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ABSTRACT 

Within the framework of the Faddeev-type N-body scattering formalism, 

we find the transition operators for all N-body processes that start from two- 

cluster initial states, and construct the N-body Faddeev-type equations they 

satisfy. In particular, we show that our previous N-body gener.alizations of 

the three-body operator K 
Pa 

correspond to the N-body scattering amplitudes 

for complete break-up, and that the Alt, Grassberger and Sandhas N-body 

generalizations of the three-body transition operator UpQ, correspond to N- 

body elastic and rearrangement amplitudes. As an introduction, we give a 

simple derivation of the N-body Faddeev-type equations for the wavefunction 

components. 
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h I. INTRODUCTION 

The different treatments of the N-body Faddeev-type theory that can be 

found in the literature are given in terms of N-body operators whose relation 

to the physically interesting N-body transition amplitudes has not been inves- 

tigated in detail. In particular, the Faddeev-Yakubovskiil (FY) treatment is 

made in terms of N-body generalizations of the Faddeev three-body operator 

Mpc12- As in the three-body case, these N-body operators are not directly 

related to transition operators; rather, the transition amplitudes can be obtained 

as residues at appropriate singularities of plane wave matrix elements of these 

operators. 

The Alt, Grassberger and Sandhas (AGS) matrix formalism3 involves N- 

body operators that are generalizations of the AGS three-body transition 

operator U 4 
Pa! * 

It has been shown5 that the four-body versions of this operator 

are also transition operators (in a special case). The formalism suggests that 

the N-body AGS operators are in fact the transition operators for N-body elastic 

and rearrangement processes; it is shown below that this is indeed the case. 

A third version of the N-body theory is obtained’ by considering the N-body 

generalizations of the three-body operator KPQ7. The essential feature of these 

operators is that they are the kernel operators for all N-body Faddeev-type 

equations. However, ,since in the three-body case K 
Pa 

is also the transition 

operator for break-up processes, its N-body generalization will be related to 

such transition operators as well. 

In the following sections we show how to construct a transition operator 

within the N-body Faddeev-type theory that yields the transition amplitudes 
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for all N-body processes when appropriate matrix elements between Faddeev- - 

type c”omponents of the initial and final states are taken (only two-cluster initial 

states will be considered). This N-body matrix of transition operators B 

reduces to the matrix of.AGS N-body U-operators for the case of elastic and 

rearrangement scattering, and to the matrix of N-body K-operators for the 

case of complete break-up. For partial break-up processes, we find operators 

not considered before. However, in all cases the transition operators satisfy 

N-body Faddeev-type equations similar to the equations for U and K. 

As an introduction we present a rederivation of the N-body FY equations 

for the Faddeev-type components of the full N-body wavefunction. Besides 

illustrating in a particularly simple case the FY procedure for constructing 

more connected kernels by successive splittings of the total wavefunction, this 

derivation is useful in demonstrating that for all scattering processes appro- 

priate matrix elements of B reduce to the conventional wavefunction expression 

for the transition amplitude. 

II. N-BODY FADDEEV-TYPE WAVEFUNCTION EQUATIONS 

Prior to the discussion of the N-body transition operators, we present in 

this section a rederivation of the N-body Faddeev-type wavefunction equations. 

We do this because some intermediate results from this derivation will be 

useful in later sections, and as an illustration (in the most simple case) of the 

general procedure for deriving such N-body equations. 

We first proceed to describe our notation for the labeling of subsystems. 

