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ABSTRACT 

In this, the first of three papers, we present the essential features of a 

treatment of the U( 1) -Higgs model based upon a regulator free, momentum 

space subtraction scheme. The principle new results which follow from this 

approach are: (1) the fields of the theory satisfy their classical equations 

of motion, (2) the source of the vector meson field, f(x), is a finite, conserved 

current, (3) the Higgs theory passes “smoothly” over to a Goldstone boson 

theory when the vector meson coupling constant (e) is set equal to zero, 

(4) the conserved current is gauge invariant and can be used as an interpolating 

field for the stable one particle states of the theory, (5) one can define a 

generalized Higgs model wherein only part of the vector meson mass comes 

from spontaneous breakdown; this theory has the features of the usual Higgs 

model, is ghost free but it keeps its Goldstone boson. 

This paper is devoted to stating precisely what can be proven and to 

establishing the relationship of our treatment to classical field theory ideas 

on the one hand and other quantum field theoretic treatments on the other. 

Further details concerning the techniques adopted and proofs that various 

limiting procedures are well-defined are given in parts II and III. 
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INTRODUCTION 

Some time has passed since the flurry of activity concerning Weinberg- 

Higgs-Gbble type models for weak and electromagnetic interaction first began. 

While many of the original hopes that these theories could provide easy answers 

to heretofore unsolved problems show no immediate signs of being realized, it 

is by no means true that they have lost their appeal. On the contrary, there 

seems to be every reason to suppose that one has just begun to understand the 

relevance of these ideas to the phenomenology of hadron physics and to the 

physics of weak and electromagnetic interactions. 

With the interesting work of t’Hooft and Veltman, Lee and Zinn-Justin, 1 

and others, it is clear that a first pass at clarifying the essentials of how these 

theories work has been made. As in any first attempt, however, loose ends 

remain. In addition, much of what is simple about the structure of these theories 

has been obscured by the tremendous amount of purely technical detail which had 

to be handled in the discussion of their renormalization. For this reason, this 

series of papers is meant to serve a dual purpose. First, we wish to tie off 

loose ends for the Abelian Higgs model. Second, we wish to present a formal 

procedure, different from those used in previous discussions, to simplfy the 

task of extracting a physical understanding of the structure of the renormalized 

field theory and of seeing how, if at all, things differ from one’s naive notions. 

The principle new results to be proven in the three papers of this series are: 

(1) The fields of the theory satisfy the naive equations of motion 

which follow from the usual classical arguments applied to the Higgs Lagrangian. 

(2) The current, j’(x), which appears as the source of the vector meson 

field in the equations of motion is both finite and conserved. -- 
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(3) If one takes the limit in which the vector meson coupling constant, e, 

is set equal to zero, the Green’s functions of the theory pass over to those of 

‘a GolbStone boson theory (defined by taking the e = 0 limit of the Higgs 

Lagrangian) , and 

(4) In this same limit, the current, i j ‘(x); passes over to the correspond- 

ing conserved current of the Goldstone theory. 

(5) The fact that the fields satisfy simple equations of motion and the 

source of the vector meson field is a finite conserved current, is equivalent to 

the Ward identities first discussed for the abelian Higgs model by 

Lee. 2 

(6) In the abelian Higgs theory the conserved current, j’(x), is gauge in- 

variant and can be used as an interpolating field for the stable physical one- 

particle states of the theory. (This fact make is possible for one to give a 

reasonably detailed discussion of this theory in terms of a positive metric 

Hilbert space and generalized unitary relations among the currents. This use- 

ful property of ($ j P(x)) survives the limit e - 0 and yields a field theoretic 

discussion of the underlying Goldstone boson theory which is a precise parallel 

of phenomenological discussions.)3 

(7) One can generalize the usual abelian Higgs model to a theory wherein 

only part of the vector meson mass comes from the spontaneous breakdown of 

U( 1) symmetry. In this model, as in the Higgs model, the naive equations of 

motion and current conservation guarantee the absence of ghosts in physical on- 

shell amplitudes; what is new is that the Goldstone boson of the theory persists. 

A careful study of how this pre-Higgs model passes over to a true Higgs model 

(i.e. one in which the Goldstone boson decouples from the theory) is extremely 

instructive. 
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The simplest way to obtain these results is to adopt a scheme for defining 

renormalized Green’s functions which avoids the need for cumbersome ultraviolet 

‘regula”rization techniques. At present we are only aware of two approaches which 

are available for this purpose. The first is the extremely promising dimensional 

regularization scheme of t’Hooft and Veltman. 
4. 

While this scheme is very ap- 

pealing, as presently formulated it would make giving a satisfactory discussion 

of points (I) -( 7) quite difficult. The second technique, the one we adopt, is a 

generalized version of the momentum space subtraction procedure for Feynman 

integrals introduced by one of the authors.5 One important virtue of this scheme 

is that it separates the question of whether one has a finite, Lorentz invariant 

set of Feynman amplitudes, from the problem of proving field equations and 
6 

symmetry properties. Another appealing feature of this method, especially from 

the point of view of understanding the physical basis of the procedure involved, 

is that the proofs of equations of motion, etc. simp?y parallel the discussion of 

the classical Lagrangian field theory. 

Our goal is to make these papers as accessible as possible to those readers 

unfamiliar with the momentum space subtraction procedure which we use and the 

way one uses it to derive equations of motion, etc. For this reason the first 

paper of this series states exactly what can be proven, explains - by example - 

most of the subtle points which arise, and indicates by a study of specific 

Feynman graphs how these problems are overcome. The second paper of this 

series is devoted to a complete specification of that subtraction procedure which 

is most convenient for giving mathematical proofs, and to a discussion of the 

derivation of equations of motion, etc. for, what we shall refer to as, the ex- 

plicitly broken pre-Higgs model. Finally, paper three is devoted to a discussion 

of various limiting cases of the general model and to a discussion of the unitarity 

structure of the theory. 
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To set the stage for the more formal discussions of papers II and III, we 

proceed in several steps. In Section I of this paper we begin by discussing a 

generalized version of the classical Higgs model and its various limits. Next, 

for the sake of completeness, we devote Section II to a review of the Feynman 

rules for such a theory. Section III is devoted to giving a precise statement of 

the important theorems which we shall prove, and a discussion of how these 

theorems are -related to previous results; in particular we show how to derive 

the familiar forms of the Ward identities. Finally we conclude this section 

by indicating how one can discuss the ghosts of the theory and whether or not 

they contribute to on shell physical amplitudes. 

Finally, with the general discussions of Sections I-III behind us, we try - 

in Sections IV and V - a loose but essentially correct discussion of the way 

one defines the momentum space subtraction procedure and uses it to prove 

equations of motion, etc. 
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I. Classical Foundations 

There are two main reasons for beginning with a discussion of the classical 

versio; of a generalized Abelian Higgs model. The first is to insure that those 

readers who are unfamiliar with spontaneous symmetry-breaking and its role in 

gauge theories will find our treatment essentially self-contained. A more funda- 

mental reason is that there is a close parallel between the classical equations 

of motion and the field equations in renormalized perturbation theory, expressed 

in terms of normal products; thus, many of the classical results obtained in this 

section will be applicable, with only minor modifications to the quantized version 

of the model. 

