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ABSTRACT 

Granted that the basic logical requirement of a particle theory is to be able 

to assert that a particle is “here” “now” rather than “there” and/or “then”, the 

implied operational device is a system of particle detectors which can make these 

basic discriminations. Given such devices, their successful operation requires 

the existence of a limiting velocity. Given devices that can change particle 

velocities in both magnitude and direction in a reproducible way, a Lorentz- 

invariant mass can be operationally defined. Accepting the wave-particle duality 

(operationally definable either in terms of a grating or in terms’of the uncertainty 

principle in energy-time) implies (under the Democritean assumption of a 

smallest mass) changes in particle number (the Wick-Yukawa mechanism). 

Granted this mechanism, the conventional quantum scattering formalism for 

hadron scattering at finite energy can be recovered without postulating either 
-. 

“interactions” or “analyticity”. By identifying the velocity-changing devices as 

electromagnetic fields whose sources can be calculated from particle wave func- 

tions, and by calculating the systemic properties of particles which move in the 

fields generated by other particles, the devices needed for the operational 

definition of particles can be described in terms of the particles so defined, to an 

accuracy of order e’hc. Thus the operational definition of particle can be made 

self-consistent and self-generating to that accuracy. 
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(Submitted to Foundation of Physics. ) --- -- 



The atoms of Leucippus and Democritus had no “natural” or “original” 

motion; their random collisions were strikingly similar to the nineteenth 

century model for the kinetic theory of gases. Epicurus assumed that the atoms 

were falling in straight lines and that it was necessary to postulate that some of 

them “swerve” in order to initiate the processes’which lead to the generation 

(and decay) of worlds. His random element in atomic theory has been criticized 

as foreign to the basically materialistic and deterministic focus of this natural 

philosophy. In recent years we have learned from the success of quantum 

mechanics that determinism does not inhere in the individual atomic events. The 

approximate validity of determinism stems from the calculable flow of probability 

amplitudes from. the past up to some event in which the massive particles involved 

in that event manifest (potentially) observable aspects of their particulate behavior. 

The random character of these individual events supplies a quantum mechanical 

resolution of the puzzle posed by ancient atomism. We present below a complete 

descriptive phenomenology for the scattering of massive particles as the starting 

point of a coherent development of this modern atomic point of view. 

The “derivation” of the quantum scattering formalism in Section III originated 

in response to a query from John Bell(l) about a paper entitled “Fixed Past and 

Uncertain Future” by this author (2) . That paper made use of the interpretation 

of quantum mechanics developed by Thomas E. Phipps, Jr. (3,495) which perfects 

the correspondence between classical and quantum mechanics by retaining degrees 

of freedom represented classically by constants of the motion as a phase factor of 

the Schrcedinger wave function. Phipps’ theory is dynamical in that he starts 

from the Hamilton- Jacobi equations, including the “interaction terms”; the 

scattering theory developed below is “kinematical” in the sense that it makes use 

only of the (non-interacting) “free particle solutions” of those equations. Thanks 
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to discussions with Ted Bastin (69 7) revolving around the idea that it is mass 

rather than “action” that is quantized, the author eventually reached the “obvious’* 

conclus?on that quantum scattering theory need make no reference to interactions; 

all that is needed is an understanding of the phenomenology of particle wave 

functions and the existence of some -mechanism which generates scattering 

events. The philosophy lying behind this approach is already implicit in Wick’s 03) 

derivation of the connection between the mass of Yukawa’s (9) heavy quanta (now 

called mesons or more specifically pions) and the range of nuclear forces. 

Wick’s argument shows that s theory which couples the uncertainty principle 

to the mass-energy relation necessarily implies the possibility of fluctuations in 

particle number “within small enough space-time volumes, and hence scat&rings 

of massive particles. Whether or not these fluctuations arise from “interactions” 

is a separate question, which we claim can be severed from the phenomenology 

by an incisive use of OccamVs Razor. We perform this operation below by first 

providing a precisely limited definition of the concept of t’particle” as it enters 

into scattering theory and then proceeding from that definition to the construction 

of a phenomenological transition matrix which is connected to cross sections 

(“observablesfl) in the conventional way. We then justify the measuring devices 

used a posteriori by showing that the theory implies that they can be constructed. 
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II. WHAT IS A PARTICLE? 

