WIDE ANGLE BEHAVIOR OF A DOUBLE SCATTERING DIAGRAM*
 Predrag Cvitanović
 Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305

Abstract

Landshoff has recently pointed out that in composite models for hadronhadron wide angle scattering, processes where the constituents remain close to their mass shells throughout the scattering can dominate the wide angle cross sections. We use a Feynman parametric integral to estimate the phase space for such a process and confirm Landshoff's result. The differential cross section for elastic $\pi-\pi$ scattering at fixed c. m, angle is found to fall off as s^{-5}, rather than as s^{-6} which is predicted by the dimensional counting rules.

(Submitted to Comments and Addenda, Phys. Rev. D)

[^0]* Recently Landshoff ${ }^{1}$ has shown that the composite hadron models for wide angle elastic scattering allow a douhle scattering process which violates dimeslonal counting rules? The fixed angle limit ($s \rightarrow \infty$ at constant t / s) of Landshoff's amplitude for $\pi \pi$ scattering is $\mathrm{Cs}^{-3 / 2}$, rather than Cs^{-2} predicted by the dimensional counting rules. Landshoff has derived this result using Sudakov variables ${ }^{3}$. As it is not clear whether it is legitimate to take the fixed angle limit before any of the integrals over Sudakov variables are performed, we rederived his result by more conventional Feynman-parametric method. Here we show how to simply estimate the fixed angle limlt of Landshoff's amplitude. The exact calculation is given in the Appendix.

Landshoff's process in its simplest form ${ }^{4}$ is given by the Fig.l. The internal (pseudo)scalar elementary constituents have mass $\mu^{2} \ll s$, and couple to each other through a 4 -point hare vertex. As long as $\mu^{2} \gg \mathrm{~m}^{2}$, in the fixed angle limit the pion mass can be neglected. This diagram is fully symmetric in s, t and u, where

$$
\begin{equation*}
s=\left(p+p^{\prime}\right)^{2}, t=4 q^{2}, u=\left(p-p^{\prime}\right)^{2} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
s+t+u=0 \tag{2}
\end{equation*}
$$

and we will preserve this symmetry throughout our calculation. The amplitude is proportional to ${ }^{5}$

$$
\begin{equation*}
M=\int \frac{d z_{\epsilon} \delta\left(1-z_{G}\right)}{U^{2} V^{2}} \tag{3}
\end{equation*}
$$

where $d z_{G}=\prod_{i=1}^{4} d z_{i} d z_{i^{\prime}}, \quad z_{G}=\sum_{i=1}^{4} z_{i}$

$$
\begin{align*}
& z_{i}=z_{i}+z_{i}^{\prime} \\
& u=z_{1} z_{2} z_{3}+z_{i} z_{2} z_{4}+z_{1} z_{3} z_{4}+z_{2} z_{3} z_{4} \tag{4}\\
& v=\mu^{2}-G \tag{5}
\end{align*}
$$

In calculating G it is convenient to isolate the dependence on the external momenta in new variables x_{i} defined by

$$
\begin{align*}
& z_{i}=z_{i}\left(\frac{1}{2}+x_{i}\right) \\
& z_{i}=z_{i}\left(\frac{1}{2}-x_{i}\right), \quad-1 / 7 \leqslant x_{i} \leqslant \quad 1 / 7 \tag{6}
\end{align*}
$$

Method of Ref. 5 or Symanzik rules ${ }^{6}$ lead quickly to

$$
\begin{equation*}
G=\frac{Z}{U}\left[\left(x_{1} x_{4}+x_{2} x_{3}\right) s+\left(x_{1} x_{2}+x_{3} x_{4}\right) t+\left(x_{1} x_{3}+x_{2} x_{4}\right) u\right] \tag{7}
\end{equation*}
$$

where we have repeatedly used (2) and

$$
Z=z_{1} z_{2} z_{3} z_{4}
$$

Because of (2) G vanishes whenever any three x_{i} are equal. This can be understood in terms of the electric network analogy ${ }^{7} ; x_{i}=x_{j}=x_{k}$ means that the external lines attached to i, j, k, are equipotential with respect to the remaining external line (See Fig.?), and G must depend symmetrically on s, t, and u in this region of the parametric space. The only symmetric combination linear in s is $s+t+u=0$. Hence, no matter how large are s and t, there will always be a region of x-space where the integrand is finite oof order μ^{-4}). This phase space is characterized by the proximity of any three x_{i}, and the fourth x_{j} can he essentially removed from the problem by the redefinition

$$
\begin{align*}
& x_{4}=x \\
& x_{i}=x+y_{i} \quad i=1,2,3 \tag{8}
\end{align*}
$$