A. General Pre-Higgs Lagrangian 

Our starting point is the theory of a complex scalar field coupled to a massive 

vector field, The Lagrangian density is of the form 

+ (D’ cp)* Dp’P - a%* cp - he2(V*@2 

F 
P* 

= BpAI, - a A 
* P 

) Dp = 8 - ieA 
CL P 

where m, Q, e, a and h are real parameters. Introducing two real fields (pi 

and cP2, such that 

cp= -$ VP, + icp,) 

one obtains from Eq. (1) the following Euler-Lagrange equations: 

(2) 

(0 +a$$)1 = j(l) 

(0 + a?(F2 = j(2) 
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where 

j(l) = - h e2P& + cp;, - e Bps’ i) - 
P 2 

e a;(A’ 9,) I- e2ApA ’ (Pi 

p = - ~c?IP+(P~ + 9:) - e A% (FJ 
CL 1 

- e 8&A%,) + e2ApAp (Pi (3) 

Imposing boarmdary conditions such that a localized source produces outgoing 

(incoming) waves for large positive (negative), times, we may convert Eq. (3) 

into the following set of coupled integral equations; 

cp,(x) = ~oltx) + i d4y A (x - ye a2)j(‘)(Y) F ’ 

cp,(x) = (Po2W + i d4y A (x - ye a) jt2)(y) F ’ 

Ap(x) = AOp(x) - i I d4Y AF(x - Y; m2) j,(Y) 

2 d4Y(apAF(X - Y; m$- aPAF(x - y; o! rni )) 

x av.iyW 

where 

A,(< ; K 2, = 
/ 

4 
a4 e- ip’ i 

(270 P2 -fc2+i0 

(4) 

(5) 
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and the inhomogeneous terms are linear combinations of free fields: 

2 
- 

(O+a )cPol = 0 

2 (O+a )‘Po2 = 0 

(0 +amf$apA 
OP 

= 0 

2 
( 0 + mo) Vop = 0 

The expression for AP(x) in Eq. (4) may be simplified somewhat by noting 

that the current jP is conserved: i.e., 

aClj = 0. 
P 

[This is a straightforward consequence of the field equations.) Hence the third 

equation in (4) becomes 

AP(x) = AoP(x) - i I d4Y AFtx - Y; m$ j,(Y) 3 (8) 

so that the scattered waves contain no scalar mode of mass mo&.. Equation (8) 

tells us that the field apAP propagates freely and can be suppressed entirely by 

appropriate choice of initial conditions. The decoupling of the field aPAP is an 

essential feature of the model which persists in the quantum version, where it 

is crucial to the elimination of negative-metric “ghosts” from the theory. 

It is interesting to observe that the dynamical trivality of the scalar mode 

of mass rnoJao is reflected in a symmetry property of the field equations (3). 
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The latter are invariant under the restricted gauge transformations, 

A 
P - AP -I- aPA 

‘p - Cpe ieA (9) 

where 

( 0 + olrni) A = 0 

In the quantum version of the model, it will be natural to consider as observable 

only those fields which are invariant under these gauge transformations (or under 

a more general class). 

B. Perturbative Solutions to the Field Equations 

In order to try and obtain some feeling for the nature of the solutions to the 

field equations (Eq. (3)) we observe that for positive values of a2 and rni, Eqs. 

(4) and (8) may be solved iteratively to arbitrary finite order in. e. The result- 

ing expansions hopefully provide asymptotic series for the fields for sufficiently 

small ‘e’(no claim is made about the convergence of the iteration scheme). Since 

the expansion parameter only multiplies terms of second, or higher, degree in 

the fields, and since the Green’s function AF( 5 ) is well behaved asymptotically, 

the perturbative (“scattering”) corrections to small amplitude, freely propagating 

waves will be appropriately small, and will remain so for all times. 
n 

For negative ‘a’ ‘(the pre-Higgs model), a .satisfactory iteration of (4) is not 

possible; thanks to the exponential growth of solutions of the homogeneous fields 

equations and the exponential growth of the Green’s function for large times, since 

in this case - small departures from the propagation will not remain small 

asymptotically. To understand why a perturbative solution about z/(x) = x(x) = 

= Ap(x) = 0 cannot work in this case, it is convenient to consider the limiting 
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case (Goldstone model) e - 0, he2 - g # 0. The essential point is that one 

expects a “small vibration” to be stable if one is expanding about a solution, 

$(x) =*&ix) and x(x) = 7 (x) which is a minimum of the potential energy, 

ve, x) = + g(e2 + x 2)2 + + a2(q2 + x 2). Clearly, for the case a2 > 0 the 
-- 

solution ($, x ) = 0 is such a minimum; however,. for a2 < 0 it is easy to check 

that (cl, l) = 0 is a relative maximum of the function V(#, x ). Since no small- 

vibration expansion about a relative maximum of potential energy can be expected 

to be stable, it is no surprise that in our attempt to make such an expansion we 

encounter exponential asymptotic growth of the resulting solutions. 

It is a simple matter to show that the true minima of the potential function 

form a one-parameter family ($@, x e) such that #i + xi = 
2 

I I E , i.e., 

(I)~, x e) = f (cos0, sine) where f2 = g-1 , and so it should be possible to 

formulate a stable small-vibration theory of the model by setting (PI = $ + f, 

cp2 = x and expanding the solution about + = x = AP = 0. It is not obvious 

that this should work for general values of the coupling constant, but let us try 

it anyhow. With these substitutions.Eqs. (3) become 

(0 + 2hw2) W) = J+(x) ’ w = ef 

o x (xl - w apA” = Jx 00 m2 =m2+w o 2 

- (0 + m2)AP + (I - g) apavAv 4-w apx = J&x) 

where 

J x) 
d 

= - he2$($2 + x2) - e(APaPx + aP(APx))+ e2APAP# 

- he(3J12 + x2) + e wApAP 

Jx (x) = - he2 x(e2 + x2) + e(APaPq+ aP(AP$)) + e2APAPx - 2he$x 

J&X) = e(Xar~-~ac,x)+e2A~(~2+x2+2 : $) (10) 
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With the same choice of boundary conditions as before, Eqs. (3) may be con- 

verted into the following integral equations: 

?J(x) = Icl,@) + i / dY AFtx - Y; 2 h W 
2 
) J&y) 

. 
x (4 = x,tN + -+ / 

mO 
dy AFtx - Y; 0) tm2 Jx(y) - wa’J,$yN 

dy AF(x - Y; @mi) ( W Jx (Y) - aPJP(Y)) 

AP(x) = AOF - i AFtx - Y; m2) J’(y) 

. 
+--y& / dy ap AF(x - Y; 0) (m2 Jx(y) - w au Jv(y)) 

0 

% / 
mO 

dy ap AF(x - y; a mi) (w Jx (y) - au Jv(Y)) 

(11) 

where $,, x o and AOp are solutions of the respective homogeneous differential 

equations. Defining 

PO = x0 + --- a,A; 
0 

vOP 
=A 1 

01.1 - f apxo + a aVAOv 
crm2 P 

it is easy to see from the differential equations that z,G,, as well as these 
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linear combinations, are free fields: i. e., 

(Lj + 2hw2) e. = 0 
4r 

oPg=O 

(0 +a!m$rO=O 

2 
(O+m )Vop = 0 t 13) 

Due to the relation, 

#J&x) = w Jx(x) , (14) 

a straightforward consequence of the field equations, the last two of Eqs. (11) 

assume the simpler form, 

x(x) = x,(x) + i / dy AFtx - Y; 0) Jx (Y) 

AP(x) = AOP(x) - i 1 dy 
aa 
H 

m2 > 
AF(x - y; m2) J’(y) 

dY apAF(X - Y; 0) Jx (Y) . (15) 

Note that once again the scattered waves contain no ghosts of mass mo\/s;, and the 

scalar field aPAP satisfies a free-field equation. As in the case a2L0, the 

essential triviality of the ghost oscillations is linked to the invariance of the 

equations of motion under the gauge transformations of Eq . (9) where 

o= 
$- (+ 

+ ix + z, (If-3 
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C. Currents, Gauge Invariance and Special Limits of the Model 

In the quantized version of the pre-Higgs model, it will be essential to con- 

sider 2s observable only those quantities which in some sense are free of ghosts. 