In order to distinguish particles from the void we must be able to distinguish 

something from nothing. The basic operational device for a particle theory is a 

lipartiTle detector” that can tell us whether a particle is “there, 17 or conversely 

that only void is “there. rr If this statement cannot change, we cannot decide 

whether the detector is functioning or not. A detector must be able to tell us 

whether or not the particle is there “now. 11 

We make this vague requirement quantitative by means of auxittiary de,vices 

which - to start with - are simply the If rigid rods” and 1f uniform rate cLocks7’ of 

special relativity. From the start we assume that the measurements made by rods 

and clocks are macroscopic, i. e. that the human observer can uniquely define 

distance intervals and time intervals relative to those rods and clocks by a sequence 

of ‘I operations It (in Bridgman’s sense (1OJl) . For the moment all we need assume 

is that to some finite accuracy a particle detector can say that a particle was 

If there” within a distance Ax f’duringlf a time interval At, that-the distance between 

two particle detectors can be measured by a rigid rod to be (T = I x1-x2 I , that we 

can state unambiguously whether a particle was in detector 1 before or after it was 

in detector 2, that the time interval between these two happenings Q- = t2-tl can be 

measured by a uniform rate clock, and that the uncertainties in Ax 1’ A%, A$ 

At2, (7, and 7 can all be as small, both individually and collectively, as the smal- 

Lest of any of these quantitative measures. 

If the average velocities between detectors, i. e. cr/7, can be arbitrarily large, 

then the particles with these very large velocities could be used to measure the 

dimensions of the detectors themselves to arbitrarily high precisions. If we could 

refine their size measurement down to arbitrarily small dimensions, this would 

imply that the particles can be arbitrarily small, and our basic separation of 
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particles from the ,void would dissolve into a continuum. We claim, therefore, 

that there is a logical (and not just an experiential) difficulty in assuming that 

- velocities can be arbitrarily Large in any Democritean theory. Our way of meeting 

this difficulty is simply to postulate that there is a Limiting velocity defined rela- 

tive to the rods and clocks we have introduced. .Then non-overlapping particle 

detectors specify a unique labeling xi, ti for each event in each detector i, up to 

the resolutions of the detector Axi and Ati. 

The problem would be simple if, experientially, we could reduce the basis 

set of detectors to four, and relate all other events to the distances between these 

detectors, and time scales calibrated by the passage of particles through this 

reference set. That we cannot do so reflects genuine inhomogenieties in the space- 

time description of events, such as rotation relative to the l’receeding galaxis” 

and the “rod shift . ff These spatial and temporal inhomogeneities, though obser- 

,vationaLly f’reaL’l enough, could very well be due to a process of development in 

time, and need not necessarily indicate basic inhomogeneities in the space-time 

framework itself. 

Although we invoked “galactic coordinates” to indicate the experiential 

limitations of our construction, all we have said that does not depend on them 

could refer to motion of particles along a single line. We postulated a unique - 

sense in which time increases by taking T = t 2 - tl, but cannot yet distinguish left 

from right because for distances we only assumed that cr = I x2 - x1 I . This 

implies either a symmetry in nature not exhibited by the events themselves, or 

an inadequacy of description, which cannot be removed by postulating a single 

direction perpendicular to the relative velocity between two detection systems 

referred to in the Lorentz transformations. Two directions orthogonal to each 
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other as well as to this axis suffice to allow us to set up four labeled (non-coplanar) 

detectors which allow us to define ‘I left” as distinct from its non-superposable 

11 righTI alternati,ve. In other words, we insist that both the direction of time 

sense and the macroscopic distinction between If left” and f!rightfl are primitive 

experiential facts which our operational definitions must be capable of describing. 

Granted this, our assumption that (to some accuracy) inertial systems cannot be 

used to determine galactic coordinates, we can complete the construction of the 

Lorentz transformations in Minkowski space-time in the usual way. 
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Using this kinematical (geometrical) definition of particle motion, we can 

go on to a kinematical (mechanical) definition if we have available auxilliary 

deviceSYhat can change either the magnitude or the direction of the velocity of 

the particles. For charged particles these can be, respectively, electric and 

magnetic fields. We invoke these (external, static) %eldsf~ in order to define 

the mass of a charged particle m as a positive scalar invariant under Lorentz 

transformations m = + %I-. The quantities E and p are called 

the energy and momentum respectively. They are defined mathematically in 

terms of the velocity of the particle v by E(V) = mc2 (1 -v 2 2 -1/2and /c ) 

2 2 -l/2 ~3(vJ = mx(l-v /c ) . Operational definitions assume that the change in the 

energy of a particle of electric charge e that crosses a gap across which a 

potential difference V (as measured by a voltmeter) is sustained is eV (the 

average electric field &, if the distance across the gap in the direction in which 

the velocity of the particle changes is D, is simply V/D); similarly p, the radius 

of curvature of the trajectory of a particle moving through a uniform magnetic 

field of strength 33 is related to its charge e and momentum p by p = cp/e 53 . 