Following Yakubovskii’ , we use the concept of a partit ion ai to describe a 

splitting of the set of N particles into i groups with the understanding that only 
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particles belonging to the same group can interact. For instance, a2, b2, . . . 

denote‘different possible partitions of the N particles into two groups that do 

not interact with each other; a~-~, bNm2, . . . denote configurations of the type 

1+. . . +1+1+3 or l+. . . +1+2+2 - for. which we shall sometimes use the notation 

7, 0; . ..- and a-NW1 9 bNml, - . - denote interacting pairs, sometimes labeled 

bya, P, . . . . Partitions can be performed one after another to form a 

sequence. In such a case they will be denoted by the same letter, and symbolized 

by biCbk, i>k 8. Only sequences whose last partition is of the type bNml will 

be considered; they will be denoted by a greek letter, and their subscript will 

be that of the first partition in the sequence. In this way, 6, = (b2,. . . , bNbl) 

determines one way in which the N-body system is ultimately separated into 

N-l groups that do not interact with each other. At times, we will make part 

of a sequence explicit, as in p, = (b2,P3). Finally, each possible partition bi 

defines a particular disconnected N-body scattering problem, in which specific 

interactions have been set equal to zero. 

The operators of the N-body scattering theory will be labeled by pairs of 

full sequences P,, a2, as in A6 
2a2’ 

Sometimes it will be convenient to consider 

these sequences (or parts of them) as matrix indices, and we will write 

b2% \ 
A= iA I=(A 1. 

P2Q2 
(2-l) 

In (2. l), the first bracket contains the submatrices of A obtained when the first 

partition label is made explicit, and the second the simple elements of A. 

Matrices of operators related to disconnected (partitioned) N-body subsystems 

labeled by bk, say, will be denoted 

b 
Ak = 

A :+I ak,,i = , iA;;+1 ,a k+l 1 ’ 
(2.2) 
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where the partition index bi appears as a single upper index, and it is understood 

that P<+l, @k+l= bk’ 

In order to obtain Faddeev-type equations for the N-body wavefunction 

components, we start with the Schrodinger equation for the full N-body wave- 

function, 

(Ho + V - E) 13: = 0 , (2.3) 

where V = c V 
Y Y 

is the sum of all potentials between pairs of particles. We 

are interested in outgoing wave scattering solutions, corresponding to two- 

cluster initial states labeled, say, by a partition a2. Eq. (2.3) is equivalent to 

Q = C$ - GO(E+ iO)V9 , (2.4) 

where $ is a solution of (Ho - E)@I = 0, and C is a constant. Since we have chosen 

to consider only two-cluster configurations as initial states, C = 0. As indicated 

in (2.4), all operators of this section are to be taken at an energy corresponding to 

to that of the initial state. 

Faddeev components of the N-body wavefunctions are defined through 

%= 
-GOVP% 

so that 

Q=CP 
0’ 

(2.5) 

(2.6) 

where /3 = bNbl is the;pa.rtition label corresponding to a splitting of N particles 

into N-l groups. 

We now apply the Faddeev procedure of removing two-body disconnected 

pieces from the kernel of (2.5)) obtaining 
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(I+ GoVphP = - Gov/3 c xpy * y 
Y 

(2.7) 

whereTPy = 1 - 60y. Let tP be defined by the equation t P = 5 
- VpGotp. 

Operating on (2. ‘7) with (1 - Got&, we get 

(2.8) 

where Cp satisfies (1 + G 
P 

V ) 4 = 0. Again, due to our choice of initial state, 
00 P 

c = 0. 

The kernel of (2.8) must be further modified since it still contains 

disconnected pieces corresponding to 2, 3, . . . , N-2 non-interacting clusters. 

We now proceed to remove those pieces that correspond to N-2 non-interacting 

clusters, i.e. to clusters of the type l+. . .+1+1+3 and l+. . .+1+2+2, labeled by 

the partition index bNS2 = (T . From (2.8) we define the components 

“p” = - Gotp ,;yPY @Y 
zs ‘9 

where OIP , and such that 

As before, we take the diagonal piece in (2.9) to the left, and get 

(2.9) 

(2.10) 

- 
+ GotpGpy)$ = - (2.11) 

Consider now an operator Ka pa! 7 defined in the subsystem othrough the 

equation 

u 
r;l 

cu=TpytP- xKarGt,& . 
Y,Ca PY OY YY 

(2.12) 

Operating on (2.11) with the expression (dPp, - GoK;P,), /3, p’c B, we get 
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G = C$&“) - yFuGo K”py c sop * “y , PC (T (2.13) 
P3Y 

(4 = where ys; $ y + Gotp “Py) qy O,, i.e. $f) is the Faddeev component of the 

wavefunction corresponding to a bound state in the subsystem (T . With our choice 

of initial state, again C = 0 (unless N = 4, in which case C = 60T and we obtain 

the four-body FY equations’). 