One criterion for composite fields, formed from products of the basic fields #, 

x and Ap and their derivatives, to be ghost-free’will turn out to be invariance 

under the gauge transformations defined by Eqs. (9) and (6), without the free- 

field restriction on A. Perhaps the most important of these composite fields is 

the original current jp , as given by Eq. (3), which is obviously gauge invariant 

and related to the current Jp defined in Eq. (10) by, 

ll.l 
= JF + w2A 

I-J 
-wax 

P 0 (17) 

To check explicitly that the classical jcl has no asymptotic ghost oscillations, we 

note that in Eq. (10) the mass mob scalar mode can enter only in the zeroth- 

order contribution to w2A - w 3,x. But 
P 

0 

w2A 2 m&w 
- 

o/J 
-wax 

P 0 
= w vop ,i ap PO (18) 

so that we have only a mass-m vector mode and a mass-0 scalar “mode”, but no 

scalar oscillations of mass m. lrol. 

Note that in the weak-coupling limit, e - 0, : - f, jp goes over continu- 

ously into the conserved current of the Goldstone model, 

and from (15) and (18) it is clear that only the massless Goldstone mode survives 

in the asymptotic behavior of the limiting current for large times. In the quantized 

version of the theory this corresponds to the possibility of using the current as an 
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interpolating field for the Goldstone particles, a matter of considerable impor- 

tance in the structural analysis of this and related models. 

<the limit of vanishing ‘Iphoton” mass, m. - 0, the pre-Higgs current jll 

goes over continuously into the conserved current of the Higgs model. As is 

evident from (15) and (18)) it is the zero-mass mode, the remnant of the Goldstone 

mode, which disappears in this limit, with a mass-w vector mode surviving in 

the asymptotic waves. Correspondingly, if one takes the m. - 0 limit of the 

quantized pre-Higgs model, one finds that the zero-mass particles of the latter 

decouple, with the conserved current becoming a suitable interpolating field for 

mass-w particles of spin one in the limiting theory. This aspect of the so-called 

Higgs phenomenon will be discussed at some length in Part III of our study. 
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II. Some Preliminary Remarks 

In the preceding section we studied the classical theory of a massive vector 

field i%teracting with a self-coupled scalar field. Our purpose in this section is 

to lay the foundations for extending the discussion to the corresponding quantum 

field theory. We shall assume throughout that the reader is familiar with ordinary 

perturbation theory, the mechanics of Feynman graphs and the general spirit of 

the Dyson-Salam program for renormalizing Feynman amplitudes in momentum 

space. We shall not assume a familiarity with the extension of these ideas to 

a full, regulator-free, momentum-space renormalization procedure. The latter 

will be sketched, with instructive examples, in the course of this article, and 

the reader interested in further details is referred to Ref. 15. 

The general point of view which motivates the discussion to follow is that 

the perturbative approach to quantum field theory amounts to a set of rules for 

constructing finite Feynman amplitudes (Green’s functions). These rules are 

usually presented in two stages: one first specifies a procedure for assigning a 

Feynman integrand to each Feynman diagram , and then one gives a prescription 

for modifying this integrand so as to guarantee the integrability of the resulting 

expression. One is then left with the task of showing that the theory sp defined 

has the equations of motion, covariance properties and symmetries which one 

anticipated at the outset on the basis of the given Lagrangian (whose role here is 

merely as a formal device for specifying Feynman rules). 

The classical Lagrangian of the pre-Higgs model is given by Eq. (1) with 

the substitution G1 = II, + f, +2 = x . Working the Lagrangian out in terms of 

AcL, $, x and setting 
a2 = -hw2 
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we obtain (up to constant forms) 

LIZ0 = - a( apAv - aVAp) (apAV - avAp) + i (rnt + w2) Ac1A’ - $ ( a,A”)2 - wA~#x 

+ $- apqap+ + + ap xapx - hw2q2 

5 = - 2 he2((e2 + x2)2 + 4ew$(q2 + x2)) 

+ eAp xrp$ + $e2ApAp(zjJ2+x2+2 : $) ( 19) 

The Feynmsn rules for the Green’s functions are conveniently summarized by 

the Gell-Mann Low expansion, and there is a close connection between the for- 

mal specifications of Feynman rules and the classical perturbation theory de- 

scribed in Section I. The free fields to be inserted into the Gell-Mann Low 

formula are those associated with the unperturbed Lagrangian So Eq. (19), 

and will obey the homogeneous versions of the field equations in Eq. (10). 

Their propagators will be precisely the classical Green’s functions which appear 

in the integral equations of Eq. (11). Specifically, in their momentum space 

form is, 

<T F,(P) Vjo(0) > o = 
i 

p2-2hw2+i0 ’ 

’ 

m2 
<‘I’ :,tP) x oto) ‘o 

W2 
= 

- 

p2 -t i0 P2 - ami+ i0 I 
, 

< T $JP) x o(O) ‘o = 
1 _I_--- 

P2 -omi+iO I 
, 

<T ~ov(~) A&O) >. = !.3? 
+ P pv/m2) 

i- 1 pELpv 
p2 -m2+i0 2 2 -omi+iO 1 . m. p 

(20) 
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where we have adoped the shorthand notation 

<T 7,1(PI) l **7u(pu)7(y)> = / 
icpixi 

e < T 7- +x1) l - * TJXJ T(Y) ’ l (21) 

The poles of these propagators correspond to the particles of the theory: so we 

have a vector meson of mass m = 2 

d-- 

rni + w , a scalar particle aof mass 

M = 2hw2, 
d 

a scalar particle r of vanishing mass, and a scalar ghost particle 

of mass m OJ- o, which must be quantized with indefinite metric due to the sign 

of the residue in Eq. (20). 

A. Some Necessary Modifications of our Lagrangian 

With the Lagrangian given in Eq. (19) the formal Gell-Mann Low expansion 

leads to ultraviolet as well as infrared divergencies. Ultraviolet divergencies 

are eliminated by making subtractions for the Feynman integrals in momentum 

space (see Section IV, the complete rules will be given in part II). For resolv- 

ing the infrared problem we first modify the Lagrangian such that all particles 

acquire a non-vanishing mass. To this end we add to the Lagrangian an explicit 

symmetry breaking term 

2w 
/J e+ (22) 

as well as a gauge invariant contribution of the form 

- $ (P2 -c)cp*cp = 

zz - ;(p2-c)($2+ x2+2 f$) + constant term (23) 

where c is chosen to enforce the vanishing of the vacuum expectation value of 

+. The model so obtained will be called the explicitly broken pre-Higgs model. 

Its Green’s functions are free of ultraviolet and infrared divergencies. Even- 

tually the limits /J - 0 (pre-Higgs model), (Y - 0 (Landau gauge) and m- 0 (Higgs 
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model) will be taken. That the Green’s function remain finite in these limits 

will be shown in Part III. 