Since this radius of curvature can be defined geometrically, i. e. , using particle 

detectors, all we need to complete the operational definition is the fact that the 

“magnetic field” at the center of a circular loop of wire of radius r in which a 

current I as measured by an ammeter is flowing is given by 33 = 2 rI/r, if the 

correlated definition given above refers to the radius of curvature projected onto 

the plane of the loop. 

These operational definitions, in addition to geometrical concepts and the 

unspecified devices “voltmeterJ1, trgapll, llammeterIf, “wire 10op~~, introduce a 

new constant e which is also assumed to be a Lorentz scalar, along with two new 

types of measurement. The whole system of particle detectors, voltage, current, 
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velocity change and radius of curvature (velocity direction change) enable us to 

determine both the electric charge e and the mass m of a particle. If the initial 

veloci-Q is measured to be vO= (T 0 /T o, the energy change in crossing a voltage 

gap V is related to the final velocity v = U./T by E(V) - E (v,) = eV; if the direction 

rather than the magnitude of the velocity is changed by.a magnetic field of 

strength &B producing a radius of curvature o (in which case v=v& then 

P(v) = I = eB&. These relations can be solved to determine e and m in 

terms of the measurable quantities aO, u‘, TV, T , V , I, ,J in various ways depending 

on the experimental setup. Similarly, once we have measured the charge and 

mass of identifiable particles, we can use the above relations to calibrate the 

readings given by additional voltmeters and ammeters, and hence indirectly to 

measure 8 and 3 via particulate motion. Historically, the measurement of 

elementary charges was carried out by Millikan using microscopic observations 

of the behavior of oil drops in air, but now that detectors which measure the 

passage of charged particles as individual events are standard equipment, we 

believe the operational definition just given is much simpler. 

Experientially, of course, the above definitions would not be of much use 

were there not a large number of very different experimental contexts in which 

we could both measure charges and masses of particles and demonstrate these 

charges and masses to be Lorentz scalars. Once we have convinced ourselves 

that this is so, in any single coordinate system describing a system of particles, 

each moving with constant velocity, it is a trivial consequence of our formalism 

that (measured in a single inertial frame) the sum of their energies and the vector 

sum of their momenta are individually conserved. That this is also true when, 

in an isolated system, the individual velocities change from their initial values 

to some other set, was the basic reason for introducing the concept of mass 
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into mechanics in the first place. To the extent that these conservation laws 

hold, the operational definitions given above for charged particles can be extended 

to defile what we mean by electrically neutral particles and measure their masses, 

as has been discussed elsewhere. (12) 

Up to this point the operational. definitions we have set up suffice to estab- 

lish the classical relativistic kinematical description of a system of particles, 

but this is not enough to establish a system that we call “Democritean”. The 

first reason has already been hinted at above. Unless there is some way to put 

a limit on the (smallest) size of detector, our basic distinction between atoms 

and the void dissolves back into the continuum. One way to set such a limit 

would be to assume that there is a smallest charge e and lightest mass me, which 

is obviously a Democritean postulate, in agreement with experiment, and defines 

experientially a unit of length e2/mec2 = 2.8x 10 -13 cm. But Eherenfest already 

showed in the nineteenth century that no system containing only charged particles 

is stable. When Lorentz tried to force the Maxwell theory down to the limiting 

distance e2/mec2 (at which the electrostatic energy associated with a charge of 

still smaller average dimensions exceeds its rest mass-energy), he ran into 

inconsistencies and infinities that were never resolved. This length is a good 

estimate of where classical relativity must break down, but does not indicate 

where to look for a different 7ffundamental length” or some other novel concept 

that might resolve the classical paradoxes. 

The second reason why we cannot accept a classical relativistic particle 

theory as Democritean, even if some consistent way were found to introduce a 

fundamental length into it, is more subtle. Such a theory is static in the (four- 

dimensional) Minkowski space, and incapable, internally, of describing change. 