The kernel of (2.13) is now more connected than that of (2.8), in the sense 

that its third (or higher) power does not contain disconnected pieces corresponding 

to N-2 non-interacting clusters. 

that 

now 

It is clear that this procedure of splitting the wavefunction into components 

satisfy progressively more connected equations can be continued. We will 

prove by induction that after (N-kt-1) such splittings, the resulting 

components P = Q bk-l 
‘k-1 pk 

of the full wavefunction satisfy the equations 

bk-l c x bk-l’dk-l dk-l 
GoKp 6 '6k ' 

(2.14) 

k k dk-l 

where 

c * 

bk-l’ bk 

bk-l = 9 
‘k ‘k ’ 

JZ!lj =P , 
‘k ‘k 

(2.15) 

b 
and the operators K k-l 

‘k’k 
satisfy the equations6 

bk-l 
Ki$6, = 

x bkdk Kbk 
‘k+l*k+l 

_ c 
L - Kkk-lk G,K; 

k+16k+l 

x “kdk 
, 

‘kc bk-l yk+l 
c -,d k k+l '2.16) 

in terms of subsystem operators K bk 
&+I’ *k+l . 

BY P,, yk and 6k we understand 
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the sequences of partitions P, = (bk, . . . , bNVl) , yk = (c,, . . . , cNB1) and 

s,=trk, *** , dNml), and c 
P, 

stands for c b 
k bk+l ” ’ CbNwl + (As 

c 

always, for sequences of partitions it is understood that bk> bk+l 1.. . TbNWl. ) 

Here it is advantageous to use the matrix notation of Eqs. (2.1) and (2.2) 

and of Ref. 3, since in that case the indices /3,, dk of K bk-l 

‘k’k 
and of * bk-l in 

‘k 
(2.14) and (2.16) can be suppressed, 

Nbk-l = (2.17) 

ybk-l = 
(2.18) 

As always, bkVl in (2.17) indicates which partitioned subsystem is described 

by N 
bk-l (recall that in a partitioned system the interactions. between 

particles belonging to different clusters are set to be zero). In (2.18), however, 

it should be stressed that the elements of bk-l Y are the components of the full 

N-body wavefunction, and bkPl indicates that (N-k+l) splittings have been 

carried out. On the other hand, when we refer to wavefunctions describing 

partitioned systems, we will use upper indices in parenthesis, as in CD (W . 

Using (2.17) and (2.18), Eqs. (2.14) and (2.16) can now be written in 

compact form, 

ybk-T = _ Nbk-1 x ;S.bk-lydk-l yrdk-1 , (2.19) 

dk-l 

,.,j bk-l = s bkdk 

bkdk 

bk c N - 
‘kcbk-1 

N bk-l 
bkCk 

NCkzckdk . (2.20) 

The proof now proceeds as follows: we split the wavefunction once again, 
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bk-2 

- ’ bk-l = - N, 

bk-l 
c 

,bk-l’ dk-l y dk-l 

dk-lc bk-2 
’ bk-2’bk- 1 

(2.21) 

with 

ybk-l = C 

bk-2’bk-l 
‘:;;, C*&= ’ ’ 

‘k-1 

(2.22) 

Shifting the diagonal term as before, we get 

c 
( II.bk-lY dk-l 

dk-lc bk-2 

+ Nbk-l ,bk-19dk-l) Y4-; = 

= _ Nbk-l dk-sbk 2,bk-l’dk-l dk sdk lzbk-29dk-2 i,>-2 
k-l ’ 