Since the subtractions will be made at zero external momenta there is no 

guarantee that the full propagators continue to have poles at the same values of 

p2 for which the unperturbed propagators are singular. For unstable particles, such 

as the c in the pre-Higgs model, the propagator poles must of course move into 

the complex plane. For the stable particles of the pre-Higgs or Higgs model, 

however, we want the mass parameters of the free Lagrangian to be the exact 

values of the physical masses. Moreover, the Green’s functions should be 

normalized in a convenient manner. For these reasons, it is necessary to 

introduce renormalized fields and parameters by means of the substitutions 

a-zo! 3 
-2 h - z1z2 z3h 

x-z 
l/2 
2 x 

A -z;12A 
I-1 P 

e - zi1’2e 

w-z l/2 -1/2w 
2 z3 (24) 

For ~1 # 0 the renormalization factors z are power series in e with finite coeffi- 

cients; moreover, we find w useful to make the substitutions 

2 w - SW, c-s c 

The parameter s will only be used for formulating the subtraction scheme and 

eventually’s’will be set equal to one. The renormalization constants zi and c 

are assumed to be independent of s. Since s = 0 corresponds to exact symmetry 

the parameter s measures the strength of the symmetry breaking. With the 

substitutions of Eq. (24), and the insertion of the additional terms of Eqs. (22) 
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and (23), the Lagrangian of the explicitly broken pre-Higgs model becomes 

22? a- Lz F 4 3 plJ FPv + im2AAP -& 
0 I-1 

+ z2(Dpq)* Dpq + zlhs2w2 (p*‘p - he2(rp*(pj2 

- (P2 2 w - cs2)rp*v + p s g l/j 

F = aA 
PV P v 

-aA 
v c1’ 

D = a - ieA 
i-J P P 

cp= $ (dJ + ix + s ;, 

Explicitly in terms of A p, Z/J and x we have 

(25) 

go = -+ (aPAV - avAP) (aPA’ - aVAP) + g rni + s2w2) APAP - 

- swAtiaPx + + apq aQ + L a x aPx - +(p2+ 2hs2w2) +2 - i p2x2 
2 P 

LPI= -2. 4 zi he2(e2 + x 2)2 - zlehsw$(e2 + x2) - (zl - 1) h s2w2 G2 

--z + z2eAPXa $ -(z2-i)swAPaPx + $ z2e2APAP($2+x2+2s: $) 

- 1) s2w2APAP -I- + (z2 - 1) tap&% + ap x ap X) 

1 
+ z^ c s2t q2 +; x 

2 +2sF 1 l/J) - 4(z3 - 1) (aPAV - avA,, (apAv - aVAp) 

(26) 

Adopting this notation the field equation for the vector field A cL, following 

from the classical Lagrangian of Eq. (26), now becomes 

avFPV - $ aPavAv - rni AP = jzl (27) 
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with the classical current given by 

j" = 
Cd 

iez2(q* D’Cp - cp(D’q~)*) - (z3 - l)av F” 

= swa’x +eACL(+2+x2)+2eswApq+sw A 22 P 

I 

+ (z3 - 1) (gpv 0 - ~%v)A v - (28) 

Note, that now when ~1 # 0 the classical current is only partially conserved, 

a jp = 
P cc 

p2swx. (29) 

Solving the “free field” equations appropriate to go as given in Eq. (26) we 

find the propagators are 

. 
< TqO(p) qo(0) > = 

P2 - IJ2 -ihs2w2+i0 

i(p2 
2 

<TX,(P) x0(O) ’ = 
-orno) -io!s2w2 

Do(p2 + i0) 

< T xo/,$p) x o(O) ’ = 
-o!swp 
-.A!&- 
Do(p2 + i0) 

< TxoC1(p) Au(O) > = 

(30) 

where 

DO(p2) = tp2 - x2) (p2 - h2) = (p2 - p2) (p2 - 01 m2,) + (Y p2s2w2 (31) 
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The masses k and h are given by 

2 I x-= - $ (CY m,2 + ~1~)~ - 4orp2(mi + s2w2) 

A2 = 5 (a rni.+ p2) + + j (a! rni + p2)2 - 4y p2(rni + s2w2) (32) 

Consideration of the results reveals that free Lagrangian go describes the 

following kinds of particles; 

(i) a vector meson of mass m = J7-n m. + s w (three degrees of freedom), 

(ii) a scalar $-particle of mass M = &iciGv, 

(iii) a scalar x -particles of mass , 

and (iv) a scalar ghost of particle of mass A. 

(The decomposition of Aop and x o with respect to conventional free fields will 

be given in Part II, Section 2.) In the limit 1-1 - 0 the mass k approaches zero 

and the x -particle becomes the Goldstone particle of the pre-Higgs model. 

B. Specification of Feynman Rules 

The renormalized time ordered functions are constructed from the Gell- 

Mann Low expansion 

<TX> = Fin<TdO) e 
i I dz Z!‘)(z) I , norm 

(33) 

with the interaction Lagrangian of Eq. (26), where X denotes an arbitrary product 

of field operators, 

nA 9 nX 
X= II A,,(xi) (34) 

j=l 
” +txk> 

k=l 
l-i x <“& ’ 

1=1 

We have adopted the notation X (0) and 5?i”) to signify the corresponding expres- 

sions with the free fields are to be inserted. In the usual way the time ordered 

functions on the right-hand side of Eq. (33) are to be expanded as a sum of products 
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of free propagators, each corresponding to a Feynman diagram. The super- 

script ‘norm’ indicates that contributions of diagrams having disconnected parts 

With n?7 external lines should not be included. ‘Fin’ denotes the finite part which 

one is to take for each Feynman integral, as discussed in Section IV. Finally, 

the parameters zI, z2 and z3 are chosen to guarantee the desired mass and 

normalization conditions. 

According to the Feynman rules following from Eqs. (33) and (34), all 

Green’ s functions, 

nA 5 nX 
<T II APi 

j=l 
II wq 

k=l 
II X(Z$> = 0 

m= 1 

(n +n 
A x 

= odd), (35) 

for which the total number of AP- and x -fields is odd,vanish. This property 

reflects an exact symmetry of the theory under the substitution. 

A -,- A X -L- 
P P ’ x * (36) 

The current of the quantized theory is defined through its Green’s functions 

which are constructed by the.Gell-Mann Low expansion 

i 
<T jP(x)X> = F~I<TJ “,9’“(x) X(O) e 

dz gy) (z) norm > 

*(0)/J where jcl denotes the classical current (Eq. (28)) with the free field operators 

inserted. For the precise definition of the finite part indicated in Eq. (37) we 

refer again to the more detailed discussion in Section IV. The current given by 

Eq. (37) will be denoted as 

jp = N3 h:ll 
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where the symbol N3 stands for normal product of degree 3. The matrix ele- 

ments of the current between incoming and outgoing states are obtained from 

‘Greeks functions of the form indicated in Eq. (37) by applying the reduction for- 

mulae to the field operators. It should be noted that only those fields associated 

with stable particles contribute to the asymptotic limits. 

C. Remarks About the Goldstone Limit of This Model 

The Lagrangian of the explicitly broken Goldstone model is obtained from 

Eq. (26) by taking the limit e - 0, : - f , and h l/2 e - g. In this 

limit it is convenient to use the x -mass ~1, the $-mass M, related to f and 

2 2 
fg= 9 , d-- (33) 

as independent variables. With these parameters the Lagrangian of the eipli- 

citly broken Goldstone model becomes 

LX= z2 apcp*ap~ + z1 M2 P2 s2v*o ; 

- zlg2(v*g2- (p2-s2) (P*‘p 

-hJ 
q= J-i? 

+ ix + sf) , (39) 
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or explicitly 

- 0 z + all qd qb + +apx apx - + (/.A~ + s2(M2 - $)) q2 

-1 2 2 
2c1 x 

-127* = -a z1g2M2 + x2) - zlg d-- MCp2 
2 =w2 + x2) 

-(z,-1) v s2e2 + &z2 - 1) ( ap +a+ + aclx a% 

&s2(#2+ x2+ 2 MZ2- 
2 

+2 J- 

and the classical current is, 

jp = iz2q*>cp = z2 xa 2) 7 - cl sg -l apX 

(40) 

. (41) 

The free propagators for this case are, 

< TTo(p) co(O) ’ = 
i 

P2 - /J2 - s2(M2 - p2) + i0 
, 

< TTo(p) x o(O) ’ = 
i 

P2 - p2 + i0 
. 