In practice, theories of this type are used to make causal predictions after the 
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system has (at least implicitly) been set up by the experimenter (or some other 

l*dietylf). Such an implicit introduction of an entity outside the system in order 

to give”it operational significance (a logical requirement of deterministic theories ?) 

seems even more foreign to an atomic and materialistic philosophy than the 

“swerve” of Epic&us, or its modern counterpart, the random events of quantum 

mechanics. But these random aspects of particles are by now well known, 

operationally definable as we demonstrate below, and lead to the additional 

constant (beside m and c) needed to set the (local) scale of our Democritean 

particle theory. 

The measurement of the particulate unit of electric charge via the oil drop 

experiment is not easy to describe. Our proposed operational definition of 

“charged particle” using particle detectors is, hopefully, more direct. One 

way to approach a simple operational definition of the wave-particle duality 

aspects of quantum mechanics, is to exhibit the measurement of deBroglie waves 

by means of a “reflection grating”. This need not be a new device, since we can 

invoke the measurement system already defined to justify the idea of a rectilinear 

array of particle detectors with equal spacings d between them. Then if a ttbeam71 

of particles falls on this array, and we have a system of detectors at a distant 

region close to the direction of specular reflection 0s from the array, we find 

a system of maximum and minimum counts (as we accumulate data) as a function 

of angle 8 with maxima at on= Qs f nAC3 . The measured constant A0 is related 

to the spacing between detectors in the “grating” and the momentum (assumed 

well defined) p of the particles in the beam by (h/p) = (d/2) cos (es+Ae) - cos es , 
C 1 

where h is Planck’s constant. It would be a useful exercise for a quantum 

mechanics class to show that if the setup is used to record both the single reflec- 

tion event from single detectors in the “grating” and the correlated count in a 
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single detector in the angular array, these correlated counts would give only 

the “diffraction” patterns determined by the individual detectors in the “grating”, 

while &e uncorrelated distribution in 8 exhibits the *‘interference pattern” used 

above to define h. Historically, of course, the measurement of these ‘IdeBroglie 

wavesff by Davisson and Germer was a confirmation of a quantum mechanical 

prediction, and not a defining characteristic. 

The interference phenomena illustrated in the last paragraph require a 

definition of what we mean by a particle which not only allows us to define its 

velocity via detections in two or more particle detectors, and its energy, 

momentum, and mass via electromagnetic measurements and geometrically 

defined trajectories (which we claim to have accomplished), but also to predict 

the statistical accumulation of interference patterns exhibiting the appropriate 

deBroglie wave length if we send enough similar particles through appropriate 

geometrical setups to provide the requisite counting statistics.. It remains 

unite those two aspects of particles in a single formalism. This problem can 

be met by Born’s interpretation of the “wave function”, 

as follows. If we “prepare the system” in such a way that at time 

t=O the probability of the particle being in volume element dxdydz surrounding 

the point 5 is If&) I 2 dxdydz and if at some subsequent time t we place a particle 

detector of resolution AxAyAzAt (and 100% efficiency) at a position enclosing 2, 

the probability of obtaining a count is I + (5, t) 1 2 AxAyAz At where 

F@)/ ,/- = 1 s tidy& emiP’x f@ P +m 
(273” 

(la) 

(lb) 
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and 

s 
dxdydz If@)12 = 1 ; H=l=c (14 

If this Trediction is to be Lorentz invariant, F(p) must be a Lorentz scalar. 

That this definition has the appropriate wave character to exhibit the type 

of interference phenomena for beams of a single type of particle of well defined 

momenta needed to describe deBroglie waves is obvious from wave theory; we 

will return to the problem of dealing with more than one type of particle in 

Section III. But Born’s interpretation puts definite limitations on how far we can 

push the definitions of energy, momentum, and mass used without critical 

examination up to now. To begin with we cannot associate the “phase velocity” 

that goes with the deBroglie wave length vp= e(p)/p with the particle velocity, 

since it is unbounded as the momenta go to zero, and limited from below by the 

limiting velocity. If we make up a “wave packet” centered on some momentum 

& this center will move with the ffgroup velocity” v = dc/dp =.p/c evaluated 
g 

at p=po and in the direction of a, which is the same as the particle velocity. 