In the new variables the amplitude (3) is given by

$$
\begin{aligned}
& M=\int \frac{d z_{1} \cdots d z_{4}}{\not Z} \delta\left(1-\sum_{i=1}^{4} z_{i}\right) I \\
& 1=\int_{-1 / 2}^{1 / 2} d x J \\
& J=\int_{-1 / 2-X}^{1 / 2-X} d y_{1} d y_{2} d y_{3} \frac{1}{\left[\bar{\mu}^{2}-\left(y_{2} y_{3} s+y_{1} y_{2} t+y_{1} y_{3} u\right)\right]^{2}} \\
& \bar{\mu}^{2} \equiv \frac{u}{z} \mu^{2}
\end{aligned}
$$

and all s, t, and u dependence is contained in the three dimensional integral J. (An exact evaluation of J is given in the Appendix). In s-channel the denominator has form.

$$
\begin{equation*}
\bar{\mu}^{2}-y_{2} y_{3} s+y_{1} y_{2}|t|+y_{1} y_{3}|u| \tag{10}
\end{equation*}
$$

and it vanishes along a two-sheet hyperboloid in y-space. (There the integration contour for J is defined by the Feynman prescription $\mu \rightarrow \mu-i \varepsilon$, We are always able to go to a new set of y-axis for which (10) diagonalizes. Such a transformation is explicitly carried out in the Appendix; we simply note that it introduces a finite constant Jacobian c, and even though the new integration volume has a complicated boundary, this is unimportant, because the leading contribution arises from the region of y-space close to the origin. Now J is given by

$$
\begin{equation*}
J=c \int_{V} d y_{1} d y_{2} d y_{3} \frac{1}{\left[\bar{\mu}^{2}-i \varepsilon+s y_{1}^{2}+|t| y_{2}^{2}-|u| y_{3}^{2}\right]^{2}} \tag{11}
\end{equation*}
$$

As the poles of (11) in the complex y-plane are in the second and fourth quadrants, and the integrand away from the oripin can be neglected in the fixed angle limit, we can wick rotate the y-axis, ortaining,

$$
\begin{equation*}
v=i c \int_{V} d y_{1} d y_{2} d y_{3} \frac{1}{\left[\bar{\mu}^{2}+5 y_{1}^{2}+|t| y_{2}^{2}+|u| y_{3}^{2}\right]^{2}} \tag{17}
\end{equation*}
$$

Whin the ellipsolit given by the equation

$$
\begin{equation*}
\bar{\mu}^{2}=\frac{y_{1}^{2}}{s^{-2}}+\frac{y_{2}^{2}}{|t|^{-1}}+\frac{y_{3}^{2}}{|u|^{-1}} \tag{13}
\end{equation*}
$$

the integrand of J is of order $\bar{\mu}^{-4}$, while outsite it vanishes rapitiy ($s \gg \bar{\mu}^{2}$), so that J is proportional to the volume of the ellipsoid (13):

$$
\begin{equation*}
J \sim \frac{\bar{\mu}^{3}}{\sqrt{s t u}} \frac{i c}{\bar{\mu}^{4}} \tag{14}
\end{equation*}
$$

Consequently, the fixed angle limit of the amplitude M is

$$
M=\frac{C}{\mu \sqrt{s t u}}
$$

where $c \sim i c \int d Z_{1} \ldots d Z_{4} \delta(1-\Sigma Z i)(z \cup)^{-1 / 2}$ is a finite constant, in agreement with Landshoff.

A more realistic model, such as the spin-half quarks plus scalar gluons used hy Landshoff reduces to (3) in the fixed angle limit because the s^{-2} arising from the gluon proparators is canceled by the s^{2} from the fermion traces. However, in such a model we also have to insure the convergence of the overall amplitude by introfucing form factors for the external pion vertices.

