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ABSTRACT 

We have studied the effect of fragmentation and energy conservation in the 

Eikonal-Regge model. A generalized eikonal representation involving multi- 

impact-parameters is given for the elastic and inelastic amplitudes when frag- 

mentation takes place. The generalized eikonal function depends on more than 

one impact parameter which describes a many-body potential. In the strong 

absorption model and at high energy, however, the elastic amplitude can be 

approximated by a single impact parameter representation with an effective 

eikonal function. As a result of the fragmentation, we find that although ~~ and 

oT still increase as Qn2 s, their ratio is no longer l/2. Instead, it is the sum of 

the elastic and diffractive cross sections which remains to be one half of the total 

cross section. To enforce the energy conservation, we propose a thermodynamic 

approach by introducing an impact-parameter-dependent temperature. Using 

well-known thermodynamics relations, we obtain various corrections to the 

naive Eikonal-Regge model predictions due to energy conservation. Experi- 

mental consequences are discussed. 

*Work supported in part by the U. S. Atomic Energy Commission and in part by 
the National Science Foundation under Grant No. NSF GP40908X. 

‘fAlfred P. Sloan Foundation Research Fellow, 1972-1974. 
t?On leave of absence from Cornell University, Ithaca, New York 14850. 

(Submitted to Phys. Rev.) 



I. INTRODUCTION 

- 
The eikonal model’ for high energy scattering of hadrons offers a semi- 

4 
classical picture for a very complicated process. A most striking character- 

istics of high energy hadron collisions is the fact that the number distributions 

in phase space are very different in transverse and longitudinal momentum axes: 

they are rather limited in the former but apparently not in the latter. The 

impact parameter representation in the eikonal model is ideal for describing 

this disparate situation. It nicely separates the transverse degrees of freedom 

from the dynamics in the longitudinal space. 

The main features of the eikonal approach are that, on the one hand, the 

s-channel unitarity is automatically enforced, and on the other, it can incorporate 

any energy dependence of the total cross sections consistent with unitarity by a 

proper choice of the eikonal function. This is in distinction with the conventional - 

Regge approach in which the Pomeron is assumed to be a simple pole. The upper 

bound for the total cross sections in this case is a constant asymptotically. If 

the rise in the pp total cross section’ observed in recent ISR experiments 

continues to hold in the future, the simple Regge pole approach must be abandoned. 

In that case the eikonal model may be a simple alternative to organize the data. 

Assuming this possibility to exist, we will reexamine and explore further certain 

aspects in an eikonal model with rising total cross sections. 

The eikonal approximation has been studied most thoroughly for the elastic 

amplitude at high energies and small momentum transfers both in.the G3 theory 3-9 

and the massive vector gluon model. 10-13 The two incident particles are assumed 

to retain most of their energies throughout the collision. The production processes 

under the same assumption have also been studied. 6,14 Although the presumption 

of a negligibly small energy loss in the two incident particles does not lead to 
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any apparent difficulties in the study of the elastic amplitude, this assumption 

has to be supplemented by a self-consistent procedure in the earlier calculation6 

of one;article inclusive cross section, number distribution and multiplicities. 

Otherwise, energy conservation will not be respected. 

The purpose of this Gaper is three-fold. l5 First of all, we will include the 

fragmentation of the target and the projectile, so that the energy of the initial 

particles is shared by groups of particles. Secondly, in addition to the repeated 

exchange of a connected piece between one fragment of the target and another of 

the projectile, we will also consider the exchange of a connected piece between 

one group of target fragments and another of projectile fragments. The latter 

type of exchanges generates energy dependent many-body potentials between 

target fragments and projectile fragments. Thirdly, we will improve the treat- 

ment of energy conservation constraint in the eikonal approach; especially in - 
I 

multiparticle production. 

We will show that a generalized eikonal representation can be established 

for the elastic as well as inelastic amplitudes when both the fragmentation effects 

and many-body potentials are taken into account. A particularly important result 

is that when the Froissart bound is saturated, the ratio of the elastic to the total 

cross section is no longer l/2; rather, it is the sum of the elastic and diffractive 

cross sections which is one half of the total cross section. Another important 

consequence is the existence of a gap on the rapidity axis between pionization 

and fragmentation region. This is due to the large multiplicity (proportional to 

a positive power of the energy) predicted by the model. We must emphasize in 

the very beginning that although the recent data2 show a significant rise in the pp 

total cross section with energy, and they also suggest a faster than logarithmic 
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increase of the multiplicity with energy; it remains to be seen whether the 

predicted ratio of the total to the sum of the elastic and diffractive cross section, 

and thcexistence of a rapidity gap will be substantiated by future experiments. 

\ , 
. 

. . 

;:’ 8” 
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II. THE MODEL 

In this paper it will be assumed that only scalar particles are involved in 

the sca^ttering process. We will study certain class of Feynman graphs in a $3 

theory under specific kinematic conditions appropriate to the eikonal approach. 

These kinematic conditions will be described more precisely later. We wish to 

emphasize that it is not our intention to study the asymptotic behavior of the 

complete theory. We will restrict our discussion to the case where the exchanged 

comected part is the t-channel ladder, and the momentum flowing into and out of 

it is in the pionization region. Such an exchanged part exhibits the well-known 

asymptotic Regge behavior. It will be further assumed that the input Regge 

intercept o(O) exceeds unity so that the total cross section saturates the Froissart 

bound. We will refer to such a model as the strong absorption model. 

A. Eikonal-Regge Model Without Fragmentation 

The model based on the above assumptions plus the additional constraint 

that the fragmentation is excluded has been studied in Ref. (6). As we shall see, 

this simplified model contains many important features as in the more complete 

theory and is much easier to handle. Hence, we shall use this model again in 

Section III to introduce some useful thermodynamics concepts. The main results 

in this simplified model for the elastic amplitude and cross sections can be 

summarized by: 

(1) The elastic amplitude is given by a simple eikonal form 

e -i’i;*. r(, _ .-A(s,b)) 
(2-l) 
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The eikonal function A@, b) is assumed to be purely absorptive and given by6 

d2k - A(s,b) = & s - e 
(W2 

2 /3(O) 

8~ cp2 bn % 
P 

W2) 
b2 

- e 4cfn s/p2 

where a(k 2 ) and p(k 2 ) are the trajectory function and the residue function 

respectively, which appear in the ladder amplitude 

TL = -i/I(k2) o(O)>1 . 

(2) The total, the elastic and the inelastic cross sections are given by 

(2.2) 

OT = - + Im TE(k2=6) = 2 1 _ e-A(s,b) , 

“E = s d2b ‘I_ ,-Ah b) 2 ) , (2.5) 

= s ( ,-j2b 1 -e-2AtsJ3 
where 

aN = s ds e-2A@,b) WIN 
N! 

is the inelastic cross section due to opening of N ladders. 

(2.3) 

(2.4) 

(2.6) 

(2.8) 

We wish to emphasize that the relation of A(s,b) with TL as in (2.1) and (2.2) 

is only tentative. The power dependence on s in A(s, b) requires modification in 

the strong absorption model in order to be consistent with energy conservation. 
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This point will be discussed in great detail later. However, the modification 

will not alter the basic structure of the amplitudes. In this section we will - - 
therefore continue to employ the standard eikonal approximation in order to 

arrive efficiently at the general structure. The necessary refinements will be 

deferred to next section. The readers are referred to Ref. (6) for details of 

the earlier work. 