Different momenta in the packet will move with different velocities; the uncritical 

use of particle trajectories employed above implies that the actual sizes and 

geometries of particle detectors used in scattering experiments do not hit these 

limitations. This problem is discussed in detail by Goldberger and Watson. (13) 

Here we illustrate it for the case of most interest to our own development - 

namely the uncertainty relation between the energy of a particle and the time 

over which that energy is measured. 

Because of the connection between energy and momentum already contained 

in our operational definition of particle mass, and the Born interpretation of the 

wave function as a probability wave amplitude, the spatial uncertainty associated 

with wave packets implies a temporal uncertainty in energy; otherwise we would 
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have to abandon Lorentz invariance or introduce some new dimensional parameter. 

This limitation, immediately derivable from Eq. (1) using the Born statistical 

interp&ation, is that we can only determine the energy of the particle during a 

time measured to accuracy At with an uncertainty Ae > @/At; if we try to exceed 

this accuracy, individual measurements will exhibit statistical fluctuations 

around the central valve; these deviations can be measured by this limiting 

uncertainty. These fluctuations have not actually been observed for high energy 

particles, or we would use them for our operational definition and derive the 

deBroglie wave formula from them and Lorentz invariance rather than going 

through the operational definition of a “grating” used above. 

Current techniques can define the position of a particle using wire spark 

chambers whose wires are 0.1 cm across, with time resolutions that are being 

pushed down toward the pica-second range (10 -12 see); At= 10 -12 set converted 

to spatial resolution for a fast particle is even less than the wire size 

(cat - 0.03 cm). To find the requirements for observing the uncertainty 

principle fluctuations in energy, we take these resolutions as representative. 

What distance, CT, between two detectors is needed to measure the time of 

passage of a particle between them (T ) to an accuracy which exceeds the limit? 

v = PC = G/T is the measured quantity. If the distan& between detectors is 

measured to the same accuracy as the individual resolutions, and similarly for 

the time interval, and we add all six uncertainties incoherently, the uncertainty 

in the dimensionless parameter /3 is A/3 = (Ax/@)(3+ 3p2(cAt/Ax))J’2, or less 

than 2 Ax/@ for particles with velocities close to c (we make that restriction 

so that the energy needed to activate the detector can be small compared to the kinetic 

energy of the particle). Since E = mc2/( 1-p ) 2 l/2 G ymc2, we find that 

AC At/v = 2y3 (c At/$f/mc) (Ax/o) as the quantity which must be less than unity 

- 13 - 



if we are to test the uncertainty principle in energy directly by observing the 

statistical fluctuations it generates. For electrons (g/met = 3.86 x lo-l1 cm) 

with Tw 1, this works out to a distance cr of about 10,000 miles between the two 

detectors. Hence, improving the spatial and temporal resolutions of the 

detectors each by a factor of only iO0 would bring the requirement in length down 

to the dimensions of vacuum flight paths currently available in high energy 

accelerator laboratories. 

This calculation shows why we use deBroglie waves for our operational 

definition of the fundamental constant H, rather than the energy fluctuations. 

The Wick-Yukawa mechanism depends on energy fluctuations that are not yet 

demonstrable, but may become detectable in the future. Conversely, the fact 

that these fluctuations are not now directly observable allowed us to start our 

discussion and operational definition with classical relativistic particulate 

concepts; we only had to introduce the wave-particle duality at- a later stage. 

A similar analysis would show that if we calculate the particle trajectories 

through the macroscopic electromagnetic fields needed to measure energy and 

momentum using classical electromagnetic theory we will, within the accuracy 

of current measurements, get the same result as if we calculated trajectories 

as the perpendiculars to the wave fronts of Eq. (1) using the prescription 

E-E -e&t), E-E- e @(z, t) in the exponential; here A and + are the vector - 

and scalar “potentials” corresponding to the fields $ and z through which the 

particle is moving. Thus our operational definitions are justified in the realm 

where they are actually used to determine particle masses and charges, but 

have built in limitations of which we must be wary when we try to extrapolate 

the theory down to atomic dimensions. 
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The most fundamental of these limitations, from our point of view is the 

restriction on the concept of particle number and the necessity for particle 

s catte?ing entailed by that restriction. The argument was originally due to 

Wick; (8) we restate it for our purposes as follows. Think of two wave packets 

initially representing distinguishable particles (e.g. , spatially separated or of 