(2.23) 

Defining an operator 
bk-2 N, 

k-l ’ dk-l 
, bkwl, dke1cbkv2 , though 

P 
bk-2 

bk-l’ dk-l 

-+bk-lydk-l Nbk-1 _ x ‘k-1’ dk-l N bk-2 
N 

‘k-1 s 
, 

“k-l= bk-2 bk-l’ ‘k-1 

(2.24) 

we can operate on (2.23) with the expression ( 1 bk-lPb’k-l _ Nbk-2 
bk-2y “k-2 

)9 

and finally obtain 

y bk-2 = c Q(bk-2) _ Nbk-2 c ,bk-29 dk-2 idk-2 . (2.25) 

dk-2 

Here, 

c (I 
bk-l’ ‘k-1 + Nbk-l zbk-l’ck-l) ;I;;; = o , (2.26) 

‘k-lc bk-2 

and again C=O due to our choice of initial state. 
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Now, it is clear that Eqs. (2.25) and (2.24) are the same as (2.19) and 

(2.20), %ut with k - k-l ; in addition, (2.19) and (2.20) reduce to Eqs. (2.13) 
b 

and (2.12) for k = N-l, ( KbN-i = tb ). 
N’ N N-l 

With this observation; we conclude our proof’by induction, and establish 

that Eqs. (2.19) and (2.20) are indeed obtained by performing the stepwise 

splitting of the full N-body wavefunction (N-k+l) times. 

The final Faddeev-type equations for the wavefunction components are 

obtained by taking k=4 in (2.25). In this last step, however, the solution 

homogeneous equation 

c ( lb3c3 + Nb3 3b3C3) 2:;’ = 0 

=3= b2 

(2.27) 

does correspond to our choice of initial state, and we get 

* b2 [ a2] = SbZa2 Ja2) _ b2 N CS 
b2d2 yd2’ “21 

I (2.28) 

d2 

where [ a21 labels the initial two-cluster subsystem. Eq. (2.28) is identical to 

the FY equation for the N-body wavefunction components, as presented in Ref. 6. 

In particular, the operators N are precisely the kernel operators for the 

Faddeev-type scattering equations, and they are discussed at length in this 

reference. 

We conclude this section by deriving an expression for y ra,l = 1 lybzCa2] j 

in terms of [ a2] = I Q 16 
b2a2 Q(b2) t j that will turn out to be useful in a later 

section. Acting on (2.28) with the operator ( ‘j - N ), where N = I 
N ! 

b2a2 1 
satisfies (2.24) with k=3, we directly obtain 

-lO- 



[ a21 [ 31 
-cI Y = (1-N) 0 (2.29) 

or, more explicitly, 

[ 821 b2a2 (a2) 
q p, = li. 

c 
b2a2 (a,) 

+p, -0 a3 Kp363@63 * (2.30) 

III. THE AGS MATRIX FORMALISM 

In this section we briefly consider some aspects of the matrix formulation 

of the Faddeev-type N-body theory 396 which we have not discussed so far. In 

addition to the matrix N considered before, other matrices of operators can 

be defined, such as V , co and T . These matrices can be obtained induc- 

tively in terms of subsystem matrices as generalizations of the two-body 

operators V, Go and t, and their equations form a hierarchy of‘lippman- 

Schwinger equations, accordingly generalized (to matrix form). In particular, 

T forms an N-body generalization of the two-body transition operator, and 

obeys a two-body like equation 

T=V-VC,T. (3.1) 

More precisely, the elements of the matrices V and Go are defined as follows: 

for N=3, 

v = ‘I -GpaGo-’ , Go = 1 -GporGotpGo 
i 

and for N=4, analogously, 

v= 1 -6”‘(c,)-1 1 = ( ~?SpCy(GotgGg)-l 1 , 

Go = 1 -fT( COT%, ) L 
I- I 

-tiuT GotpGg$crGotolGo 

-ll- 

,- (3.2) 

(3.3) 
i 
I ’ 



wherepccr, CYCT . The matrix indices of the operators inside the parentheses 

- are understood to be within c and T , respectively. 