B. Eikonal Model with Fragmentation 

Our aim in this section is to derive a generalized eikonal representation 

for the elastic and inelastic amplitudes when the fragmentation and many-body 

potentials are taken into account. Fragmentation effects have been considered 

previously in simple cases 10,13 such as in the electron-photon scattering and 

photon-photon scattering via multiphoton exchanges. They have also been 

discussed recently by Skard and Falco, 16 and Blankenbecler et al. IL our -- 

investigation is a generalization_of the earlier’work. 

Consider the scattering in the center-of-mass system. We are interested 

in the high energy behavior of the type of Feynman graphs depicted in Fig. 1 and 

Fig. 2 contributing to the elastic and inelastic amplitudes, respectively. The 

lines labelled ai. . .a, @I. . . bm) represent the fragments of particle a 

(particle b). All the other particles in the graphs are in the pionization region. 

A particle is said to be in the fragmentation region if its longitudinal momentum 

p3 satisfies 

(0 < E << 1) (2.9) 

where E is small but s-independent; otherwise, it is in the pionization region. 

The momentum z is related to the initial momenta ca and $b by 

$a=-q=~, (2.10) 
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and lies in the z-direction. For the elastic amplitude, the final particles 

momenta are 
- 

Q+p~-&, r= (kl,k2) . (2. 11) 

We will calculate first the graphs of Fig. 3 in which particle & dissociates into 

two particles and particle b retains its identity. Let T(2) denote the contribution n 

to TE from exchange of n such ladders in all possible permutations. We now 

express Tf) as products of various subamplitudes with simple physical inter- 

pretation, 

T12)(pt ) = i 
s 

d4PL d4pi 
PI_ 
(277)4 (2Tr)4 

11 
d4qziml d4q2i 

n a i 1 (27r)4 (27T)4 

, X w(~19 P,) w’(~l,,~i) Dl -l”;’ %’ 
I . 

x -$ ii b(k Q *q i) i’ 2i-l,42i) (2~)~ ‘(ki+Qi-q2iw1-q2i) 1 (2.12) 
’ i=l 

where 

P2 = Pa-P1 , Pb = Pg-Pl (2.13) 

We shall define and simplify these subamplitudes separately: 

(1) The amplitude w(p,, p2) describes the dissociation of particle z into 

particles 1 and 2, 

W&+Pg) = ig’ 
i i 

pi-p2+ic pi-p2+ie 

=+$ Ii 1 
- - - - 

p1p2 pl-E @,)+iE p2-E @,)+ie 

=& 1 1 + 1 (2.14) 
p1p2 E-(P~)+E-(P~)-P- a p;-E-(~~)+ic 1 pi-E-@Z)+i e 
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where 

pt z pp f p; , (i= 1,2) (2.15) 

(2.16) 

In the fragmentation region, the fractional longitudinal momentum x defined by 

p;=xp; =x& , O<X<l , 

is finite. Then, we find that E-(pl) and E-(p2) are of 0 (l/& ) and 

pi = -pi + 0 (l/& ) . Ignoring terms of 0 (l/& ), we have 

(2.17) 

1 + 1 1 1 =-+- 
pi-E-(pl)+ie pi-E-(p2)+ie p;+ie -p;+ie 

= -2n-i 6@;) 

and, consequently 

W(Pl’P2) = +g+ 
1 

plp2 E-@l)+E-(p2)-P- 
t27d B(PT) 

a 

+ 

= -&y ?li(Pl’P2) (274 W?;) 3 
PlP2 

(2.18) 

(2.19) 

where $(p,,p,) is the infinite momentum wave function describing the dissociation, 

q(Pl’P2) = g 

P+, E-(~1) + E-(p2) - P; 
[ 1 

= g 
-2 2 
Pl +c1 

+ 
i;z” +/J2 

X l-x - (F2+P2) 

= x( 1-x)g 

FT2 + (1-x+x2) /A2 
, (2.20) 

-9- 



(2.21) 4 -i;,, = (1-x) Fl - XT2 

being the relative momentum. 

Similarly, the amplitude W’@i,p~) describes the recombination of particles 

1’ and 2’ into a’, and is given by 

with 

W’@i,Pg) = ig 
i i 

pi2 -/J2+ie pi2 -p2+ie 

(2.22) 

The fact that +(pl,p2) and ici@i,p~) depend only on their relative momenta is 

extremely important in later interpretation. 

(2) The denominator factors D;‘, Dil and Dbl describe the products of the 
1 

propagators along particles 1, 2 and b respectively. A summation over all 

possible permutations of the exchange particles along the fragments 1, 2 and b 

is understood in the definition of these D -1 ‘6. When k, I, q and r are in the pioni- 

zation region, i. e., when k*, I*, q*, and r* C-C & , the (D-‘)‘s can be simplified 

using the well-known identities 10: 

6 (.Zk;) D;’ = 6 &k;) c i i 

all perm (pl+k1)2 -p2+ie @l+kl+k2)2 -p2+ie 

X 
i 

2 2 (pl+kl+. . .+k,) -p +ie 3 

1 ZZ 
(P;)n-l 

(27r)n-1 6(k;) 6(k;) x.. . x 6&) , 

x x . . . 

(2.23) 
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i x x i 

(P,+QI)~ -p2+ie 
. . . 

(p2+Ql+. . . +ad2-p2+ ie 

1 = 
(P;?-l- 2 

(27r)n-1 6(Q;) S(a,)x.. . x “(Q;) , 

and 

f 2 x...x 
@b-ql) -p +ie (pb-qI-. .I-q2n)2-pli. 3 

= A.zz!fE qq;, x.. . x “(q&) 
t40)2n-1 

(3) The function B&Q, qI, q2) denotes the amplitude of a blob in Fig. 3, 

including the four vertices (ig)4, and the four propagators 

i i 

k2-p2+i e x2i2 x Q -p +ie x2i2 * q2+ +-it- 

If we identify B as the sum of ladder graphs, then B behaves like a Regge pole , 

at large s. 

(4) A combinational factor -$ associates with the n (identical) blobs. . 

(5) The 6-functions appearing in Tr) can be integrated readily after we 

introduce the light front variables (q*, T), and rewrite the phase space d4q and 

the 6-function S4(q) in the form 

d4q = ; dq+ dq- d2q 

S4(q) = 2 s(q+) 6(q--) a2(q) . 
In particular, we have 

6 
4 

(‘ki+PI-Pi) 6 
4 

(zlej+p2-p~) 

= 4 G(Xk>p;-pi+) fi2(z$++$ s2(zrj+;,-g2) 

x SW+Q;) @kf) @Qj) (2.28) 

(2. 26) 

(2.27) 
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where we have ignored terms of 0 (l/h), such as pi - pr, pi, and pi-. The last 

three 6-functions in (2.28) will be used to convert (D-‘)‘s into products of 

&funcGons as given in (2.23) - (2.25). 