different mass) that come to occupy (with high probability) the same volume of 

approximate radius 6r for a time of duration approximately 6t. Because of the 

uncertainty principle, the energy within this region is uncertain by an amount 

6~ 2 &‘6t. If we make the Democritean postulate that there is some smallest 

relevant mass m, we cannot tell whether or not this particle is present if 

the time 6t is so short that @/6t 1 mc2. If we further postulate that momentum 

is still conserved when such a particle appears, the momentum of the two initial 

particles must change, and when they subsequently separate far enough so that 

we can be reasonably certain that the mass m can no longer be.there, the 

individual momenta with which they emerge need not be the same as those with 

which they started, even though the total momentum of the system is conserved. 

The dimension of the region 6r in which this can happen is limited to the dis- 

tance which the particle m can move during the time 6t, and hence must be less 

than Mt. Hence lir 5 c6t 5 &/6e 2 ti/mc. We conclude that our operational 

definition of particles predicts scattering at distances of approach (geometrically 

defined from external wave-packet trajectories) less than ti/mc, independent of 

any assumptions about 1finteractions7f. This is Wick’s explanation of the con- 

nection between the mass of Yukawa’s “heavy quanta” (9) and the range of nuclear 

forces. The same derivation immediately suggests that if the energies of the 

two initial particles are high enough, the mass m can be materialized in the 

process and emerge as a third free particle in the final state. Verification of 
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the Yukawa hypothesis occurred when the particle whose mass, spin, parity, 

and charge states had been predicted (14) from observed properties of ffnuclear 

‘force?’ was materialized in accelerator experiments and shown to possess all - 

of the predicted properties. (15) This particle is now called the pion, and 

particles which can produce or absorb pions with high probability (i. e. , cross 

sections of order a(pr/mRc)2 - 6x10-26 2 cm ) are called hadrons. 

To summarize our operational definition, a particle is 

(1) a system characterized by the Lorentz scalar m = + ,/m where E 

and p can be measured using electromagnetic fields if the particle is charged or 

the conservation of momentum and energy if it is neutral. 

(2) Until the characteristics of the system change in a (potentially) observ- 

able way, the wave function %igi, t) of each particle i in the system which was 

known at time t=O to be within dxdydz of the point 5 with a probability If (2x) I 2 dxdydz 

is given by Eq. (1); this definition implies that m and F@ are. Lorentz scalars. 

(3) The probability of producing a count at& t)in a particle detector of 

resolution &AyaZAt surrounding that event converges in the sense of the law 

of large numbers to I-@&t) I2 AxAy&At . 
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III. PARTICLE SCATTERING AND PRODUCTION 

In many instances the study of elementary particles follows a route which 
-. 

can be easily described using the wave functions developed in the last section. 

Beams of particles of unique mass and very precisely defined energy and 

momentum are prepared by electromagnetic devices and allowed to intersect 

each other or to strike a stationary target containing particles also of known 

mass. The particles emerging from these regions of overlap are then analyzed 

as to momentum and energy (and hence mass) again using macroscopic electro- 

magnetic devices, and the passage of individual particles recorded using particle 

detectors. When possible, enough statistics are accumulated to obtain a reason- 

able estimate (e ; g. , to a confidence level of 14%) of the probability of that type 

of particle emerging in that direction with that energy and momentum; the 

particulate events themselves are individually ffrandomfY. This probability is 

quoted in terms of the area of the beam (normalized to one particle in the beam) 

which has been diverted to produce one event of the type detected, and is called 

a “cross section”. In this section we assume that all fluctuations in particle 

number which the uncertainty principle allows to occur in the volume of the 

intersecting beams (or beam and target) which can occur for a specified (finite) 

number of particle types do occur. We further assume that the total energy and 

momentum of the emerging particles is equal to that of the particles initially 

present, and that the fluctuations are summed in such a way as to prevent the 

recovery of any knowledge of where in the volume the events occurred (knowledge 

which would violate the uncertainty principle and introduce hidden variables). 

These assumptions are enough to allow us to recover the conventional scattering 

formalism. 
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The precise statement of the “scattering boundary conditions” described 

verbally in the last paragraph is that at some distant time in the past, there 

were GA particles of mass mn and precisely defined momenta En present in the 

region of interest. The wave function describing this situation is: 

xPA = 31iA,2 e 
(274 

-iEAt 
e 

NA 
EA = c EntPn) 

n=l 
(Jd = 1 = c) 

where we have introduced the (unmeasurable) parameters 2Cn in order to preserve 

translational invariance; this function describes the system as t approaches --m . 