The Green’s functions of the fields and the current are constructed from 

the Gell-Mann-Low expansion with 

Eq. (41), however in this limit the 

general expressions of the form, 

x= I-I 
k=l 

the interaction Lagrangian, 5Z?L, given in 

symbol X of Eqs. (33) and (34). stands for 

(42) 
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This completes our preliminary remarks concerning the specification of 

the pre-Higgs Lagrangian. In the next section we turn to the statement of 

impor&nt general results. 
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III. Statement of General Results 

Most of the salient features of the explicitly broken Higgs model and its 

variouflimiting cases are consequences of two fundamental equations relating 

the Green functions of the basic fields to those of the current j , The derivation 
P 

of these relations will be discussed briefly in Section V, with a systematic treat- 

ment postponed until Part II. 

A. Important Equations 

The first of these key equations is the equation of motion for the vector 

potential: 

<T avFpv(q - k a~a$'(x) - miA’(x)]~> 
[ 

= <Tj’(v) X> - i c 6(x-xn) c+ <T r~ A (x.) II WQ JI x P$ ’ 
n pn j#n ‘j J k I 

Here X denotes an arbitrary expression of the form 

nA % nX 
x = n A (x.) n d’(y,, n X (z,, 

j=l ‘Lj J k=l P=l 

Applying a reduction formula to obtain matrix elements between incoming and 

outgoing states, we may transform Eq. (43) into the following operator field 

equation: 

au F” - i apavAv _ mi Ap = jp (4% 

This is identical to the classical equation of motion derived via the variational 

principle from the Lagrangian of Eq. (40). 
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The second important equation is the Ward-Takahashi identity for the 

current’ s Green functions, namely: 
- 

3: <Tjp(x) X> = p2w <TX(X) X> 

- ie 

+ ie (44) 
n 

Once again applying the reduction formula, we obtafn the law of partial current 

conservation in operator form, 

apj 
P 

= p2wx . 

Ht is significant that Eqs, (44) and (45) would follow in precisely the same 

:form from naive application of the formal equations of motion and equal-time 

commutation relation. Equation (45) is just the partial conservation law for the 

classical. current, and the terms involving delta-functions in Eq+ (44) corres- 

pond to the equal-time commutators which one usually finds as a result of com- 

muting the time derivatives with the time ordering. (Our derivation in Part H 

will not make use of these naive manipulations, which cannot be justified in 

perturbation theory. Actually the T-product used here represents a renormalized 

version of the T*-product for which differentiations always commute with 

time-ordering. In our way of deriving Eq. (44), covariant contact terms arise 

directly from the Feynman rules and are not due to the differentiation of step 

functions.) 
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Taking the divergence of Eq. (43) and inserting Eq. (44), we obtain 

- $ < T( 0 + CY rni) aPAP X> + p2w <TX(X) X> 

+ ie 6(X - Y,) <‘I’ X (Y,) l-l A tx.) l-l $tY,> l-l x t”& > 
n j ‘j ’ k#n I 

- ie 6(x - zn) < T 
I n A ‘“2 k” $ty,) & X (z,) ’ t4@ 

n j 5 

which may be interpreted either as the equation of motion of the ghost-particle 

field, 8 Ape 
P 

or as the Ward-Takahashi identity corresponding to localized gauge 

transformations of the second kind. 

In its role as field equation, Eq. (46) leads, via the reduction formula, to 

the operator relation 

(47) 

thus apAP becomes a free field in the limit p - 0. Note that in this limit the 

ghost particles do not interact with the physical particles of the pre-Higgs model, 

and this should make possible the construction of a unitary S-matrix. 

B. Connections to Other Formalisms 

The consequences of Eq. (46) as a Ward-Takahashi identity are most con- 

veniently expressed m terms of the vertex functions rather than the full Green . 
functions. To do this, we first rewrite Eq. (46) in terms of the generating 
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functional for connected Green functions: 

2 /A 6G +amo)a - = 
- 6 J’(x) 

-k ip2w 6G + ie 6G 

GJX(x) 
- JX(x) *G 

GJ’(x) 6 JJI(x) 1 
where 

(48) 

G[J”,***J5] = g apa 
n 

$ /J;il) 0.0 J;.nj <T I;flAaj(;) >conndy*=dxn 

(49) 

The generating functional for vertex functions 
m 

I’~,***K~ = g ax $ /Ka,(‘l)**-Ka:n) <T jlAai(x$ >propdxl***dxn 
m l *a 

1 n 
(50) 

is then introduced by means of the Legendre transformation, 

T[KO,**-,?] = G J’,*~*,J~ - i dx ,I0 Jb(xl stx) I= 
(51) 

where 

K,(x) = + 6 G 
6 Ja(x) 

and hence 

Ja(x) = i -&Kk 
a 

Eq. (48) thus becomes i 

it0 + Q! rni) 8 ‘Kp(x) -t CL! p2 w KX (x) 

6l? 6r dr . ” 
= -1 - 6 A,Jx) w 

- 
P 6KX(x) 1 -ie [ KX(x) 6 K +(x1 K+(x) 6 KX (xl 1 

(52) 
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which yields via functional differentiation an infinite set of identities relating 

the vertex functions. For ~1 = 0 and m. = 0, this coincides with the Ward- 

Takazashi identity employed by B. Lee in the Higgs model.2 Note that as usual 

the vertex functions with more than two arguments are given by sums over 

proper (one-particle irreducible) diagrams. 

C. Some Simple Consequences of These Identities 

For the sake of completeness we now include a discussion of how one can 

use Eqs.(48) and (52) to obtain information about the full propagators of the 

theory which are related to the two point vertex functions by 

5 

c racw Gab(p) = - 6; 
c=o 

where 

G&(p) = /dxeipx <TAa$ Ab -t > . 

rabtp) = jdxeipx <TAa t Ab _ $>ProP 

(53) 

(54) 

Eq. (53) may be simplified considerably with the aid of Lorentz invariance, the 

discrete symmetry (eq. (36)) and the relations 

Gbah’) = Gab(-P) 9 rba(P) = rabt -P) 

From these considerations it follows that the mixed two-point functions 

(56) 

involving only one $ field vanish, and that we 
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may write the remaining ones in the form 

- Gluv(p) = (gpv - F) GzA(p2) + y G,LA(p2) 

+ 

I;Lx(p) = rp5(p) = - r5,&P) = PprAx(p2) 

G44(~). = G+dp2) , 2 
G55(~) = GX ,(P ) 

r44tP) = riyqb2h r55(~) = 
2 

rxxtP ) (57) 

and in addition, it is useful to separate out the “trivial” part of the two-point 

vertex functions by introducing 

T 2 
rAAtP ) = - i(p 

2 2 2 
- m - ‘,<p 1) 

2 2 ’ 
rAx(P) = -wrtP) 

$,p2) = itp2 - M2 - J$,(P~)) (58) 

In terms of the functions of p2, Eq. (53) becomes 

rAA AA=-l , T GT r&GJJI=-l . (5% 
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which may be inverted to yield 

T T -1 
--h GAA = - trAA) Y 

L GAA = - +, G 
L 

xx 
= (YTDAX , G = - - OrAA 

xx D 

D = a(rL 
AA rxx 

2 2 
+ P rAx) 

The Ward-Takahashi identity, Eq. (50), gives two identities among the 

two-point vertex functions. With the aid of Eqs. (57) and (58) these may be 

written 

L 2 
rAAtP ) . 