Putting parts (1) - (5) together and carrying out the integrations, we obtain 

+ - 2 
dPldPld PI dPi 

+ 
dpi 

- 2 
T(2)@t) = i S 

d Pi 
n a 

2Fw 
4 

2(27r)4 

f; 

i=l 

X 
dQ.. dQ;d2Qi dqii dq& d2q2i 

2(27r)4 2(27r)4 1 4(2~)~ 6(‘kl+ p; -pi’) 

-!- 
x 62(~i+ii+!l) 62(T+p2-lj;z) +g HP,, P,) 27r Wl) -- 

= 2is S dx d2Pl d2Pi 
- - $(Pl, P2) zci (Pl,,Ph) 4n x(1-x) (2T)2 f2$ 

d2ki d2Qi 
s2,i$<) - - 

I (29?j2 (27T)2 
(2.29) 
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where 
+ 

PI= 1 pT+ = xp+ 
a ’ 

F(s1, s2;K fi= G2 J 6 $2 3 $2 (27r)2 6(Tl+<2-r-T) 

x BkQ+q& Ik-=P-zo ’ (2.31) 

q;=o 

and 

s1 7 (p1+lQ2 s p;g = xs , 

s2 = (p2+s)2 “= p;s = (l-x) s . (2. 32) 

The result is particularly transparent in the impact parameter representation, 

i(F; -F?g).K 
T(2) ($ 

I 

n a ) 

= 2is S dx 
4n x(1-x) S d2b121 @b12) I2 

1 n 
a+ s2J+b2) y 

where 

= x(l-x)g Ko(,/z pbb2) 27r 

(2.33) 

(2.34) 
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is the coordinate space wave function, 

a&, s2,bl,b2) t= i xts19 s2A+b2)) 

S 
d2k d2Q e iZ. TI+irK2 -, z- 

m-l2 w2. 
-c FyS2,K ’ ,Q) 

is the (3-body) eikonal potential, and 

Kl = F + (l-x) F12 , F2 = 6 - XF12 

(2.35) 

(2. 36) 

are the impact parameters of the individual fragments. Summing over all n, we 

obtain 

Tt2) (b) E = 2is S 
dx 

4n x( l-x) S 
2 

d b12 IW3,,U 
2 -a(sl, s2,bl,b2) 

e -1 

(2.37) 

and consequently, 

where 

’ Tg) (pl ) ~.2is a s d2bId2b2 e-i(‘SG)‘F; s 4n zAx) 
I 

x W3,,H 
2 

1 
-atsly s2,blA2) 

e -1 1 

6= xi?,+ (l-x)g2 , K12=?$-F2 . 

(2.38) 

(2.39) 

Equations (2.37) and (2.38) can be generalized in several ways. If the usual 

two-body potentials are included (see Fig. 4), we only have to make the replace- 

ment in the eikonal function 

ats19 s2,bl,b2) - A(sl, s2,bl,b2) = atsl,bl) + a(s2,b2) 

+ atsl, s2,blb2) (2.40) 
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where a(sl,bl) [a(s2,b2)] corresponds to the exchange of two-body potentials 

between particle 1 [particle 21 and particle b, and is given by 
- 

dk; dqi d2kl d2k2 d2ql d2q2 
a(sl,bl) = - 4 J - - - - - - 

4sl 4n 47r (27r)2 (27r)2 (2792 (277J2 

x (27d 
2 

“(c1+<2 - T;,-IT,) e 
i ( Zl+Z2) . Kl 

x Bcx,t ky qyq2) IkSzO 
i ’ q;=o * 

(2.41) 

For the same blob amplitude (here ladder) B, there is a relation between a(s, b) 

and atq, s2,blFb2) 

atsl,s2,b,b) = 2a(&& W . (2.42) 

Suppose now that particle z dissociates into more than two fragments, say three, 

as in Fig. 5. These graphs can be calculated similarly.’ Only ‘the fragmentation 

parts need some comments. In the following, we only present the results. The 

detailed analysis leading to these results will be published in a separate paper. 

The elastic amplitude for the process described in Fig. 5 can be written as 

T(3)(pf) = 2is dxl tic2 dx3 
E a s 

--- 
4nx1 4rx2 47rx3 47r 6(x1+x2+x3- 1) d2b, d2b2 d2b3 

’ I$txi9’l- 29 1 3 ‘IT T-F)12 e 
-iti?a-sa) -g 4-k&{ b$ 1 -1 

(2.43) 

where z/ is the three-particle wave function, 

-dE xlF1 + x2c2 + x3F3 , (2.44) 

and 

At-k@(bi)) = a(slhl) + a(s2,b2) + ats3,b3) 

+ a(y, s2,bl,b2) + ats2, s3,b2,b3) + ats3~sl~b39bl) (2.45) 
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When more general exchanges are included, the potential A({si) ,{bi}) should 

contain true four-body potentials as well. 

Tge fragmentation of particle b can also be easily included. For example, 

the result for a- aI+a2, and b- bl+b2 (Fig. 6) is @ii = xipz , pbi = Yipb ) 

T12P2) = -2is dxl dxz 
E s 47rXI 4nx2 47r 6(x1+x2-1) d2b, d2b2 6(x&+ x2F2-c) 

dY1 dY2 
x 4nY1 4ny2 47r 6(y1+y2-1) d2cl d2c2 6(ylTl + y2T2, 

x lzcl (x,b12) I2 lzcl (Y, cl21 I2 s ds e 
-i($a-$a). 6 

X l-e 
-At~Si)‘{~i,~~) 1 (2.46) 

where g I, K2, and zl, c2 describe the positions of the fragments relative to 

c. m. of particle b, and $(x,b) and #(y, c) are their respective wave functions. 

As a result of momentum conservation, the potential A((sJ , {Fi, T}) depends 

on the impact parameter g and the coordinates gi and z only through the J 
differences F i-Zj (i,j=l, or 2). 

In the special case of the exchange of a four-body potential as depicted in 

Fig. 7, the eikonal function A in (2.46) is given by 

a(b), bl,b2, cl, c2) = - 
1 

s 

dk; dq; d2kl 

x(1-x) y(l-y)s2 4n4n-- 
tw2 

d2k2 d2q1 d2q2 2 2 
x--P 

(27r)2 (27r)2 (2?$2 
(274 ! (r;l+ic2-?4-C22) 

(2.47) 
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It is easy to see that a-((s), bl,b2;c1, c2) is a function of x(1-x) y(l-y)s and 

bi-cj (i, j = 1,2) only. When the previously considered two-body and three-body 

poten&s are included, they contribute additively to the eikonal function. 

The result (2.46) generalizes easily to the case in which particle & and 

particle b fragment into more than two particles. 

C. Production Processes with Fragmentations 

The inelastic amplitudes can be calculated by similar technique. l7 Only 

fragmentation of particle a will be considered. To be specific, let’s consider 

the high energy limit of graphs in Fig. 8. Summing over graphs with all 

permutations of the vertices attached to the three energetic lines and making 

use of results in Section II. B, we obtain the simplified amplitude 

T(Nl, N2, N12,. . .) = 2 is s 
d2b,d2b2 e 

-i(31-x$a).J?l, - i(ijt2-(l-x)Fa).T;2 

1 
x wGb~2) q- 

-N1 1 z 
-a(s12bl)_l 

UN2 -1 N12 
I - “-a(s2, b2’j 

3! L v p@y q3$2) 1 
(2.48) 

Summing over all absorption corrections we obtain the eikonal representation 

TI(S’Pi,Ps,{k}) = 2is Jd2b,d2b2 e 
-i($!-x~a).KI-i(~2-(l-x)~a).E2 

* WO12), e 
-At{SiI>bl,bg) L i 

f\ 2xs ‘k%)) y(- 2(&s Q 2 mb )) 

(2.49) 
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where A((si}, bl, b2) is given by (2.40) and Mk(bl) is the Fourier transform of 

the multiperipheral amplitude 

Mk(q) = i (ig)n+2 ’ i 

q2-p2+ie 
x . . . x 

(q+kl+. . . +kn)2-(12+ie 
(2.50) 

with the momentum labels {kl, k2,. . . , kn> suppressed. 