With these definitions, (3.1) becomes for N=3 the Faddeev equation for U 
Pa! ’ 

and for N=4 the AGS Faddeev-type equation for the four-body operator 

For the partitioned N-body scattering problem labeled by bkml, we have 

likewise 

where bk, %cbksl, and again the matrix indices for the operators inside the 

parentheses are within bk and ak, respectively. 

The matrix of operators N of section II is related to the operators of this 

section through6 

N=G,T , T= V(1 

so that in particular 

(G,V) 
bk-l = 

where bk, a$bkWl. 

,bkak Nbk 

-N) , 

1 , 

(3.5) 

(3.6) 

As compared to the Yakubovski formulation, the AGS matrix formulation 

of the N-body Faddeev-type theory has the advantage of explicitly providing 

the N-body matrix of operators T . As we shall see in the next section, the 

elastic and rearrangement scattering amplitudes for the N-body problem are 

simply matrix elements of this operator. 
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IV. THE SCATTERING AMPLITUDES -h 

In order to obtain the explicit form for the scattering amplitudes in the N- 

body Faddeev-type theory, it is convenient to again make use of the AGS matrix 

notation. We first consider the case N=3. For elastic and rearrangement 

scattering, the transition amplitude from an initial state I$ 
(4 

> representing 

a bound pair Q! and a free particle, to a similar final state I$ 
(P) 

> is given by 

(4.1) 

where I Q caj > is the column vector 6 y(y I +(a)> , -c @cpj I the row vector 

“PY <@(P) 
I , and T= 

For break-up scattering, on the other hand, it has been shown7 that the 

transition amplitude is given by 

(4.2) 

Here, < 4: o) I represents the final state of three free particles, Kpa is the 

K-operator of Ref. 7 satisfying Eq. (2.12) for N=3, and < @ (0) IKpci I@( a)> = 35kt 
is the component of the break-up amplitude defined by Faddeev2. 

In this section we shall give a general expression for all transition 

amplitudes from an initial two-cluster state to a final state of k clusters (for 

arbitrary N), in terms of the operator B tk2) _ - [ B;;;; ) , 

B&2) = B(k) 2) 
b 

k-1 
I 

b2- l .bkwl;a2.. .akpl N b2.. . bkml;a2.. . ale1 1 ’ 

(4.3) 

In (4.3)) the partitions b2, . . . , bkml of the sequence p, and the partitions 
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itz, . . . , akVl of a2 have been made explicit. 

Mere precisely, it will be shown that all transition amplitudes are given by 

Pkl, c . . . c 
<4 

b2 ” ’ bk-l 
&W, @[a21 (k, 2) 

>, R = dkp2) 1 
p2Ql2 ’ 

, (4.4) 

where 

I4 
[ $1 bkCk ,+(bk) 1 

yk+I? ( ’ 
Yk = $9 * * * 9 CN-1) (4.5) 

is the vector of Faddeev-type components representing the k-cluster bound 

state wavefunction. 

In the special case of elastic and/or rearrangement scattering, the ampli- 

tude is obtained by taking k2 in (4.4). Recalling (3.5), we see that in this case 

I in (4.3) reduces to the AGS matrix T , and (4.4) becomes 

< 4 
I b21 [a21 

I-l-14 > (4.6) 

which is a natural generalization of (4.1) for the N-body system. 

The complete break-up amplitude is obtained by taking k=N in (4.4)) in which 

case < 4 
[ bNl 

I = < Q(O) I , the final state of N free particles. B(N, 2) in 

1 (4.3) reduces here to I KP and (4.4) becomes 

(4.7) 

which is a natural generalization of (4.2). 