P2 rAX tP2) 

or alternatively 

iw rAx tp2) = - ; tp2 -o!m$ 

iw lYx (p2) =O 

L rAA = - ; tp2 - am$+iw2r 

.r xx = i(p21? - p2) 

(61) 

(62) 

The implications of the Ward-Takahashi identity for the two-point Green 

functions may now be obtained by inserting Eq. (62) in Eq. (60). One then 

obtains the following general form for the propagators of the explicitly broken 

.- 32 - 



Higgs model: 

G,$P) = 
i PP + j.4 v (-ia) (p2r - p2)- 

p2 - m2 - ‘,tP2) P2 
D 

GtiX(p) = -Pp. 9 

‘dp2) = p2- M2 ‘_ n (p2) 
+ 

Gxx(p2) = 
itP2 -am:)- icuw % 

D 

where 

D = C p2(p2 - a rni) + CY~,L~W~ 1 r - p2(p2 - a rni) 

In the limit p - 0 the propagators assume the form 

G&P) = 
-i - icr 

p2-m2- n(p2) 
A -am2 0 

Gpx (P) = - ‘T-- 2 
P (P -am;) 

G+&p2) = - 
i -- 

P2 - M2 -Q(P2) 

Gxx(p2) = 
i ia?w 2 

--I-~ _ ---_-,P 
p2 r(p2) P2(P2 - ami) 

t 64) 

Note that G G 
PV’ PX 

and G 
xx 

all have poles at p2 =a!m2 o with residues coinciding 

with their unperturbed values. This is not surprising, since we have already 

seen that such poles correspond to non-interacting ghosts. 
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The expressions given in Eq. (64) are not complete without a specification 

of normalization conditions for IIA(p2), I$,(p2) and r(p2). These emerge most 

naturky from a discussion of the pre-Higgs mass spectrum based on Eq. (64). 

Most importantly G G 
PV’ I-1x 

andG 
xx 

should all have poles at p2 = 0, corres- 

ponding to the scalar x particle (Goldstone boson). These will clearly be pre- 

sent, provided that IIA(0) and r(0) are finite and independent of e. In order to 

fulfill the latter requirements, we choose as one of the defining normalization 

conditions of the model (already for p # 0) 

HA(O) = 0 (65) 

Since in perturbation theory the vector propagator does not develop a singularity 

at p2 
PP 

=O(if P-10), the coefficient of -kZ in the expression 

for G 2p2 
PV 

in Eq. (63) should vanish at p = 0, hence we have 

r(o) = I+W -2 $t") 

Thus , imposing Eq. (65) automatically entails 

r(o) = i . (67) 

As Eqs. (66) and (67) remain valid in the p- 0 limit, they fix the (finite) residues 

of the Goldstone poles of G and G 
PV xx 

in the pre-Higgs model.7 

The x is the only stable (physical) particle in the pre-Higgs model. The 

massive spin-one vector boson and spin-zero $ particle of the unperturbed 

theory become unstable in the interacting theory, with the vector boson decaying 

into an odd number and the + decaying into an even number of x’s. The insta- 

bility of these particles is accompanied, via the usual unitarity arguments, by 

non-zero imaginary parts of IIA(p2) and II 
+ 

(p2) for positive p2. Thus G and 
PV 
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Gw will not have simple poles at p2 = m2 and p2 = M2, respectively (except in 

zeroth order). In a non-perturbative formulation of the model, one might expect 
-h 

to find a pole off the real axis on an”unphysica1” sheet of each of the Rfunctions, 

corresponding physically to a resonance in the scattering amplitudes for particles. 

To pin down the positions of these resonances, one may specify the points at 

which the real parts of IIA and II 
G 

vanish to all orders: 

Re lIA(w2) = 0 

Re R$( M2) = 0 (68) 

In imposing (Eq. (68)) we have in mind, of course,‘the eventual Higgs limit, 

"0 - 0, in which the vector boson, and perhaps the I/J, become stable, with 

respective masses w and M. 

To see how the normalization conditions Eq. (65), and (68), as well as the 

vanishing of < Z)J> to all orders, determine the counterterms (z j -l), j = 1,2,3 

and c in the effective Lagrangian of the explicitly broken Higgs model, let us 

write each of the quantities <q>, RA(p 2 ) and R+(p2) as a sum of a trivial 

part, from diagrams with at least one loop: 

A 

< I) > = ?- + T 
hew 

l$tP2) = (‘2 - 1)w2 - (z3 - 1) P2 + ;rAtP2) 

R$(P2) = (zr - 1)M2 - (z2 - UP2 
A 

- c + R,(P2) (69) 
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From (Eq. (69)) and the normalization conditions, it follows that 

* 
- c= -hew T 

z1 
-1 = -M2 [2hRe iA + hew T + Reh,(M2,] 

z2 - 1 = -w-2 iA 

z3 
- 1 = w-2 Re (iA(w2) - iA( (70) 

which may be solved recursively to arbitrary order in perturbation theory. 

It is interesting to observe that although the Green functions normalized 

as in Eqs. (65) and (68) approach finite limits when p - 0,8 the renormalization 

counterterms diverge logarithmically in that limit. This is of course the motiva- 

tion for introducing the explicitly broken Higgs model, which in itself is of little 

interest, but which allows us to take as our starting point a well defined effective 

Lagrangian. 

D. Some Observations Concerning the Higgs Limit of This Model 

Turning now to the Higgs limit, we note that the pre-Higgs Green functions 

will not in general approach finite limits when m. - 0 tends to zero. In particu- 

lar, the double-pole term of G 
xx’ 

which is already present in zeroth order, 

develops a logarithmic divergence concentrated at p = 0. 18 One way of re- 

solving this problem is to restrict oneself to Landau gauge, o! = 0, before pass- 

ing to the limit m. - 0. Then the double pole will be absent and the Higgs limit 

can be shown to exist. The two-point functions will then assume the form 
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given by B. Lee,’ namely; 

GpV(p) = pppV 
) 

-i 

P2 p2 - w2 - IlA(P2) 

i 

G+$(p2) = p2 _ &g- n. (p2) 
+ 

G i 
xx = P2 IYP2) 

(71) 

with the normalization conditions 

II*(O) = IIA(w2) = Re n+(M2) = 0 

l?(O) = 1 . (72) 

Mote that zero-mass poles are still present in the Landau-gauge propagators 

of the Higgs model. These correspond to positive- and negative-metric ghosts 

which do not participate in physical processes. With the decoupling of the 

zero-mass x particle, the spin-one vector boson becomes stable, and our 

normalization condition on lIA(p2) fixes a pole in G 
PV 

at p2 =w2. If in addition 

m < 2w, the spin-zero $ particle also becomes stable, in which case G 

poleatp2=M2. 
$? 

has a 

Actually, it is not necessary to resort to Landau gauge in order to extract 

the physical content of the Higgs model. As will be shown in Part III, all physical 

S-matrix elements of both the pre-Higgs and Higgs models may be expressed, 

via reduction formulas, in terms of the gauge-invariant Green functions of the 
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conserved current, j . 
P 

The gauge invariance and unitarity of the S-matrix 

then follow easily from the corresponding properties of these Green functions. 

In addition, the latter provide one possible specification of the observable off- 

mass-shell content of the theory. These ideas will be explored more fully in 

Part III. 
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IV. Subtraction Rules for the Explicitly Broken Goldstone and Pre-H&s Models 

The purpose of the remainder of this paper is to provide the background for 

the disc%issions in Parts II. Of course, it is not possible to include all the details 

of the renormalization procedure and derivation of field equations in this brief 

account, but fortunately a .knowledge of the fine points is not a prerequisite for 

understanding the key features. 

The first point we wish to make is that conventional methods of renormaliza- 

tion fail for the Lagrangian of Eq. (40) as it stands, because - as will be shown 

in Part II - the application of Bogoliubov’s prescription 10 for defining regularized 

Green’s functions in its standard. form leads to anomalies in the equation of partial 

current conservation. As a consequence, the current of the Higgs and pre-Higgs 

model will not be conserved in the limit p2 - 0, and so the S-matrix becomes 

non-unitary since the ghost particles do not decouple from the system. 