After the events that (because of the Wick-Yukawa mechanism) are sure to occur 

have happened, and the resulting system of NB particles with masses mn and 

momenta Kn has separated sufficiently so that the individual momenta can be 

measured to high precision and the individual masses identified, the appropriate 

wave function describing this situation will be 

‘B=+ e 

i c %n’ (&-xn) 
n=l 

-iE -. B 
t 

e 

cw 

NB 
EB = c EntEn) 

n=l 

(3) 

If we assume that this “scattered” wave function arose from a single fluctuation 

at some time t?, - 03 < t’ < t, with a probability amplitude gAIA (i.e. , linearly 

proportional to the probability amplitude of the initial state), then the wave 
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function describing this single event will be 

*;A = $A t&,x,, t, + A;A #“tt) e&t’) -cI 
(4) 

= $&&+ t, + ‘;A #&‘&’ &, t-t’) ‘tt-+) 

Even though we are describing events which lead to only NB particles each of a 

specified mass, there can be many different states B, so to obtain a wave function 

which will describe this situation we must sum over all of these as well as over 

all possible fluctuations up to the present time t. That is 

qNBNA = $A@,,&~;~) + s t dt’ ‘B ‘;A *Btxn~ x,, t-t’) (5) 
--co 

In order that this description reduce to @A as t - -00, we introduce the obvious 

convergence factor e +77(t’-t) (with the implied limit 7 - 0’ to be taken later) and 

with 

t 
‘NBNA 

= ikAQXn, t) + 
s 

dt’ ei?7(t’-t) ZBPEA YBQ,, xn, t’) (6) 
-co 

This satisfies our boundary conditions at t = -co, but there are additional 

conditions which must be imposed on the (so far arbitrary) amplitude fluctuation 

probability ABA. Note in particular that interference between the two pieces of 

the wave function could, in general, give information about the 2, and xn and 

hence introduce hidden variables. In a particular situation which at time t leads 

to some unique system B with specified momenta KB we have an irreversible 

transition in which the (so far virtual) processes we are describing become 

determinate (though only partially retrodictable) and join the fixed past. This can 

happen at any time t’ , whether recorded (observed) or not, But _Pn,Xn and 

IC,IY, are canonical variables just as subject to the uncertainty principle as the 

dynamical variables gn,sn or kn,xn. Thus to satisfy our boundary condition 
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of precisely known En and precisely knowable En, we must insure that 1~2 N N I 2 

AB 
contains no reference to Xn or Y -n. This can be accomplished by postulating that 

- t* ABA = i(27r) 
3NA/2 iE;y, 

e ‘TBA~ 1’ * -“NB; ‘1’ ’ * * “NA’ 

NA NB 
-i C Pn’LIn -ix K .Y 

n=l n=l-n --n 
eiEAt’ e 

-iEg(t-t*) 
e e (7) 

where the energy variables 

and (8) 

can differ because of the uncertainty principle connecting energy and time. 

Equivalently, because of Eqs. (4)) (5)) and (6), we could assume that 

pgA = i(2r;NA’2 ,r(t’-t) e 

In order to conserve momentum we also postulate that 

Substituting into Eq. (7) and letting ZB -) 
s 

d3Kl. . . d3K 
NB 

-i 

Ic, 
NBNA 

=e 

x S d3KI.. . d3K $ 
t 

NB -m 
dt’ e 

i(EA+iq -EB) (t-t’) 
T BA 

we obtain 

NB 
ic K 

n=l -n 
‘Ln 

e ( NB 
83 c 

n=l 

NA 
,!in-C’ 

n=l - 
?I 
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Thus, by insuring that there is no way of determining En or Yn if xn and 5, 

can be precisely known (i.e., by postulating the uncertainty principle), and 

insuri& momentum conservation we show that these boundary conditions 

predict 

NA 

-iE t 
‘NBNA = e ‘NBNA@n>xn’ e 

A 
(12) 

where %N N is the usual stationary state wave function as given, for example, 
BA 

in Goldberger and Watson (13) 

‘NBNA = + ,+ j- d3K1. . . d3KNB 

Gw 

. TBA e:‘*Zn 03(zgn - zg$ 

NB 
c EntEn) + irl - c q$-$ 
n=l n=l 

(13) 

with the conceptually significant difference that TBA is now an arbitrary function 
- 

referring to fluctuations and not to interactions. 