A scattering process is defined to be diffractive if only the fragmentation 

particles are produced without being accompanied by any pionization particle. 

The amplitude for a diffractive process a - al+a2 is 

Tt2) - 
D 

_ -eis Sd2bld2b2 e-i(q-~a).~l-it~~-(l-x)f;,,~2 

x q(x,b12) 1 - e 
-My, s2,blh2) 

. (2.51) 

From the amplitude given by (2.49) and (2.51) we can calculate the various cross 

sections. For example, the differential diffractive cross section from (2.51) is 

&f =+ $)I2 l 
d3pi d3pa d3G 

2Ea2Eb 2Ei(2*)3 2E$(27r)3 2Ei(2~)~ 

2 2 
1 

= - 
(2) 

4s2 
ITD (Pi,Pi) 1 

2 k d Pi d Pi 
--. 

47rx(l-x) (2$2 (2$2 
(2.52) 

The p’,,p~ integrations can be carried out trivially, and we obtain 

,P) - D - Sd2bld2b2 $ 4?ix;bf-xj Iq(x,b,,) ,2 (l-e-A(s1’s2yb1’b2)~ (2.53) 

Similarly, from (2.49) we get 

cy) = Sd2bld2b2 J 4sx~-xJ I *(x,b12) I2 1-e 
-2A6+ s2J+b2) 

(2.54) 
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Thus 

I or+q - 2Sd2bld2b2 s47i$-x) P(x,b12)12 (l-e-Ats17S2,b1,b2)) (2) (2) - 

=-- ,’ Im TE)@i - pa= 0) 

(2.55) 

where Tf) is given by (2.38) with the eikonal function (2.40). Equation (2.55) is 

the optical theorem in this case. 

Before we proceed further, we will derive a simplified, single impact 

parameter representation for various amplitudes and cross sections. We note 

the relation 

2 [ ats17bl) + a(s2,b2) * a(+ s2,b17b2) 1 
= ): f :7 

n ’ 
d3ki I& @J,, {kh * 2~l~x~s - 

i=l (2r)3 2ky 
MP2, -kh I2 

>o 

which implies 

(2.56) 

a(s17bl) + a(s2,b2) 1 a$, s2,bl,b2) . (2.57) 

Further, since a(s l, s2, bl, b2) is positive, 18 we finally obtain the inequalities 

l-e 
-a(s17 blba@27b2) 

< l-e 
-a(sl,bl)-a(s2,b2)-a(S1’ s2,b17b2) 

-2 a(s17bl) +Ns2,b2) 1 1 < l-e 
(2.58) 

But in the high energy limit, the upper and lower bound approach each other and 

l-e 
-4sl,s2J+b2) = 1 

- 
C 
1- 8(bm-bl) I[ 1- e@,-b2) 1 

= e@,-bl) + e@,-b2) - e@,-bl) e(bm-b2) 

where b m is determined by a(sl, bl) or a(s2, b2) alone. 
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In the strong coupling case and at high energy, bm increases as Qns and 

has no x-dependence, while b12 (rbl-b2) is finite and controlled by the wave 
- 

functiG -Jr(b 12). Hence it is a good approximation to ignore the x and b12- 

dependence in A and to replace A(s 1, s2,bl,b2) by A(s,b) where ~=x~~+(~-x)~~ 

is the impact parameter associated with the center of momentum of particle a. 

After this replacement, we then arrive at the single impact parameter repre- 

sentation results, 

Tt2) = -2 is 
-i -6 

E 1 2 SdSe 
(Sk-‘;;,) 

( 1 _ e-A(s,b) 1 . 

(2) = 1 
oD 2 s ( 

ds 

where the positive constant I2 is given by 

(2.60) 

(2.61) 

(2.62) 

(2.63) 

Under this approximation, we obtain from (2.52)) (2.59)) 

(2) = $3 = 1. (2) 
OD I 2 oT * 

(2.64) 

The above discussion can be generalized to more complicated situation. In our 

later discussion we will therefore very frequently ignore the coordinate (such 

as b12) dependence in the wave functions, and base our discussion on the single 

impact parameter representation. In this approximation if only the fragmentation 

of particle a is considered, the contribution to the elastic amplitude from the 

fragmentation into N particle can be written as 

TLw = -2 is S dI$ (l,...,N) s d2b e 
-iT;: E 

l-e 
-AN&b) 

(2.65) 
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and the full elastic amplitude is 

TE = 2 TLw . 
N=l 

In the strong absorption model all the AN(s) b)‘s have the same size: 

l-e 
“ANtN,%b) 

= ~@m--w @,=bo Qns) , 

and we obtain 

oT=-S ’ I-TE=(~l~dI~)) 2nbi , 

‘D = Nd4 D 
fj utN) = (z2 j-dIc) rb; . 

(2.66) 

(2.67) 

(2.68) 

(2.69) 

There are two methods from which oE can be determined: 

(1) aE is identified as the elastic contribution to (T T 7 and 

(2) crE is obtained directly from TE through integration. 

For a complete theory, these two definitions will lead to identical results. In 

our theory, since we have not considered all the diagrams contributing to cT 

and TE, these two approaches may give rise to different answers. As we shall 

see, if we insist that both methods lead to the same answer, we shall arrive at 

some very restrictive predictions in crE/aT . 

(1) We will assign TE , the contribution to the elastic amplitude without 

fragmentation, to be 

T(l) = -2is ,ta) E (2.70) 

and the positive constant c ta) (= j-d@ is chosen to satisfy the unitarity. The 

elastic cross section gTE is given by the term on the right-hand side of (2.68) 

with only elastic intermediate state. This is given by half of the absorptive part 
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of (2.70)) in analogy to (2.54): 

UE = c ta) Tb2 
m ’ 

From (2.68), (2.69), and (2.71), we conclude that 

1 uE+uD=prT . 

By method 2, mE can also be calculated directly from (2.66) 

is 

oE = da) + f 2 rb2 
N=2 m 

Equating the two expressions we find 

da) = ; [l - 22 + Jiz] , 
N=2 S 

(2.71) 

(2. 72) 

The result 

(2.73) 

(2.74) 

where we have chosen the sign of the square root such that c (a) = 1 when z=O. 

Since cla) must be positive, Eq. (2.74) implies 

o<z<+ , 
(2.75) 

1 - < da) < 1 , 4 

and consequently, 

When the fragmentation of both particles a and b is considered, Eq. (2.72) 

remains unchanged but (2.76) now becomes 

(2. 76) 

(2.77) 

The result (2,72) has also been obtained by Blankenbecler, Fulco and Sugar1 in 

a different model. Its validity appears to be very general. It is interesting that 

there is also a lower limit on the ratio oE/uT in our model. It follows from 
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(2.68) and (2.74) that 

OT = J- $9 27rb; < 2ab; . (2.78) 

Therefore, the disc is not completely black. Of course, this is why the ratio 

uE’“T is less than one-half. 