Two alternative methods are presently available for resolving this difficulty. 

One possibility is to include in the Lagrangian additional counter terms which are 

non-linear and not invariant under the gauge transformations of Eq. (9) and (16). 

The coefficients of the Lagrangian must then be correlated in such a way that the 

field equations and the Ward identities continue to hold. If one does this, it is 

then possible to apply Bogoliubov’s method without modification. This discussion 

was first carried through by Symanzik I1 for the Goldstone model and applied to 

the Higgs model by B. Lee. 12 

In the second method the subtraction scheme is modified while the Lagrangian 

is not changed, and so it is possible to maintain the gauge invariance of the non- 

linear part of the Lagrangian. This gauge invariant renormalization method was 

used by 3. Lee in his treatment of the Goldstone model 13 and later extended by 

B. Lee and Zinn-Justin14 to non-Abelian models with spontaneous symmetry breaking. 

- 39 - 



In the present work the second method of gauge invariant quantization is 

developed without introducing the regularization which was essential for B. Lee’s 13 

treatn%tt. Instead we employ Dyson’s technique of making subtractions in mo- 

mentum space in order to extract the finite part of a Feynman integral. We will, 

however, change the subtraction scheme signific&tly by including subtractions 

with respect to the symmetry breaking parameters. Already the examples given 

in Ref. 15 suggest how to modify the subtraction terms by inserting the propaga- 

tors of the fully symmetric theory. In the general case the situation is more 

involved. In order to remove linear or quadratic divergencies in a consistent 

manner one must also allow for first and second order symmetry breaking in som.e 

of the subtraction terms. 

A. A Heuristic Approach 

In order to motivate the modified subtraction procedure, it is worthwhile to 

describe first a somewhat artificial formulation of the explicitly broken pre-Higgs 

model, in which both e and w are treated as perturbation parameters. (For 

the corresponding formulation of the explicitly broken Goldstone model l7 one uses 

gandM2 - p2 as expansion parameters.) The Green’s functions in this approach 

may be calculated to arbitrary order in each of the two parameters by means of 

the Gell-Mann-Low expansion, with the unperturbed theory defined by 

L?,=-LF Fpv+~m~ApAp-& 
4 PV (a&‘? + 

+2 /l I a xapx - +p2(q2+x2) 

for the explicitly broken pre-Higgs model and 

(73) 

(74) 
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for the explicitly broken 

JZI = .ZX - go, with 

Sup;ose that 

Goldstone model. The interaction Lagrangian is given by 

the same as in (Eq. (26)) or Eq. (39) respectively. 

J dk.l - l l dk .m I,+* l *km; pl. * *pn; s) (75) 

is the unrenormalized integral associated with some one-particle irreducible 

Feynman diagram I’. The degree (or superficial divergence) of I? is defined to 

be 

d(F) = 4-n- c 
vm 

(4 - d$ , (76) 

where n is the number of external lines of I?, the summation is over all vertices 

of I?, and dV is the canonical dimension of the product of fields associated with 

the vertex V. The exPression for d(F) can be simplified somewhat by noting that 

each term in .$?I of % contains a factor 
4-dV 

S , so that 

d(F) = 4 -n - v 

where v is the overall power of s in Ir. 

For a primitive diagram (i. e. , a one-particle irreducible diagram all of 

whose proper subdiagrams have negative degree) l? with negative degree, the 

Feynman integral is convergent without subtractions. For d(r) 2 0, the finite 

part is defined as the integral of 

(77) 

(78) 

where tdtr) 
P1”‘P, 

denotes the Taylor expansion to order d(F) in pl* l *p, about 
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p1 = I2 = . . . = pn = 0. For non-primitive diagrams, a subtraction must be made 

corresponding to each set of non-overlapping subdiagrams of non-negative degree. 

For the-precise formulation of the general finite-part prescription, based on 

Bogoliubov’s combinatorial technique, the reader is referred to Ref. 45 . The 

resulting renormalized Feynman integrals may be shown to be convergent by an 

application of Weinberg’s power counting theorem. 

Thus far, the parameter ‘s’ has been used only as an aid in calculating d(F). 

It assumes a more important role if we exploit the commutation property of the 

Taylor operator, 

tz xn f(x) = x” tf-n f w ’ 

to rewrite Rr for primitive I’ as, 

Rr Ir(kl* **km; pl**.pn; s) , 
s=l - 

(7% 

(80) 

where t 4-n 
P1”‘Pn 

s is now a joint Taylor series in ‘p l l l p,’ ancJ ‘s’ about pj = s = 0. 1 
Observe that we now have a uniform subtraction degree which depends only on the 

number of external lines of a diagram, as in simpler renormalizable models. 

In the alternative version of these models in which one uses go as defined 

in Eqs. (73) and (74) the subtraction prescriptions of Eqs. (78) and (80) are entirely 

equivalent and it is purely a matter of taste which one adopts. If, on the other 

hand, one applies these definitions of the renormalized Feynman integral to our 

version of the theory, with go as given in Eq. (26), one finds that the two ex- 

pressions are not equivalent: it is obvious that the ‘s’-dependent free propagators 

will be treated differently in the two subtraction formulas. At this point we will 

merely note that if one wishes to use the manifestly symmetrical form of the 
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Lagrangian for the theory then it is the prescription in Eq. (80) which leads to a 

conserved current, and thence to the Ward-Takahashi identities of Section III, 

whereas’Ehe prescription of Eq. (78) inevitably produces a non-conserved current. 

We therefore adopt Eq. (80) as the definition of our renormalized integral. (The 

proof of convergence of the, resulting integrals requires a generalization of that 

given in Ref. 5 , but this can be done in a straightforward manner. 16 

Formally, our version of the explicitly broken pre-Higgs model, including 

the correct subtraction scheme, may be obtained by defining Rr as in Eqs. (76) 

and (78) and then for each diagram I summing over all diagrams which differ 

from it only by the insertion - in all possible ways - of the vertices 

egos = + s2w2 A Ap 
IJ 

-SWAP+ - hs2w2 e2 

This correspondence is not a rigorous one, however, since the sums, which 

involve only geometric series, are not convergent for all ranges of the 

integration variables kl, k2. . . km. 

We conclude this section with some simple examples of the subtraction pro- 

cedure sketched above. 

B. Explicitly Br-oken Goldstone Model 

Example 1 -- (Fig. 1) 

2 

II’1 := 
-..-I_ _.-l___-l_- 
((P - k)2 - p2 + i0) (k2 - p2 + i0) 

Rrl .= (1 - $,J Ir (k,p) 
1 I s=l 

:: g2 L- 
1 1 .--_--. ._-____-----.I_-- - ___.-.- .- - 

((p - k)2 - p2 + i0) (k2 - p2 -t i0) (k2 - p2 -t iO)2 1 
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Example 2 (Fig. 2) 

2 

Ir2 = ((p - k)2 - ~1’~ - s2( M2 1 p2) + i0) (k2 - p2 - s2(M2 - p2) + i0) 

Rr = g2 1 1 
- 2 ((p - k)2 - M2 + i0) (k2 - M2 + i0) (k2 - p2 f iO)2 1 

C. Explicitly Broken Pre-Higgs Model 

Example 1 .( Fig. 3) 

he2 
k2 - p2 - 2hw2s2 + i0 

Rrl 
= (1 - ti J Ir(k, P, S) , s=l 

= he2 
k2-p2-~hw2+i0 - k2-i2+i0 - (k2->:2iO)2 

Example 2 (Fig. 4) 

k2 -am 

Ir2 
= (2ehw)2 s2 0” - CL! w2s2 

- k)2 - ~1~ - 2 h w2s2 + - p2 + i0) (k2 - cum: + i0) + ap2w2! 

