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ABSTRACT 

Landshoff has recently pointed out that in composite models for hadron- 

hadron wide angle scattering, processes where the constituents remain close 

to their mass shells throughout the scattering can dominate the wide angle cross 

sections. We use a Feynman parametric integral to estimate the phase space 

for such a process and confirm Landshoff’s result. The differential cross 

section for elastic r-x kattering at fixed c. m. angle is found to fall off as 

S-5 , rather than as s -6 which is predicted by the dimensional counting rules. 

(Submitted to Comments and Addenda, Phys. Rev. D) 

* Supported by the U. S. Atomic Energy Commission. 
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Recently Landshoff has shown that the composftc hadron 

models for WI de anal e elastic scatterlnp: allow a douh 1 e 

scattering p.rocess which violates dllmesfonal count?ng rules?. 

The fixed anlrle limit ( s 300 at constant t/s) of Landshof f ’ s 

amp1 1 tude for J--X scatterrng Is Css3/’ , rather than Cg2 

predicted by the dTmensIona1 counting rules. Landshof f has 

derived thfs result ustng Sudakov varlahles3. As It is not 

clear whether it Is legitimate to take the ftxed angl e limit 

before any of the integrals over Sudakov variables are 

pe rf armed, we rederlved his result by more conventlonal 

Feynman-parametric method. Here WC show how to simply 

estimate the ftxed angle limit of Landshoff’s amplitude. The 

exact calculation is Riven in the Appendix. 

Landshoff’s process In its simplest form4 Is Riven hy 

the Fifs.1. The Internal (pseudo)scalar elementary 

constituents have mass p2 << s, and coup1 e to each other 

through a 4-pal nt bare vertex. As lone as ji”>> m2 , in the 

fixed angle 1Imit the pion mass can be neglected. Th i s 

diagram Is fully symmetric in s,t and u, where 

= (P+Pv2 , t 2 
2 

S = 4s , u = (p-p’) (1) 
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s+t+u=O (2) 
4 

and we will preserve this symmetry throughout our calculation. 

The amplitude is proportional to * 

&Q 
J 

6 i\-zG) 

M = 
v’ IIT2 

where dzC = 
i--i 

dzidzt/ , 

u = Z, Zzz, + zi ZzZq + Z, ZJ Z+ + Z,Z,Zq 

(3) 

(4) 

V=+G (5) 

In calculatinq G it Is convenient to isolate the 

dependence on the external momenta in new variables xtdefined 

bY 

-l/7 < x;& l/7 (6) 
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Method of Ref.5 or Symanzik rules 
6 

lead quickly to 

4 
E 

G =v (x,x~+x2x3)s + (x,xz+x x It + 34 (x,x3+xzx,)lJ 
I 

(7) 

where we have repeatedly used (2) and 

Because of (2) G vanishes whenever any three xi are 

equal. This can he understood In terms of the electric 

7 
network analogy ; xi = xi = xk means that the external lines 

attached to i,j,k, are equlpotential wf th respect to the 

remaining external line (See Flg.71, and G must depend 

symmetrical ly on s, t, and u in this reEion of the parametric 

space. The only symmetric combination linear In s Is s+t+u=O, 

Hence, no matter bow larr?;e are s and t, there will always be a 

region of x-space where the fntegrand is finite (of order ,u-+ 

1. This phase space is characterized hy the proximity of any 

three xi # and the fourth xjcan be essenttally removed from 

the problem by the redefinition 

x4 = x 

Xi = x + XL I =1,7,3 (8) 

In the new variables the amplitude (3) is yivcn hy 
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and all s,t,and u dependence is contalner! in the three 

dlmensional integral J. (An exact evaluation of J Is p,iven fn 

the Append! x1. In s-channel the denominator has form- 

-2 
P- y2y3 s + y, yr ItI + Y, Y3 lu[ ( 10 1 

and it vanishes along a two-sheet hyperholold In y-space. 

(There the inte,qratlon contour for J Is defined by the Feynman 

prescription pl + fi-lE 1. We are always able to go to a 

new set of y- axls for which (10) diagonallzes. Such a 

transformation is explicltely carried out In the ,?pijenl!ix; We 

simply note that It introduces a finite constant Jacobian c, 

and even though the new integration volume has a complicated 

boundary, this is unimportant, because the leading 

contribution arlses from the region of y-space close to the 

origin. Now J 1s riven hy 
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- 
J = c J. 1 

AY, dyzdy3 
pzie + sy,2+ WY;: -l~lY;l” 

(11) 

v 

As the poles of (11) In the complex y -plane are in the 

second and fourth quadrants, and the InteRrand away from the 

ori,qin can he neglected in the fixer! angle 1 imit, we can Wick 

rotate the Y -axis, obtslnlnc 

J = tc 

/ 

dY, ffYzdY3 
1 

(17) 

V 

IJithin the ellipsof+ given by the equation 

(13) 

the 1ntep;rand of J is of orrisr p-4 while outslde It vanishes 

rapi+ly ( s >)fi’), so that J Is proportional to the volume of 

the ellipsoid (13): 

(14) 
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Consequent 1 y, the fixed an,Fle limit of the amplitudct 14 Is 

where C N ic di!, . . J 

agreement wtth Landshoff. 

Is a finite constant, in 

A more realistic model, such as the spin-ha1 f quarks 

pl us scalar gl uons used hy Landshoff reduces to (3) In the 

fixed ancle lim! t because the sW2 artsIng from the 01 uon 

propagators is canceled +y the s2from the fermlon traces. 

However, in such a modP1 we also have to 1 nsure the 

convergence of the overal 1 amp1 i t(Jde hy introducing form 

factors for the external pion vertices. 
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APPENDIX 

4 Here we shall evaluate exactly the ffxed angle limit of 

the Integral J given by (9). The form of the denomlnator (101 

suggests sca.1 inE 

t 
y3 - su y3 i-- 

In the s+W , fixer! t/s, limit the integration In J In terms 

of the scaled vat-tab1 es goes over al 1 space. (1 f X = 21/Z, the 

integration is restricted to one octant of y-space. Th I s 

integral can also he evaluated, but as It makes no 

contribution to the integral 1 tn (91, we shall not evaluate 

it here). Hence the J of Interest Is given by 

v35 J = \ dj 
1 

\ 
-00 [ p2-ic -.yz.Y3 + Y>‘,Y2 + XYJ’ 

Next we diagonallze the denominator by the change of variables 



73 = A,, +y2+y3 1 
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- 
& = 2?(Yz’Y3 1 

71 = z”ly, 

obtaining 

In the yg-plane, the poles lie in the second and fourth 

quadrants. Performing a Wick rotat ion, we obtain a 

spherlcally symmetrtc integrand. Straightforward integration 

yields 

This leads to the following exact expression for the amp1 itude M 

from Eq, (3); 
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FIGIIRE CAPTIONS 

1. A model Of ?T-Xwide angle scatterlnp, 

2. An eiectrlc circuit analogy of the region in the 

Feynman-parameter space for which the three external 

legs are 'sequipotential". Amplitude should depend 

on s,t, and u symmetrically. 
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