, 
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III. ENERGY CONSERVATION CONSTRAINT AND TEMPERATURE SPACE 

We now turn to the question of energy conservation in the eikonal approxi- 
4 

mation. We will first neglect completely the fragmentation events. Their 

inclusion will be discussed in the next section. 

A. The Temperature Space 

In $3 model, the inelastic cross section due to opening of N ladders can 

be written as (see Eq. (3. 11)) Ref. 6) 

dgN = s ds. e-2A(s, b, ; 2 I$ i%(b,kr),...,k$)12 
i=l n=l 

where 

Ws,b)= cs 1 & @b,kl ,..., kn)12 ; d3ki . 
n i=l (27r)3 25 

(3.1) 

(3.2) 

All the momenta k(i) 
j 

belong to particles in the pionization region. The limits of 

integration of each ci are restricted to 

by an order of magnitude estimate. From (3.1) we obtain the integrated cross 

sections 

u Nf s 1 
dgN= 3 (2A(s, b))N e-2A(s’ b, (3.4) 

Note that aN stands for N “open blob” final states which usually contains more 

than N final particles. The upper limit given by (3.3) is an over-estimate when 

the multiplicity grows’as a power of s, as in the case of strong absorption. In 

our earlier work’ this difficulty is corrected by a self-consistent argument. 

Here we propose a more satisfactory solution. 
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We propose to make the energy conservation constraint explicit by rewriting 

(3.1) (or 3.4) as 
4 

=&fd2b 
n,(s,b) 

ON . nts,b) (3.5) 

flN(S,b) = $ fl 
d3ki 

(27r)32ei 
; 

all i 
2 I& 1C?@,ky), . . . ,k(n)l’ B(E-aF1 e> 

i=l n=l 

(3.6) 

and 

Il(s,b) = 2 $ nN(s,b) , [no =I] 
N=O l 

where E = E & is the maximum energy available for producing pionization 

particles. In our model, E is a small (0 < E << 1) but s-independent constant. 

For the power s-dependence is concerned, it is sufficient to remember that 

E-&s. 

There are at least three reasons for making such a modification: 

(1) This is the simplest modification which incorporates explicitly the 

overall energy conservation constraints; 

(2) From the perturbation point of view and for any fixed order n, the 

introduction of O-function in (3.5) and (3.6) does not affect the leading logarithmic 

calculation. The modification becomes important only for large n (say n- sa) 

where the leading logarithmic calculation is no longer reliable; and 

(3) Although the energy conservation constraint destroys the factorizability 

of the individual ladder amplitudes; the factorizability is regained by making a 

Laplace transform with respect to E. 

I , 
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After the Laplace transform, we have 

fi,( 7, b) = J’m dE eWTE flN(s, b) 
0 

(3.8) 

= $ [2&r,b)lN 

and 

(3.9) 

The function 2x is given by 

2&,b) = r S dE eWTE ;J’ ; d3ki I$- l&b,kl,...,kn)/2B(E-~ei) 
i=l (27r)3 25 

=r S dE e 

=7 I (3.10) 
c 

where 01 and c are defined as 

a(-k2)=D(0) -ck2 , o! = a(0) (3.11) 

and we have made use of the structure of A(s) b) given by (2.2). Approximate 

evaluation yields 

b2 
-a 

2- 
x(qb) = ! p 

o!+1 
e (3. 12) 

where we have introduced the notation 

f? = lY(2o! + 3) /3(O) (3.13) 

- 26 - 



From (3.5), (3.6), and (3.7) we can calculate the inclusive multiparticle 

distributions, multiplicity and its higher moments, etc. The one-particle 

inclu&e distribution will be worked out to illustrate the technique of Laplace 

transform and to exhibit its thermodynamic interpretation. The inclusive 

single particle distribution is given by 

da(‘)(k) = Sd2b 
L-l[%O) ~1t7’b,k)lE-t d3k 

L-li?%,bjlE 
E (3.14) 

where 

i+,b,k) = 2&b) f(-i;) (3.15) 

with f(T;‘) the normalized single particle distribution in the pionization region 

given by the multiperipheral model. 19 The symbol L -1 signifies the inversion 

of the Laplace transform. The subscripts denote the arguments of the inverse 

Laplace transforms. The ratio of the inverse Laplace transforms can be easily 

determined noting that at high energies method of steepest descent is applicable 

to integrals such as (3.14). Thus 

&p)(k) = J ‘d’bw 
, 

g[T(E,b),b,k] 9 

with T(E) b) determined by the standard relation 

EL-& 2x (7, b) = - $ In[ri?(T,b)] 

and 

n(E-e,b) = ,-T(E,b)e 
n(E,b) 

(3. 16) 

(3.17) 

(3. 18) 

Equation (3.17) is recognized to be the familiar connection between the energy 

E’and the partition function fi(s, b) . Equation (3.18) is the well-known Boltzmann 

factor found in statistical mechanics. The Laplace transform variable T appears 
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as the inverse temperature and fi the partition function. 
20 Many physical 

questions can be answered from thermodynamic considerations. 

Trdemonstrate the method, we now determine the temperature T(E,b) for 

the G3 ladder exchange. From (3.12) and (3.17), we find 

+ = (2~+3) J&I+ -Qn(Qn-+) -t-In * 
8ncs 

b2 

8cQnj$ ’ 

For b2 << Qn2 & , Eq. (3.18) gives 

w(W) = WE, 0) exp 1 - b2 _ o b2 

1 ( I Qn2 E 
7 

with the definition 
1 -2at-3 - /n(E, 0) e 1 , 

1 

E 40n cs2E -E P 1 -3 
w+l) (2a+3) P P 

(3.19) 

(3.20) 

(3.21) 

(3.22) 

In (3.20) the coefficient of the first correction to the exponent cannot be calculated 

reliably in our approximation. From the temperature, it is straightforward to 

determine the remaining quantities. For instance, by substituting (3.20) into 

(3.12), we obtain 

b2 xexp - -of b2 
4ocJ!n$ +-IL \ Qn2 E 

‘it 

(3.23) 
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Similarly, we can evaluate the one-particle inclusive spectrum, 

- &(l)(k) = ffi & (2~+3)p~g (1 1 _ Qn; % E5 E 
407r cs2 In 4 

-h 

The b-integration can be carried out, yielding 

x 1 
( 
1 e-@,O)~ 

T(E,O)E - ) . 

(3.24) 

(3.25) 

Even though the exact functional form appearing in (3.23) - (3.25) are model 

dependent, the basic structure of these equations, and in particular, the power 

E and the exponential b2 dependences are general features of this class of 

strong eikonal-Regge model. We shall encounter these basic structures again 

in Section III. C for another ,model which is very similar to the vector gluon model. 

The two-particle inclusive distributions can also be calculated by similar 

method. The result is 

do(2)(kl, k2) = J^d2b [g2(kl, k2) + E,(k,) ii,( e- 7(E7b)(e1+E2) 

d3kl d3k2 
x-- 

,A ‘2 

where 

52(59k2) = 2x[flE,b),b] f2(kl,k2) 

(3.26) 

(3.27) 

- 29 - 



and f2(kl, k2) is the normalized two-particle inclusive distribution in the multi- 

peripheral model. The two functions f(k) and f2(kl, k2) are connected when kl 

and kiare separated by a large rapidity 19: 

f2tQ kc3 - f(Q) f@,) - (3.28) 

In (3.26) the term %, is the contribution from those events in which both detected 

particles are emitted from the same ladder, the other term gl(kl) gl(k2) is the 

contribution from those events in which both particles are emitted from different 

ladders. 

