p). Thus, the proper ground states are those obtained from 

l"Y1)iY and we shall use these for the analysis of Poincare transformations 

later on. 

Before closing this section, it is perhaps incumbent on us to 

comment briefly on the relation of our solutions to the TDED aspects of 

our problem,with more traditional solutions. If we throw away the extra 

SU(2) symmetry of the model and use only two component spinors, we have 

exactly TDED in a finite domain. 

To make contact with the usual TDED in an infinite spatial domain, 

we remark that even for that problem, use of a finite domain may be 
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viewed as an alternative toKlaiber's infrared regularization procedure, 

which-s necessary for construction of operator solutions to TDED. 
20b 

We can construct operator solutions as well making use of our S operator, 

and these pass over in, the continuum limit.(in momentum) to the usual 

ones, provided periodic boundary conditions for Jr are adopted. What we 

have, then, is a solution which gives us a different insight into the 

physics of TDED, not a different solution to the field equations. 

Of particular interest is that the ground state of H (e -is lo)) 

contains an indefinite number of quarks (though the number of anti-quarks 

is necessarily equal to the number of quarks). This is the prototype of 

the conductive medium (but not necessarily superconductive), and of 

course the physics of the model can be understood in those terms. In 

particular, quarks and anti-quarks do not pair off to make bosons 

localized in space. Rather, there are indefinite numbers of such 

correlated pairs, with one partner right-moving, the other left-moving. 

The ground state energy eO reflects this correlated state is 

energetically favorable. We have said the fact eO is lower than the 

non-interacting ground state energy indicates the presence of "bound 

states"; this is to be understood in the manner discussed here. 

We should caution, however, that the fixed time mometum space 

representations of Jr, Eq. (3.13) or Eq. (3.17), and the analogous 

representations for 'the current, give rise to a consistent theory because 

in the end one obtains a c number Schwinger term in the [j,,j,] 

commutator. That is to say, in other treatments, it is usually assumed 

that this Schwinger term is a c number, or it is argued this is con- 

sistent with free-field behavior at short dfstances. 25 Our fixed time 
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time expansions are, in some sense, the equivalents of these assumptions. 

Becausaall operator solutions of TDED have these assumptions built in, 

and TDED is super-renormalizable, it should come as no surprise that 

"deep inelastic probes' of TDED manifest free-field short distance 

behavior for the fermions at the end. 26 It is an open question whether 

different kinds of consistent solutions exist. 

v. HILBERT SPACE OF PRYSICAL STATES AND POINCARE INVARIANCE 

With eigenstates of G at our disposal, it is now a straight- 

forward matter to obtain eigenfunctions and eigenvalues of the operator H. 

It can be seen from (4.19) and (4.20) that eigenstates of H can be 

obtained from those of G given by (4.32) as follows: 

I$,) G esis INP,P,F). 

Then, 

HlqH) = Ej’JIH) 

(5.1) 

(5.2) 

It is to be noted that since transformations of the form (4.23) mix 

creation and destruction operators, they are in general not unitary in 

the sense that the norm of the transformed states might diverge. In 

the latter case the transformations connect two inequivalent Hilbert- 

spaces. In our case, however, the functions @(k) given by (4.22) 

provide damping factors which render the norms of states (5.1) finite. 

Our final task is the incorporation of Poincare generators into 

the model. As defined by (3.1), the model cannot yield such generators, 
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since we had not defined the action of boosts and translations on $. 

The first step is to supply these definitions. 

Now, in the classical string picture, the total motion of the 

system can always be separated into two parts. We have a center of mass 

motion, parametrized by a pair of variables X and P 
P cc' 

the position 

and momentum; and a relative motion , parametrized by the normal mode 

oscillations. The variables X and P 
P P 

have definite quantum analogues, 

of course, and are dynamical variables. The normal mode oscillations, 

on the other hand, need have no definite quantum analogues. Our arguments 

regarding the relevant choice of variables applies to them. The action 

(3.1) must'be regarded as only controlling the motion of such relative 

oscillations. To complete the picture, therefore, one must adjoin to 

the J, variables, the pair of variables X and P which commute 
P v . 

with q. The eigenvalues of P 
P 

will. then be interpreted as the momentum 

of the physical states. 

The normal mode oscillations in the classical picture control the 

mass of the physical system. Since we expect our picture to have a 

classical limit, we must demand that the eigenvalues of H, Eq. (4.10), 

are related directly to the mass of the quantum state. Since P u 
commutes with H (and with +), H and P 

P- 
are simultaneously diagonal- 

izable. The degeneracy of H represented by the existence of the SU2 

symmetry in our model may therefore be directly identified as the spin 

of the state. 

