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ABSTRACT

Landshoff has recently pointed out that in composite models for hadron-
hadron wide angle scattering, processes where the constituents remain close
to tﬁeir mass shells throughout the scattering can dominate the wide angle cross
sections. We use a Feynman parametric integral to estimate the bh_ase space
for such a process and confirm Landshoff's result. The differential cross
section for elastic -7 sc‘ai:tering at fixed c¢. m. angle is found to fall off as

s—s, rather than as s—6 which is predicted by the dimensional counting rules.

(Submitted to Comments and Addenda, Phys. Rev. D)
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Recently Landshoffl has shown that the composite hadron
models for wide angle elastic scattering allow a douhle
scatterlngv process which violates dimesional counting rulesz.
The fixed angle limit ( s —»e0 at constant t/s) of Landshoff's
amplitude  for J[ I scattering is Cs™¥2 , rather than Cs2
predicted by the dimensional counting rules, Landshoff has
derived this vresult using Sudakov variab1e53. As 1t Is not
clear whether it is legitimate to take the fixed angle 1imit
before any of the Integrals over Sudakov vartables are
performed, we rederived his result by more conventlonal
Feynman-parametric method, Here we show how to simply
estimate the fixed angle 1imit of Landshoff's amplitude., The
exact calculation is given in the Appendix.

Landshoff's process in its simplest formu

is given by
the Fig.1. The internal (pseudo)scalar elementary
constituents have mass f§'<< s, and couple to each other
- through a kl-polnt bare vertex, As long as/K2)> mz , In the

fixed angle 1imit the pion mass can be neglected, This

diagram is fully symmetric In s,t and u, where

2 2 »
s = (p+p') , t = hqz , u = (p~p") (1)



s + t + u=210 (2)

and we will preserve this symmetry throusghout our calculation.

The amplitude Is proportional to °
dze 50 -Z¢)
M = UZ Yz . (3)
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z

V= -G (5)

In calculatine G 1t s convenient to lisolate the
dependence on the external momenta In new variables x;defined

by
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Method of Ref.5 or Symanzik rules6 lead quickly to

G =“:G»’ [(x‘x4+xzx3)s + (x‘x2'+x3x4)t + (x‘x3+xzx4)u]
(7)

where we have repeétedly uséd (2) and
X = 2,2,2374

Because of (2) G vanishes whenever any three xg¢ are
equal, This can he understood in terms of the electric
network analogy7; X{ = xj = xg means that the external lines
attached to 1,j,k, are eduipotentia] with respect to the
remaining external 1ine (See Fig.?), and G must depend
symmetrically on s,t, and u in this region of the parametric
space., The only symmetric comhination linear In g Is s+t+u=0,
Hence, no matter bow large are s and t, there will always he a
region of x-space where the integrand is finite (of order /L-+
). This phase space is characterlzed by the proximity of any
three x.; , and the fourth xrcan be essentifally removed from

J
the problem by the redefinition

X -

X + ¥ 1=1,7,3 : (8)

X4

X{

In the new variables the amplitude (3) is ziven by
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and all s,t,and u dependence 1Is contained 1In the three

dimensional integral J, (An exact evaluation of J Is given in

the Appendix). In s=channel the denominator has form-
-2
M= vvgs + vy % th + y v, lul (10)

and it vanishes along a two-sheet hyperholold 1In y-space.
(There the Integration contour for J Is defined by the Feynman
prescription }l-ﬁ'}*'ii }. We are always able to go to a
new set of y-axis for which (10) diagonalizes, Such a
transformation s explfcltely carrfed out in the Appentix; Wa
simply note that It Introduces a flnite constant Jacobian ¢,
and even though the new integration volume has a complicated
boundary, this Is unimportant, because the leading
contribution arises from the region of y-space close to the

origin, Now J is given by



-

1
J = ¢ [dy, dy, dy (11
/. R R - le o syr+ltly: -1wiy3]*
V . -

As the poles of (11) in the complex y =plane are in the
second and fourth quadrants, and the integrand away from the
origin can he neglected in the fixed angle limit, we can Wick

rotate the vy =-axlis, obtalining

J = IcJ/Ly‘dyzdy3 ! Y (17)
/ LAt syl itlyd+1wlys]

Within the ellipsold given by the equatlion

2
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4,

the Integrand of J is of order }1-, while outside It vanishes
rapidly ( s >)}lz), so that J Is proportional to the volume of

the ellipsoid (13):
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Consequently, the fixed angle 1imit of the amplitude M Is

C
M= mVstu

: -
where C~ic dZ,..d245(1“737LL)(21U) Is a finite constant, In

agreement with Landshoff,

A more reallstic model, such as the spin-half quarks
plus scalar gluons wused by Landshoff raduces to (3) In the
fixed angle 1Imit because the s”% arising from the eluon
propagators is canceled hy the szfrom the fermion traces,
However, 1in such a model we also have to insure the

convergence of the overall amplitude by introducing form

factors for the external pion vertices,
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APPENDI X

- Here we shall evaluate exactly the fixed anglie 1imit of
the integral J given by (9), The form of the denominator (10)

suggests scaling

! $
y1—+ +tu y‘

V3T VSU V3

In the s=2e0 , flxed t/s, 1imit the Integratlion In J In terms
of the scaled variahles goes over all space. (If X =21/2, the
integration 1Is restricted to one octant of y-space, This
integral can also be evaluated, but as it makes no
contribution to the integral | In (9), we shall not evaluate

it here), Hence the J of Interest Is given by

1
[ a%-ie =Y Ya+ YiYa + K¥1°

Vst J = \Iz:‘y
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Next we diagonalize the denominator by the change of variables
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obtaining

3 i
Vet J = dy = =

In the ys-plane, the poles 1ie in the second and fourth
quadrants, Performing a Wick rotatlion, we obtain a

spherically symmetric Integrand, Straightforward integration

yields

LVZ et

AVstu

This leads to the following exarct expression for the amplitude M

from Eq.(3):;

i 4
b $(1—2Z1)
SN NS vzf 2,47,42
) avsta J 42,47, 8%,424 v &U
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FIGURE CAPTIONS

p model of TI-T{ wide angle scattering,

An e!ectrfc circuit analogy of the region in the
Feynman=-parammeter space for which the three external
legs are "equipotential’, Amplitude should depend

on s,t, and u symmetrically,
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