The b integration in (3.26) can be carried out, and the result is given here 

for completeness. 
2o!+2 

do 
(2) 2 (20+;;p2ii,@ Qn 3”“” 

d3kl d3k 
(kltk2) = f2(kl, k2) 5 E2 

X 
1 

t l-e 
-G, O)(~+E~) 

T(E 9 0) (E1+E2) / 

4ac-F4 
d3kl d3k 2 

+ fckl) f(k2) - - 
(2~+3)~~~ i32 E5 [( 6 ) QnF ] 

E 2cr+3 
5 ‘2 

40 T 

cs4QnE 

7 

X 1 

[ 
T(E) 0) (El+9 1 2 

-7tE, 0) (3+~~) (l+~tE, ‘Wl+ t;d . I 
(3.29) 

In the central region 7(E, 0)( eI+e2) << 1, and when (3.28) holds (i.e., when 

particles 1 and 2 are widely separated in rapidity space); (3.29) simplifies to 

tii~ (2) (kl, k2) = do (1) 

(3.30) 



In the strong absorption model, we expect that the picture of short range 

correlation in the sense of Feynman-Wilson gas analogy no longer holds. 
- 

B. Consistency of the Eikonal and the Statistical Models 

We now briefly comment on the elastic, inelastic and total cross sections 

in the strong absorption model. Our purpose is to demonstrate the mutual 

consistency of the thermodynamic treatment of the inclusive particle distribu- 

tion properties and the calculation of the cross sections to which no obvious 

thermodynamic interpretation can be given. 

Let’s begin with the inelastic cross section. This is given by the sum of 

(3.5) over N. This sum is demonstrated by large N contributions. When N is 

large, n,(s) b) -can be obtained by inverting (3.8) for fi,(,, b) by the steepest 

descent method. This gives for large N, 

iIN = 

b2 N 

8cQnE . 
e 

- I 
PN . 

As a function of N, [& n,(%b)l is maximum at . 

2(X-2 - b2 

e E R(E,b) . 

So approximately we have 

n,(s, b) = const (2 Aeff)N (3.33) 

with 

2a-2 - b2 

201+3 
e 

40cQn f 

(3.31) 

(3.32) 

(3.34) 



It is important to point out that (3.33) is good only for N near w, i.e. , for 

I N-R I << R. Since N-R is the region where the dominant contribution arises, 

this rLriction is in fact not important. Notice that both 2 Aeff and 2 $7(E, b), b] 

(see (3.22)) have the same energy dependence. (Recall that s mE2. ) Substitution 

of (3.34) into (2.6) gives 

2 
gI m ’ = nb 

b2 = 
m 

L!z&&Qn2E . 
P 

(3.36) 

This result should be compared with the naive result which follows from (2.7) 

b2 m = 16~ (cr-1) Qn2 j$ (naive) . (3.37) 

The calculation of the elastic amplitude in the strong absorption model is 

somewhat subtle. This is because the additional constraint required does not 

follow directly from energy conservation. Rather it arises from the require- 

ment which ensures the validity of the eikonal approximation. . According to the 

analysis of Hasslacher et al. , 9 in the leading logarithm approximation to the 

ladder exchanges the eikonal elastic amplitude comes from the contributions of 

the graphs with the configurations described in Fig, 9, the generalized 

Mandelstam diagrams. 21 We will continue to assume this feature to be true 

in an improved calculation when some nonleading logarithms of the ladder are 

included. Then in order to ensure that each segment on the top and lower line 

in Fig. 9 carries practically all the energies of the initial particles, we require 

Z$<E=e&, O<E<<l ) 

where the sum extends over all particles in the rungs of all ladders. Here it 

is understood that the eikonal function is purely absorptive so that all the particles 

in the rungs are on the mass shell. Then, the contribution to the elastic amplitude 
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from exchange of N ladders with all possible permutations is 

TEtN)=2is k$ 
. r: c ~$+,kf,...,k~))12 

i=l N 

(3.38) 

When N is large the discussion for the inelastic cross section can be repeated 

here to obtain 

TW =2isk.$ . [ d2b ei’;“peff)N (3.39) 

with Aeff given by (3.34). Thus, the eikonal function which appears in the 

elastic amplitude and that in the inelastic cross section agree. 

In retrospect, we can construct an eikonal model in the strong absorption 

for the elastic amplitude and inelastic cross sections by retaining the naive 

results such as (3.1) and (3.2) but change the upper limit of integrations (3.3) to 

(3.40) 

where N is given by (3.32). Obviously this construction yields all the correct 

results. It is interesting that the upper limit (3.40) depends on the impact 

parameter. Apart from the impact-parameter dependent factor, (3.40) is 

precisely the prescription given in Ref. 6 to correct for the energy loss. Here, 

it emerges as a result of taking into account the necessary constraints to ensure 

the validity of the eikonal approximation. 

Unitarity relates the virtual processes which determine the elastic ampli- 

tude and the real production processes. It is satisfying to know that our treat- 

ments of both virtual and real processes are mutually consistent. 
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C. Weak Pomeron Model 

Finally, we sketch briefly the analogy as well as some quantitative changes 

if the%egge pole has an intercept which starts out from 1. We call this the weak 

Pomeron model. Apart from some minor differences this model shares many 

similar properties with’the vector gluon model studied extensively by Chang and 

Wu. As one can verify readily, all the general conclusions of the theory, such 

as described in (3.5), (3.7) - (3.9), (3. 14) - (3.18) and (3.26) - (3.28), etc. , are 

not modified. However, the quantitative expressions of the potential A(s,b), the 

temperature function T (E, b), the multiplicity distribution N(E, b) , and the one- 

and two-particle spectra are somewhat different. We list in the following the 

corresponding expressions in the weak Pomeron model for completeness: (These 

equations are the analog of (3, lo), (3.20), (3.23), (3.25), and (3.29) respectively.). 

x(7, b) E S dE e-rE A(E, b) 

pT(E, b) = PT(E, 0) exp 

-- 

pr(E,O) = (F bf) 2,'-1 , 

b2 

8cQn+ 
(3.41) 

EE 8nc/L2E . 

(2o!-l)(cL!-1) p ’ 
(3.42) 
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N&b) = &(E,b),b) = 
(2&l)/? 

167r cp2 

2a-2 
2o!-1 

Qn! 

201-2 

d&)(k) = f(x) d3k (2Q-l)P 
E 

P2 

2o!-1 1 _ e-~(E, 0) E 

T(E, O)E 

(3.43) 

(3.44) 

and 

3 3 
201-2 

,(‘)(k 
1’ 

k ) = f (k k ) E d kl d k2 (2o!-1) p 

2 2 1’ 2 El E2 P2 

l-e 
-T(E, 0) (E1+e2) 

X 

3-03, O)(E 1’~~) 

3 3 
4@-4 

d kl d k2 (2cV-q2 p2 
2o!-1 

+ f@l) f(k2) - - 
‘1 ??, 8n q4 

l-e 
-‘dE, 0) (El+E2) 

X 
II 1 + T(E) 0) (El+‘2) 1 

[ 7 03, %1+E2) 1 2 . (3.45) 

Interested readers are invited to reproduce these expression for an exercise. 