To construct the Poincare generators, we make use of the formalism 

of null-plane dynamics. 27 We shall select as our ittime" the variable X+, 

and regard the transverse variables X1, PJ,(i, j labelling the two 
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transverse directions); and X-, P+ as canonical pairs. The spin 

opera-t& of the theory are constructed by means of Noether's theorem 

applied to (3.1): 

Sk f $7 de:*+ ck*: 
0 

where (+= ok O c 1 , 0 crk 

(5.4) 

crk being Pauli matrices. These operators are compatible with our con- 

straint on physical states since [Q,Sk] = 0. 

To determine the invariant (mass)=( operator 

2 = 2P+P- - 'Ii' (5.5) 

we shall make use of the only operator at our disposal which commutes 

with the rest frame SU(2) generators, namely, the Hamiltonian operator H: 

2 = f(H) (5.6) 

This procedure amounts to determining 8 in the rest frame of the 

particle and demanding that the boost generators leave M2 invariant. 

Note that insofar as one is dealing with free particle states any 

function of H is a possible candidate for M?. Each such choice 

relates, via (5.5), the null-plane 'Hamiltonian operator", P-, to our 

dynamical spectrum. For definiteness, we shall set H as in the 

conventional string model. We thus have, as a special case, 

p2 = Iv!? =H (5.7 
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2 
where P is the total C.M. momentum operator. 

- The full set of Poincare generators can now be written down 

following the work of a number of authors. 28,8 The translation generators 

are 

11 
P , p+, p- = -+ [P, + ?!?I . A2 

(5.8) -- 

The Lorentz generators are given by 

. . . . 
J3 = EIJ$PJ + s3 , 

K3 = $ IPf, x-1 

gj E ($ - ,jkJk) = p+xj 

* 
CJ = (KJ + E jkjk) 

i = 1,2 (5.9) 

(5.10) 

(5.W 

= $ [x2,,-) + 2X'Pj + 1 Ejk [S3Pk + G Sk] 
2Pf 

(5.12) 

The operator is well defined because the spectrum of H is positive 

definite. One can formally write down an integral representation for it: 

Such an operator also appears in the construction of the little group 

operators of the conventional string model. There, however, P is not 

positive definite. 
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The correctness of the above algebra is straightforward but tedious 

-to verify Unlike the case of the ordinary dual models, there are no 

ordering problems which necessitate the increase in spatial dimensions or 

the appearance of the tachyon in the ground stste. The construction of 

the generators in this manner must be subjected to the requirement that 

they retain their meaning in the presence of external probes. For 

example, a magnetic field is expected to split the levels which we label 

as J3 degenerate. 

Finally, we wish to remark on a possible alternative analysis. 

The basic motivations behind the present work dictate the construction 

we have presented. In this construction, $ does not transform covariantly 

under the Lorentz group. The $3 action (3.1) is not defined directly 

in all of space-time. Now, naively, given any action, the most straight- 

forward way of achieving any invariance is to demand that the dynamical 

variables transform covariantly under the gro'up of invariance, and make 

sure that the action itself is a scalar. The relevant generators may 

then be constructed bjr use of Noether's theorem. The reader may well 

consider if one could sever all connections to the string, make the 

q's transform covariantly under the Poincare group, and come up with a 

spectrum which carries unitary representations of the Poincare group. 

To properly pursue this course, naturally, will involve the introduction 

of eight-component spiriors, since one has to define conjugate spinors 

for both cp and X before one can write down invariants. 

We have studied this problem, and have found that the resulting 

equations of motion are still soluble. However, the spectrum now 

contains ghosts, so that to complete the analysis, we must show that the 
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spectrum of positive norm states is complete by itself. This may be 

'accoi@lished by a detailed search for compatible constraint equations. 

We have investigated several relations of this sort, but have not yet 

reached any definitive conclusions on the feasibility of such an approach. 