We now proceed to show that Eq. (4.4) is indeed the transition amplitude 

for all physical processes. Using Eq. (2.30) and the definition of Btkp2) in 

(4.3), (4.4) can be written as 
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1 bkl - < 4 - l(G -1 bk-l c . . . C 
0 ) (6 

bZa2 I *(a,) [“21 

b3”‘bk-l 
>-I yb ‘**bk-l >) 

b2.. . bk-l’bk 2 

(4.8) 

where the indices b,, . . . ., bk-1 have been made explicit. The first term in 

(4.8) can be shown to vanish, as follows: we combine (2.26) and (3.6) into 

tbk) 
IO >= bk tbk) 

-K,V) I4 ’ , (4.9) 

or using (3. l), 
(bk) 

IQ >=- ( C,T[ l+CbVl ) 
bk (bk) 

I @ > . (4.10) 

From (3.4), however, (C,, 
-1 bk-l= 

) 
_ gbkck 

Go T 
bk -1 

Go) , sothat 

-1 bk-l, Qi, $1 
= (co-l)bk( 1 +GoV) bk 

cc, ) 
> I qI 

(bk) 
> = 0 . (4.11) 

The vanishing of (4.11) follows from (4.9), and the same is true for the first 

term in (4.8). Such an argument does not apply to (4. lo), of course, due to 

the presence of singularities in the operator T . Similarly, a singularity in 

I Y 
r agl 
b2”-bk-l 

> prevents the second term in (4.8) from vanishing, and we 

have 

-< 4 
! b$ c... c 1 y;'.,", 1' = 

b2 bk-l 

c <4 
tbk) 

1 (Go-$-, d I ’ 
dk 1 a21 

zz - > ’ 
dk kk 

(4.12) 

where, following the conventions of section II (cf. (2.22) and (4.5)), we have 

used the relations 

c 
b2 
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[ bk] 
> = ( tjbkCk I 4 

t bk) 
-h I Q > 0 

i 
(4.13) 

In (4,12), the sum over dk is unrestricted, With the aid of (2.19) and (3.6), 

(4.12) can be written 

‘bk) 
c<4 IV 
dk bkdk 

I Ydk[ ;“2] > . (40 14) 

Using (3,4) we obtain from (4.14) 

-c I Tbkdk dk [a21> = 

d 1, 
K 

I yrdk+l[ a21 > 
, 

(4.15) 

where (2 O 21) and (3 D 6) have been used to obtain the right hand side (note that by 

using (2.21) we undo the corresponding splitting of the wavefunction). 

Applying the same relations repeatedly, we obtain for (4.15) 

bN-l 

<(tJ 
tbk) 

P lVd I P 
[a,1 

> , (4.16) 
k+l N-l 

or, after interchange of the order of summation, 

c 
d,li bk+lo o l 

d Ib k k-l-1 dk+lbk+2 

[a,1 

vdNIIq ” 

- 

(4.17) 

However, it is shown in the appendix that 
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-h c = 0 0 0 c 
a 

(4.18) 
d ‘dN I 

- dN-#-bk - vdN 1 

Therefore, the sums over pk+.I can be carried out, with the result 

(4.19) 

where $ 
tbk) 

is the total wave function for the final, k-cluster system. 

Collecting results, we finally conclude that (4.4) reduces to 

< 4 
[ bkl 

I c... c dk32)l *[a21> = <c#I(bk)I c Vd I I@ [a21> , 
b2 bk-l dN-l$bk N-1 

(4.20) 

where the right hand side can be recognized as the standard wavefunction 

expression for the elastic, rearrangement or breakup amplitude. 

We have thus completed the demonstration that the left hand side of (4.20) 

is the N-body Faddeev-type theory expression for the scattering amplitude for 

any process that starts from a two-cluster initial state. 