The result (3.44) for the vector gluon model in the region T(E, 0) E << 1 

has been obtained by Cheng and Wu. 
22 
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IV. RESULTS AND IMPLICATIONS 

In this section, we present the main results obtained in the present paper 
- 

and discuss their implications. We shall concentrate on the general features of 

the results which appear in both the q3 and the weak Pomeron model (WPM), 

and shall emphasize on the possible physical and geometrical interpretation. 

A. Width and Height of the Central Plateau 

From (3.24) and (3.44)) it is seen that the one-particle inclusive cross 

section in the central region for a fixed impact parameter b has the general 

structure (to within Qn E-factor), 

b2 -- 

do(‘) cc f(kl) 
3 

9 Ea e -W,b)E e clyo 

with 

b2 
cc El-a eCIYO 1 

T(E) b) 

where Y. is the magnitude of the rapidity of the incident particles, 

Yo=QnE/p . 

(4.1) 

(4.2) 

(4.3) 

Parameter g controls the energy dependent height of the central plateau, and 

cl is related to the expanding rate of the absorption disc. These parameters 

are measurable quantities, and will appear frequently in our discussion. In $ 3 

and WPM, they are given respectively as 

’ a=i!!G&J (q3 theory) 

(4.4) 
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and 

c1=40c (c$~ theory) 

=8c (Wpw 

Note that 0 < a < 1. in the strong coupling case and a -0 as a! - 1. 

From (4. l), we find that the central plateau has a b-dependent width, 

D(b) = Qn 1 = 
dE,b) 

(l-a) Y. + b2 
- + O(1) , 
clyo 

(4.6) 

(4.5) 

and a b-dependent height, 

b2 
aY -- 

H@)=e ‘e clyo . (4.7) 

The width D(b) and the height H(b) are related by 

D(b) + Qn H(b) = Y. (4.8) 

independent of the parameter a and the impact parameter b. The width D(b) - 

increases as b increases, while the height H(b) has the opposite effect. When 

integrated over all values of b, the final single particle distribution (3.25) or 

(3.44) gives a flat central plateau of width 

D&L = 
W, 0) (l-4 Y. 

and a height 
aY 

H=e ’ . 

We observe that the width on the rapidity axis occupied by the pionization 

particles does not cover the whole available region 2Yo. There exists a rapidity 

gap A(Y) 

i A(Y) = aYo . (4.11) 
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This gap is related to the increase of plateau height at increasing E, and is 

required by energy conservation when the multiplicity is a power of energy. 

B. Ei?ergy and Multiplicity Sum Rules 

The consistency of (3.25) and (3.44) for da (1) Q can be checked by the 

energy conservation sum rule 

s E do+) = Eg T * (4.12) 

Explicit evaluation of the integral gives 

S E do(+k) = const (or-l) [Sd2FfF)lf Qn2f . (4.13) 

The constant in the front of (4.13) can be computed exactly, and is found to 

depend on large b(- Qn E) integration region. Since the thermodynamics approxi- 

mation breaks down in this kinematical region, the constant computed from (3.25) 

and (3.44)) which follow from the thermodynamics treatment, is no longer 

reliable. Nevertheless, (4.13) gives the correct energy dependence and it is 

consistent with the energy dependence of aT given by 

“T = 2n cla Qn2 E (4.14) 

From (3.24) or (3.44) we can also calculate the average multiplicity <n > from 

the sum rule 

J n da(‘)(k) = <n>o I 

We find, 23 

< n> aI’= const 
J 
Od3r f(@ 

(4.15) 

(4.16) 

with 

c2 = a/2(@-1) . (4.17) 
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Sineez4 

-h 

crI = const + 7r cla Qn2 !$ , 

the average <n> grows as a power of total c. m. energy within logarithmic 

corrections 

<xv = const 

(4.18) 

(4.19) 

A careful examination of the b-integral reveals that the important region of 

b extends to b2 -Qn2 E for the energy conservation sum rule (4.12); on the other 

hand, the contribution to <n> is dominated by b2 5Q.n E. This indicates that 

most of the particles are produced in the region of small b with low energies. 
1 This is the reason why the temperature - 

T(E) b) 
is lowest at b=O, according to 

(3.20) and (3.42). 

C. Moments of Multiplicity and Particle Sizes 

As another application of our results we calculate the second moment of the 

multiplicity given by 

s do(2) (k,, k2) = <n(n-l)> oI 

= <n>2 a2 c 
1 

I 2ac& 
+ const (fra (Qn f)1+c2 

Hence 

= <n(n-l)> 

<nB 

(4.20) 

(4.21) 



where R -OasE+a,. Thus 

(4.22) 

This result differs from that in the multiperipheral model in which the right- 

hand side is a constant. 25 

To understand (4.21), (4.22) qualitatively, we recall that there are two 

relevant sizes or radii of the particle in our problem. This can be seen most 

easily from the multiplicity distribution function N in (3. 32) or (3.43), 

(4.23) 

The radius bm which determines the total elastic and inelastic cross sections is 

given by NG 1, and has the value (see Eq. (3.36)) 

b2 = cla Qn2 g m P 
(4.24) 

However, for the multiplicity is concerned, the dominant contribution comes 

from a smaller radius bs characterized by the width of the gaussian distribution 

(see Fig. lo), 

b2 M yhl; << b 2 
S m ’ (4.25) 

To the first approximation, we can replace N(E,b) in (4.23) by 

N(E,b) = N(E,O) 6(bz-b2) (4.26) 

It is also known that the multiladder emission in b-space in our model is 

approximately independent, and hence, the multiplicity distribution in b-space 

is essentially Poisson, 

n2@) - 0) = @RN2 . (4.27) 
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Integrating n(b) and n2(b) -n(b) over b, we have 

-c, 9 <Ii’ = s d%l n(b) M n(0) 7rbi (4.28) 

2 c <n I -n> = S ds (NW2 M (n(O))2 rb: . 

Hence, we have 

2 <n -n> 9 9 
<n> 2 y-y ‘=yF 

S 

(4.29) 

(4.30) 

as desired. In other words, the mismatch of radii in (4.24) and (4.25) is crucial 

for the arriving of results (4.21) and (4.22). Equation (4.22) is valid only in 

the extremely high energy. At the present energy range, gI only increases 

slightly with E and thus the left-hand side of (4.21) may not increase notably at 

all. Thus, the so-called KND scaling may be approximately valid at the present 
25 energy. 

. D. Effects of Fragmentation and Many-Body Potentials 

We will now briefly summarize the effects of including the fragmentation 

and many-body potentials on the results presented above. We will ignore the 

momentum transfer dependences in the “wave functions” so that the various 

cross sections can be expressed by a single impact parameter representation. 

We will also assume that the exchanged object is a t-channel ladder. Thus, 

we have included up to four -body potentials. 