Rr2 
= (1 - t; g 1 (k,p, s) , r2 I s=l 

= (2ehw)2 1 
(k2 - p2)2 



Example 3 (Fig. 5) 

‘r3 = k2 
3hews 

- P2 - 2 hw2s2+ i0 

Rr3 
= (l-t& 

, 3 I s=l 
= 3; Rr 

1 

D. Remarks About the Limitsp 2 -Oandmo-0 

We conclude this section with some comments on the examples given for the 

explicitly broken pre-Higgs model. The tadpole diagram r3 contributes a term 

to the counterterm c of the Lagrangian defined in Eq. (26). Note-that the contri- 

butions of I?1 and r2 to II x are both logarithmically divergent when p - 0, thanks 

to the subtraction terms with the denominators (k2 - ~1~)~. The same is true of 

the contribution of the trivial diagram with coefficient ic3e. Nevertheless, the 

sum over these three terms, 

= ic e 3 + 
/ 

dk 
4 Rr (k) + 

dk - R (kp) 
(W 1 (2n)4 r2 

1 

((p-W2 - ~1~ - 2hw2 + iO)(k2 -K 2 + i0) 

1 o! w2+(A2 

(k2-p2 - 2 hw2 + iO)(k2 -p2 + i0) ((p-k)2-p2-2hw2+iO)(k2-K 2+iO)(k2-h2+iO) 1 
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is finite in the limit, illustrating the sort of cancellations which enable the full 

self -energy part to be finite. In the Higgs limit, m. - 0, the combination of the 

first t??o terms in c approaches a finite limit, 

c 
= (2hed2 

/ 
s4 ’ 1 1 

Higgs tw k2 + i0 (p-k)2-2hw2+i0 k2 -2hw2+i0 

The third term, on the other lhand, acquires a logarithmic divergence (as K~--, 0, 

A2 - 0) except in Landau gauge (a! = 0), where it vanishes. As discussed in 

Section III, this behavior is typical of the m. - 0 limit of the pre-Higgs Green’s 

function. 
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V. Normal Products and Field Equations; A Few Brief Remarks 

The subtraction procedure outlined in the preceding section may be readily 

adapted^to the definition of finite Green functions of a normal product, Ns [ Q] 9 

where Q is a formal product of basic fields and their derivatives, with the degree 

6 is an integer at least as large as the canonical dimension ‘d’ of Q. Such a 

Green’s function is given formally by a Gell-Mann-Low expansion in which each 

Feynman diagram contains a distinguished vertex V Q corresponding to the normal 

product. The finite-part prescription for a primitive diagram I’ then assumes the 

form 

Rr = (1 - t;;F) 
. l ‘p,“) Ir s=l 

I 

where 

I 4-n if 
6(r) = 

vQ 4 r 

d-n if vQ E r 

with a corresponding modification of the rules for non-primitive diagrams. 

Some of the most frequently encountered normal products in this (or any) 

model are those associated with the amputation of an external line (free propagator), 

n 
<T Aa II Aa (x.) > = 

j ’ 
dyG;b(x-Y) < T -‘$tY) 1 n” A tx.) ’ (82) 

j j “j 3 

where Go ab is the free two-point function whose inverse is obtained by applying the 

Euler derivative to go. Hence 

n 
< T A#) 

agO n 
II Aa( = -i<T ,-,(y) II Aa( 
j j J a j j ’ 

(83) 
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where 

4\ 

77 a 
aAa= q-- -a 

CL a 

w Qa) 

On the other hand, the amputated function may also be expressed as a linear 

combination of normal products by .considering the various types of interaction 

vertices at which the amputated propagator terminates. Suppose that a line 

originating at an external vertex of type ‘a’ ends at a vertex corresponding to a 

term in gI proportional to 

P(y) = ; ati) Aa (y) , 
i=l i 

(84) 

where a(i) ’ IS a kith order differential operator; then, in particular, one of the 

factors of P(y), say the j th , with aj = b, is contracted to form a sj’ G$,(x-Y) t 

leaving the remainder of the diagram with a distinguished vertex corresponding 

to the field product with M - 1 factors, 

p;(Y) = g ati) 

i#j/ Aa (Y) . 
i 

To arrive at the contribution to the amputated diagram as defined implicitly in 

(82), we integrate by parts, so that 

as;“’ Gib (x-y) - G;@-Y) 

(85) 

-L ‘j(Y) = (-qkj a(j) F ati) A (Y) 
i#j “i 
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Summing over all possible contractions with the factors of P(y) yields 

4 

P.(Y) = 
j 

obaj J g- (Y) 
a 

(86) 

Computation of the number of subtractions for subgraphs containing the 

special vertex is easy, since for the original Green function each interaction 

vertex is assigned a degree equal to its dimension (once the s factors have been 

commuted through). Hence the contribution to the amputated function of diagrams 

in which the distinguished vertex is of type P(y) is proportional to 

< T Ndp-l (87) 

where m 

dP= M+ c 
i 

ki . 

In case the external vertex is not contracted with any interaction vertex, but 

rather directly withthe kth external vertex, the contribution to the amputated 

function is obviously given by 

6 (y - xk) n Aa (xj) . 
j#k j 

Summing over all possibilities, we obtain 

< T Ah(Y) I IIAa(x.)> = i<TN a2I 

j j J [ 1 auk (Y) i A tx.) > 
j aj J 

n 

c 
n 

+ k=l ‘baks (Y-r4,) ‘T ’ Aa (Xj) ’ 
ii* j 

(89) 
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where N without a subscript denotes the normal product with minimal degree 

assignment. Comparison of (89) with (83) then yields the field equations 
- N 

<T N 
N 
II Aa (k.)> = i 

j ’ 
c 

j=l n=l 
6ba ‘(Y - Xn) ‘T ’ Aa (xj) > 

n jfn j 
(90) 

Apart from the normal-product symbol and the delta-function terms, these are 

precisely the-classical equations of motion discussed in Section II. In the case of 

the vector field, Eq. (90) may be written explicitly as 

-<T z3 a,FpV(x) - ; apav AV(x) - (rni + z2w2) A’(x) 1 X > 

= <Tz2N 5 ex9 $ - wapX + e2A’( q2 + x2) + 2wAC”rl, 1 (x) X > 

+ i c 6; 6(x 
n=l n 

- xn) <T II Ap @j) JJ NY,, II x (zlb (91) 
j#n i k II 

Shifting < T (z2w 2 CL A - (z3 - 1) aV FpV) X > to the righthand side then gives Eq. 

(43) l 

The same sort of graphical arguments used to establish Eq. (90) may be 

applied to obtain field equations of the type 

<TN Aa.% [ 1 7 (x) : A (x.)> 
b j “j J 

N 

= i c 6ba ‘(Y - Q ’ T Aa j:k Aaj(xj) ’ (92) 
k=l k 

Such equations are crucial to establishing the fundamental Ward-Takahashi identity 

of the current of Eq. (44). For further details the reader is referred to Part II 

of thi-s article. 
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FIGURE CAPTIONS 

Fig. 1 This diagram is a typical contribution to the x-x four-point function. 

Throughout, dashed lines represent x-x propagators and solid lines 

represent +$ propagator a. 

Fig. 2 

Fig. 3 

Another contribution to the x -four point function. 

A typical self energy correction to the x-x propagator which would 

not exist in the unmodified subtraction scheme. 

Fig. 4 Another self energy correction. 

Fig. 5 A $-tadpole graph, this would also vanish in the unmodified subtraction 

scheme. 
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