VI. THE SPECTRUM OF PHYSICAL STATES AND LEVFL DECXNFRACY 

The particle states are taken to be eigenstates of the Pocncare 

operators labelling the state, i.e., 

IP+, P , M*, J, h) = eiksX (NP,P,F) (6.1) 

AJ- 
The operators P+, P , and MT are diagonal in this basis with eigen- 

AL 2 
values k +, k , and m , respectively. If, as in (5.7), we set M2 = H, 

then 

P = EF + EP (6.2) 

eP m=l 
Nm E(m) (6.3) 

Consider next the action of the other generators. To find the action 

of J', we note that 

rJ% P(P)1 = 0 7 all p . (6.4) 

This means that all plasmons are Lorentz scalar excitations, and the 

action of 9 on the states (5.14) depends entirely on the parton 

pair states IF). We can go to the rest frame of the states e ik'x/F) 
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by making use of the Galilean boosts B1 and B* and the mass scaling 

-3 boost K , In that frame 

J'/,ij), = ~ij 
. FIFij' (6.5) 

Other members of this multiplet are found by the application of the 

operators J' = J1 + iJ*. We find 

J+/F12) = 0 

(J-)2F+n IF12) = 0 , 

(6.6) 

n = integer > 1 

From these equations it is clear that the state of highest weight in this 

multiplet is IF12) itself. Therefore, the spin of this multiplet is F. 

p\F,,) = F(F + 1) 1F12) (6.7) 

&at is, the eigenvalues of the square of the Pauli-Lubanski operator, 

a Casimir invariant of the grcup, are 

WpWl, /Fij) =m* F(F + 1) IFij' 68) 

We thus find that for the particular case in which M? = H, we have 

'-5 J=& =P; 2 = f(H) = H (6.9) 

Therefore in the J-S plane the trajectories are indefinitely rising and 

parabolic. To obtain linearly rising trajectories one must take 
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Iz=c&- (6.10) 

where C is an appropriate dimensional constant. 

The physical states corresponding to the boundary conditions (3.7) 

may be similarly constructed. However, the resultant trajectory function 

is shifted. Thus, since we used the state l~,l)~ defined in (4.37) 

as our ground state, our lowest physical state will be endowed with unit 

spin. The trajectory, while still parabolic, must now pass through spin 

one for its first state. The mass at which this occurs is arbitrary, 

since we may now set 

ML H+mz, (6.11) 

is the mass squared of this spin one state. We shall explicitly 

0 to avoid the presence of massless spin one states. 

The arbitrariness in the relationship between and H can, 

in principle, be removed by examining the level degeneracy for large M?. 

This may be determined by using familiar thermodynamic arguments for 

a Bose gas. 29 For a fixed eigenvalue of H corresponding to a fixed 

mass, the degeneracy is effectively the sum of the degeneracies involved 

in building up the state defined in (4.26), and the degeneracy implied 

by the free boson Hamiltonian given by the last term in (4.23). The 

latter degeneracy can be determined to be 26 

g(H) dH = exp{A &) dH (6.12) 

where A is a constant. Since there are F ways of forming the base 
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state, F being the maximum spin for the fixed mass value, the total 

degenerwy is Fg(H) dH . Let us now suppose that 

H = f$] . (6.13) 

The total degeneracy, using (4.29), is 

&g(H) dH = figI df dm* 
dxl* 

= exp A&-+ df $ In f + In - 
dm* 

dm* (6.14) 

If we used (6.g), f = m*, the degeneracy is exp{A J m* 

for (6.10), it would be exp{A J- 

+ $ In m*], while 

41 4 M + 2 In M + In $1 , which is larger 

than the conventional beta function degeneracy. Choice (6.9) gives a 

Hagedorn spectrum asymptotically, and is thus perhaps preferable to 

(6.10). 

VII. CONCLUSIONS AND SPECULATIONS 

Our aim in this work was to give a Poincare invariant description 

of particles with internal structure. To motivate our work, we reexamined 

the procedurewhich leads to undesirable features of the quantized relativ- 

istic string model. We pointed out that in the description of a one- 

dimensional object in space-time there is no compelling reason to con- 

sider the string variable as a fundamental dynamical variable. To find 

physically more relevant dynamical variables, we exploited the intimate 

connection which exists between null-vectors and spinors in b-dimensional 

Minkowski space. In this way we arrived at the description of a 
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one-dimensional particle with internal structure in terms of a spinor 

gauge &heory in a finite spatial domain of the Minkowski space. 

To make our ideas more transparent, we constructed an exactly 

soluble model and worked out its consequences in detail. In addition 

to being Poincare invariant, ghost free, and tachyon free, this model 

has a number of other novel features. Its fermionic constituents give 

rise to "quasi-particle" excitations which constitute the free spin l/2 

partons of our model. Furthermore, because of a charge neutrality con- 

straint which arises from a consistency requirement, only pairs of 

fermionic constituents can create Poincare states. The model is thus 

endowed with a dynamical quark trapping mechanism. It is also interest- 

ing to note that in this model the string itself, instead of being a 

mechanical quantity which is identified with the particle, appears as 

a well-defined, occupied state of the fermionic constituents. 