1. Central region 

Only the fragmentation of particle a will be considered to simplify the 

discussion. In the notation of (2.65) the one- and two-particle inclusive cross 
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sections in the central region are 

d&k) = 9 N2 *dI(“)(l 2,. . . 
N=2 J N ’ B1 

(4.31) 

dGt2)(kl’k2) = [C+ i; N2 sd$‘(l,2,. . . ,N)-j [dcr(2)(k,,k2)]B2 

+ 
I 

f N(N-1)12 s dI$l, 2 
N=2 

, -a - ,N)] [dQt2)tkl&2i)BlBl 

(4. 32) 

where we have employed the notations 

[d”‘l+&l = j d2b gl [T(E,b),b, k] e-r(EYb)e $ , (4. 33) 

[dot2)(kl, k2)lB = sd2b g2(k,, k2) e-7(E’b)(E1+E2) % 2 , (4. 34) 
2 

‘3 3 

[at2)t$ k2)lB1B1 = s d2b ‘ltkl) Eloi2) e 
-r(E,b)(e1+e2) d kl d k2 

-- 
5 e2 

(4.35) 

and Bl and B2 are given by (3.15) and (3.27). 

From (4.31) we see that fragmentation and many-body potentials only change 

the overall energy independent normalization of the one-particle inclusive cross 

section, and hence the average multiplicity. This is not true for the two-particle 

and n-particle (nl2) inclusive distributions. The two detected particles may 

come from a single ladder attached to different fragments or they may come 

from different ladders attached to different fragments. These possibilities are 

represented respectively by the first and the second series in (4.32). Although 

the two particles coming from a single ladder do exhibit the short range corre- 

lation in rapidity, 26 this contribution is nonleading. Because of the existence 
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of many competing mechanisms there seems no obvious and physically mean- 

ingful way to define the two-particle correlation. The normalization is 

comp&ated and no obvious definition seems to provide any interesting 

information. 

2. Fragmentation region 

We have also calculated the one-particle inclusive distribution in the 

fragmentation region. It is 

du 
e1 x = t b;) N s d(2) d(3) - . . cUW$~(~,~,...,N)I~ 

1 I (4.36) 

where 

d(l) d(2) . . . dN 1#,(1,2 ,..., N)12 = dI$)(1,2 ,..., N) (4.37) 

and d(1) d(2) . . . dN is the phase-space volume element. Equation (4.36) exhibits 

the Feynman’s scaling 27 - or Benecke, Chou, Yang and Yen’s li.miting distribu- 

tion28 1 do for the combination - E - 
oT ’ d3k . 

This is in contrast to the one-particle 

inclusive cross section (4.31) where de scaling behavior is violated. 

It is clear that there is no physical correlation between a left-moving and 

a right-moving fragment, in the sense that 

1 *M 

“T l LER d3k d3k = const (4.38) 

L R 

Of course, there is a strong correlation between two right- (left-) moving 

fragments. For example, for two fragments of particle a, we find 

do(2) 
elf2 d3k d3k = (rb;) 2 N(N-1) Sd(3) d(4) . . . dN lz,ba(1,2,3 ,..., N)12 . 

1 2 N=2 

(4.39) 
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3. Ratio of elastic to total cross section 

An important consequence of including the fragmentation events in the 
c, 

strong absorption is that the ratio of the elastic to the total cross section is no 

longer one half. This ratio is reduced from l/2 since the incident particles have 

only fractional relative probabilities to maintain their identities. It is only the 

sum of the elastic and diffractive cross sections that remains to be l/2 of the 

total cross section. 
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V. DISCUSSIONS 

We have presented in some detail the results of a eikonal model with 

risin;cross sections. Whether such a model represents the truth of the real 

world is not clear. Although, as mentioned in the introduction, there are some 

encouraging signs from’the recent ISR data, there are also some possible 

difficulties. Among them we mention the rapidity gap between the pionization 

region and the fragmentation region, a feature has not yet been observed 

experimentally. Perhaps the gap exists only because we have not handled the 

fragmentation properly. Clearly if a smooth transition is to occur between the 

fragmentation and the pionization region, there must be some stringent condi- 

tions on the eikonal function and the fragmentation amplitudes. Most likely the 

energy dependence of the eikonal function will be weakened and at the same 

time fragmentation states with higher masses should be incorporated. l6 We 

are not able to see how the smoothness may be achieved if the.total cross 

section is to increase as Qn2 E with the energy. 

Another difficult question concerns the validity of keeping only the ladder 

exchanges in the field theories. Many authors have issued the warning, 2g based 

on some model studies, that when all exchanged connected pieces are summed, 

the eikonal function may have an energy dependence very different from individual 

terms. The starting point of the present paper is the premise that the total cross 

sections saturate the Froissant bound. The model studied in this paper is the 

simplest one to realize this possibility. Presumably this question is also 

related to the t-channel unitarity. We have no idea how much of our results 

will be modified when the t-channel unitarity is enforced. 

We became aware of two very interesting pieces of work when this paper 

was in preparation: (1) Sugar3’ recently has studied the effect of the isospin 
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in the eikonal-Regge type model. He assumed that both the sides (called p) 

and the rungs (called YT) of a t-channel ladder carry unit isospin, and that the 

pions zre coupled to the isospin current of the p’s . In this model, Sugar 

demonstrated at high energy that the pion cannot be emitted from a ladder, and 

its emission amplitude is dampened dynamically by a power of s. Hence, any 

t-channel exchange more complicated than a ladder is suppressed dynamically 

because it involves the emission and absorption of +s from ladders. Thus, 

one is led automatically to the elastic and the inelastic contributions as given 

in Figs. 1 and 2. (2) Steinhoff31 has examined the asymptotic behavior of the 

elastic and the one-particle inclusive spectrum in the $3 ladder amplitude by 

means of statistical mechanics method. He found that the transverse momentum 

dependence in do (1) is given by 

-const 4 
f(klb e 

ki + p2 
. 

Steinhoff also demonstrated that the above result is also valid in the generalized 

ladder amplitude with the rungs being crossed in all possible ways. It should be 

pointed out that the above result is valid in the dual model as well. On the other 

hand, the above ffil) is completely different from those obtained in the straight 

ladder amplitude based on the leading logarithm approximation where only the 

correlation between nearest rungs are included, 

ff”l ieading log a3 
1 

(k2+ m2)2 
. 

Thus, the exponential damping in fRL) probably reflects the many-body corre- 

lation effects, and is insensitive to the detailed dynamics. It would be interesting 

to know which and how many of the observed hadron phenomena can be understood 

easily in terms of the statistical mechanics language. 
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FIGURE CAPTIONS 

1. The elastic amplitude studied in this paper. The lines labelled al, . . . an 

$1 , , . . ,bm) represent the fragments of particle a (particle b). The blobs 

exchanged between a and b are t-channel ladders. 

2. A typical inelastic’amplitude studied in this paper. 

3. Example of elastic amplitudes with two fragments in particle a and no 

fragmentation in particle b. The ladders link all 3 lines. 

4. Same as Fig. 3 except that the ladder only links one fragment of a to 

particle b . 

5. Elastic amplitude with three fragments in particle a and no fragmentation 

in particle b. 

6. Elastic amplitude with two fragments each in particle a and b. 

7. Ladder-exchange which leads to four-body eikonal function (i. e. , four- 

body potential), 

8. Production processes associated with Figs. 3 and 4. 

9. The generalized Mandelstam diagrams, also known as the “nested diagrams, ” 

studied in Ref. 9. 

10. (a) Multiplicity distribution in b-space; 

(b) Two relevant radii bs (half-width) and bm (maximal size) obtained 

from the distribution curve. 
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