ACKNOWLEDGMENTS

I would like to thank Stan Brodsky for stimulating discussions of wide angle scattering and for bringing the ahove problem to my attention. His unpuhlished calculation of the above process in the infinite momentum frame provides still another confirmation of Landshoff's result. 1 would also like to thank Terry Goldman for reading and correctina the manuscrint.

APPENDIX

Here we shall evaluate exactly the fixed angle limit of the Integral J given by (9). The form of the denominator (10) suggests scaling

$$
\begin{aligned}
& y_{1} \rightarrow \sqrt{\frac{s}{t u}} y_{1} \\
& y_{2} \rightarrow \sqrt{\frac{u}{s t}} y_{2} \\
& y_{3} \rightarrow \sqrt{\frac{t}{s u}} y_{3}
\end{aligned}
$$

In the $s \rightarrow \infty$, fixed t / s, imit the integration in J in terms of the scaled variables goes over all space. (if $X= \pm 1 / 2$, the integration is restricted to one octant of y-space. This integral can also be evaluated, but as it makes no contribution to the integral 1 in (9), we shall not evaluate it here). Hence the J of interest is given by

$$
\sqrt{s t u} J=\int_{-\infty}^{\infty} d^{3} \frac{1}{\left[\bar{\mu}^{2}-i \varepsilon-y_{2} y_{3}+y_{1} y_{2}+y_{1} y_{3}\right]^{2}}
$$

Next we diagonalize the denominator by the change of variables

$$
\begin{aligned}
& \bar{y}_{3}=2^{-1 / 2}\left(-y_{1}+y_{2}+y_{3}\right) \\
& \bar{y}_{2}=2^{-1 / 2}\left(y_{2}-y_{3}\right) \\
& \bar{y}_{1}=2^{-1 / 2} y_{1}
\end{aligned}
$$

obtaining

$$
\sqrt{s t u} J=\sqrt{2} \int d \frac{3}{y} \frac{1}{\left[\bar{\mu}^{2}-i \varepsilon+\bar{y}_{1}^{2}+\bar{y}_{2}^{2}-\bar{y}_{3}^{2}\right]^{2}}
$$

In the y_{3}-plane, the poles lie in the second and fourth quadrants. Performing a wick rotation, we obtain a spherically symmetric Integrand. Straightforward integration yields

$$
J=\frac{i \sqrt{2} \pi^{2}}{\bar{\mu} \sqrt{s t u}}
$$

This leads to the following exact expression for the amplitude M from Eq. (3);

$$
M=\frac{1}{\mu \sqrt{s t u}} i \pi^{2} \sqrt{2} \int_{0}^{1} d Z_{1} d z_{2} d z_{3} d z_{4} \frac{\delta\left(1-\sum^{4} Z_{i}\right)}{\sqrt{z U}}
$$

REFERENCES

```
1. - P.V. Landshoff, Cambridge University preprirt DAMTP 73/36,
    (1973).
2. S.J. Brodsky and G.R. Farrar. Phys.Rev.Letters 31,
    1153(1973).
    V. Matveev, R. Muradyan, and A.Tavkhelidze, Nuovo Cim.Lett. I,
    719(1973).
3. V.%. Sudakov, Soviet Phys. J.E.T.P. 3, 65 (1956).
4. This model was suggested by S. Brodsky.
5. P. Cvitanovid and T. Kinoshita, Cornell University
    preprint CLNS-209 (1973), suhmitted to Phys. Rev. D.
6. K. Symanzik, Progr. Theor. Phys. 20, 690 (1958).
    R.J. Eden, P.V. Landshoff. D.I. Olive and J.C. Polkinghorne,
    The Analytic S-Matrix. (Cambridye University Press, 1966),
    Sec. 1.5.
7. J.D. Rjorken and S.D. Drell, Relativistic Quantum Fields,
    (McGraw-Hill. New York, 1965), Sec 18.4.
    see also ref. 5 and references therein.
```

 FIGURE CAPTIONS
 1. A morel of TT-TV wide angle scattering.
2. An electric circuit analogy of the region in the
Feynman-parameter space for which the three external
legs are "equipotential". Amplitude should depend
on s, t, and u symmetrically.

Fig. 1

Fig. 2

[^0]: * Supported by the U. S. Atomic Energy Commission.