V. FADDEEV-TYPE EQUATIONS FOR THE TRANSITION OPERATORS 

Returning to the definition (4.3) of B(k’ 2), we realize that the Faddeev- 

type equations for the transition operators can easily be obtained from the 

corresponding equations for N , (c. f0 (4.3)). The result is 

Btk2) = ,b2a2 *b2 - c B(k,2) d2 N 3 d2a2 
b2a2 

(5.1) 
d2 b2d2 

-17- 



where 

Ab2=[(Gi5bk-1 N?...bk-l;a3...al-l/ l 3 

When summed over b2. . . bk-I, Eqs. (5.1) are therefore the Faddeev-type 

equations for the N-body transition operators for all physical processes. Since 

N also satisfies Faddeev-type equations with the kernel to the left6, so does 

B(k2). . 

B(k,2)= ~~2~2 b2 ‘2 

b2a2 
A-c. C ~~2~2 B (k, 2) (5.2) 

d2 d2a2 

where 

’ 
b2 

= 1 tG,l)bk-l Nk;. . . bk-I;d3.. .dk-I ‘6 
(C )dk-l i 

5 * 

For elastic and rearrangement processes, Eqs. (5.1) and (5.2) reduce of 

course to the AGS equations for the N-body U-operators, while for complete 

breakup processes, (5.1) and (5.2) reduce to the N-body K-operator equations 

of Ref. 6. 

VI. CONCLUSIONS 

In this work we have first shown how to construct the equations for the 

Faddeev-type components of the N-body full wavefunction in a straightforward 

manner, by repeatedly applying the Faddeev procedure of removing disconnected 

pieces from the kernel of the equations. Each further application of this proce- 

dure separates the wavefunction into components that satisfy more connected 

equations, until finally a fully connected set of equations for the fully-split 
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wavefunction components is obtained. 

We IYave further shown that, within the Faddeev scattering formalism, it 

is possible to construct a matrix of N-body transition operators that gives the 

scattering amplitudes for all physical processes that start from a two-cluster 

initial state, when appropriate matrix elements between Faddeev-type components 

of the initial and final states are taken. This was demonstrated by showing that 

these matrix elements reduce in all cases to the conventional expressions for 

the scattering amplitudes in terms of potentials and full wavefunctions. 

The N-body transition operators reduce to the N-body generalization of the 

AGS U-operators for the case of elastic and rearrangement scattering, and to 

the N-body Faddeev-type kernel operators for the case of complete breakup. For 

other processes the transition operators form a set that has not been encountered 

previously; however, since they are simply related to the N-body kernel opera- 

tors, it is easy to obtain the equations they satisfy. We have therefore concluded 

by giving the Faddeev-type equations for the N-body transition operators for all 

processes discussed above. 
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APPENDIX 

Here, we present the details of the proof of relation (4.18). In the special 

case N=4 and k=2 this is easily done, since in this case it reduces to 

c c vy = c vy - 
P+O Y+P 
P3 YCP 

YP 

The equality simply follows from the fact that since y +P, we can write 

c c vy= c c vy=c6(Y~c$vy. p+a Y+P Y=M P%Y Y ’ 
P@ YCP P+O 

For arbitrary N and k, we first note that if d N-L$bk, the sequence 

dk’ l ’ dN-l 
is uniquely determined by dN 1 and the conditions d.N-I# bN-I, 

dNe2=)bNM19 etc., and that this sequence is different from bk,. . . , bN-I. Hence, 

each sum contributes only one term, except for that over dN 1. However, if 

d N-l= bk’ there is an i such that b i 13dN-I, and bi$dN-I. Since di contains 

both bi+I and di+I, and di+I contains both bi+2 and di+2, etc. , it follows that 

di contains bi+I, di+I, . . . , bN I, dN-I. But then it also follows that dicbi-I. 

We now have di+bi, and both contained in di-I and bi 1. Hence dimI= biwl and 

there is no contribution to the sum. The only contribution to the left hand side 

of (4.18) is therefore given by the right hand side of (4.18), and we thus obtain 

the proof. 
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