To put the approach that we advocate in its broadest perspective, 

we wish to elaborate on general features which might be abstracted from 

our specific considerations. The first point we re-emphasize is that 

the one-dimensional nature of our treatment reflects the string picture, 

which in turn idealizes the notion of planar-diagram dominance when the 

number of internal vertices becomes very large. 30 Nevertheless, the 

physical hadron sits in four-dimensional Minkowski space. 

However, it has been noted elsewhere that while this severe planar 

approximation may do no violence to basically )tsoftn physics, such as 

in Regge limits to scattering, it can give rise to totally misleading 

results when the process involves more local probes, as in deep inelastic 

ep scattering. 31 The reason for this is, of course, that the nature of 

the singularities in Green's functions changes drastically in going 
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from one to three spatial dimensions. It is sensible, therefore, to 

relax ar strict adherence to a one-dimensionally extended object. 31 

One possible way to view a composite hadron extended in any 

number of space dimensions is as,a container-trapping fields inside. 32 

Another possible way is to notice that some classical field theories 

exhibit auto-trapping, without introducing a 'lbagIt at all. 33 

A suggestion to be gleaned from our work relates to the very 

interesting latter cases. The freedom to perform contact transformations 

in the classical case may help in the solution of a problem by simplify- 

ing the equations of motion, Cannonical transformations play a similar 

role in quantum mechanics, but there is no correspondence between the 

classical and quantum transformation in any one-to-one fashion for a 

given problem. We have seen that one obtains different quantum theories 

by expressing the classical theory in terms of different variables. The 

possibility is present, we argued, that one version of a classical theory 

may lead to a consistent quantum theory, while another leads to an incon- 

sistent quantum theory. We speculate that the possibility is also open 

that more than one version of a classical theory may give consistent, 
34 

though perhaps inequivalent, quantum theories. Needless to say, this 

goes beyond anything we can prove from examining a simple model. 

A different feature of our model which is worth mentioning again 

is the fact our containment mechanism arose entirely as a consequence 

of an internal consistency condition on the theory, at the level of 

describing the single free particle with internal structure. We should 

like to suggest absolute containment is so strong a requirement on a 

theory that detailed dynamical calculations should not be needed to 
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demonstrate the requirement is satisfied or broken by the particular 

theory: The question may be one of internal consistency. A necessary 

prerequisite is to decide upon a suitable mathematical statement of 

confinement. 

Finally, as mentioned in the Introduction, one can view the 

description of free particles with internal structure as a problem in 

the representation theory of the Poincare group. All the unitary 

irreducible representations of the Poincare group which are insensitive 

to the structure of particles are contained in the classic work of Wigner. 
35 

The manifold on which these representations are constructed does not 

allow for any operation which would reflect the structure or the internal 

symmetry of the constituents of the particles. The internal symmetry 

would then have to be realized in a separate Hilbert space. Realiza- 

tionsofthe unitary irreducible representations of the Poincare group 

on a manifold which allows internal symmetry operations have recently 

been studied by Giinaydin and GiLrsey. 36 In particular, they have con- 

structed all the unitary irreducible representations of the Poincare 

group in an octonionic Hilbert space which allows SU(3) s-ymmetry 

operations. These Poincare states have the interesting property of 

being SU(3) color singlets. The appearance of the selection rule in 

this case can be traced back to the non-associativity of the octonion 

algebra. In the same spirit, the Poincare states that we have con- 

structed in the manifold of the solutions of our explicit model can be 

viewed as new unitary representations of the Poincare group for particles 

with internal structure. Since in our case the selection rule has 

dynamical origin, we succeed in making a detailed study of the spectrum 
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of states. Our approach thus provides a general method of looking for 

unita;y representations of the Poincare group relevant to particles with 

internal structure. 

We have given little attention to a number of important topics 

in this work. Among these are the problems of incorporating inter- 

actions and realistic internal symmetry groups. We hope to return to 

these topics in future publications. 
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FIGURR CAPTIONS 

Figure 1. Mass-spin towers in the model with M2 = H and under 

conditions (3.6). Arrow (a) represents a double excitation 

of the plasmon with mode number 1 on the parton-pair sea, 

with cl2 << 1. Arrow (b) represents a single excitation 

of the second plasmon mode. 

Figure 2. Mass-spin towers in the model with M2 = H + rn: and under 

conditions (3.7). Arrows (a) and (b) have same significance 

as figure 1. The lowest state has spin 1 and mass mo. 
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