We hope that this derivation of the conventional scattering wave function 

(from which the restrictions on T 
BA required for Lorentz invariance, and the 

connection to observable cross sections now follow in the usual way) makes it 

clear that, from a particulate point of view, there is no necessity to postulate 

any specific type of llinteraction mechanism” (such as a “potential?’ or 

“interaction Lagrangian”) in order to derive a Lorentz-covariant description 

of any conceivable hadronic scattering process connecting a finite number of 
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particles in and out at a finite (asymptotic) energy. One way of viewing what 

we have just done is to say that we have presented a complete kinematics for 

quan& scattering processes, and have cleanly separated that descriptive 

problem from the dynamical problem of actually computing TBA. 

One fact worth noting in this derivation is that it was originally (2316) 

arrived at in quite a different way. Phipps’ interpretation of quantum mechanics (3,495) 

starting from the Hamilton-Jacobi (operator) equations makes it clear that in the 

quantum limit in which the action goes to the unique value H/i, the only difference 

from conventional Schrcedinger theory is that the Schrcedinger wave function 

$(xk, t) is multiplied by the phase factor exp -iZkPk 
( Y$ 

where Pk and Xk are (in 

the classical limit) both canonical variables and constants of the motion, and the 

sum over k runs over the degrees of freedom. Phipps notes that, because of 

their classical interpretation, it is natural to assume that they are also constants 

in the quantum limit, but change, both randomly and irreversibly, when any 

virtual process is completed and joins the fixed past. This was the starting point 

of the author’s paper (2) entitled “Fixed Past and Uncertain Future”, which took 

shape once he had insured covariance by using only free-particle wave functions 

and fluctuations in particle number as the basic concepts, and had noted that the 

Phipps phase factor already occurs in conventional s&ttering theory (e. g. , 

Goldberger and Watson (13)) where it is used to construct wave packets. To 

satisfy questions about that approach, the derivation given above was constructed, 

using the Lippmann-Schwinger A nsatz, (17) to exhibit explicitly how this phase 

factor still occurs in a theory that does not mention “interactions”. The opera- 

tional definition of particle provided in the last section now allows us to drop also 

any reference to the Hamilton-Jacobi equations, and to construct a hadronic 

scattering theory from first principles. 
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The kinematics just presented has some pecularities, in that the TBA 

introduced above, which obviously need not conserve particle number, also need 

not eve< conserve probability (i. e. , is not guaranteed to be unitary). Thus, if 

we are not to get into trouble with macroscopic facts about thermal equilibrium 

(detailed balance), we must make sure that any dynamics used to compute TBA 

provides explicitly for unitarity. One such dynamics, if the S-matricists are 

right, could be provided by postulating unitarity and analyticity (i. e. , crossing 

symmetry) which then, according to Stapp, (18) leads to CPT and the usual con- 

nection between spin and statistics. But our appr oath, if we take care to insure 

only unitarity, need not contain the second postulate, and hence might be of use 

in constructing theories which violate these two conditions in a Lorentz-covariant 

way; such models could be used to increase the precision of experimental tests 

of these fundamental regularities. 

It is not the purpose of this article to develop a dynamics for TBA, but we 

note that for three-body problems, an appropriate dynamics exists in the non- 

relativistic limit: the on-shell Faddeev equations. We have shown(“) that these 

equations allow non-trivial calculations of three-body scattering problems using 

only measured two-body phase shifts and binding energies as input, if restrictions 

derived from the known mass spectrum of hadrons are taken seriously. 
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IV. PARTICLE DETECTORS CONSTRUCTED OF PARTICLES 

Given particle detectors and the geometry they can be used to articulate, 45 
the Lorentz invariants m and e can be used to pro,vide operational definitions of 

the ‘ffields” through which a particle has passed, and hence to calibrate the whole 

scheme of charged particles in a Minkowski universe, flipping back and forth 

between (small) detectors and (large) regions in which there are fields. But to 

deal withsituations in which the fields used to measure particulate properties can 

influence the detectors, and to understand the detectors themselves, we need to 

extend the theory. The missing additional postulate is that the densities of the 

charge and current sources in MaxweLl’s equations due to a single particle of 

charge e whose wave function is *&, t) are, in a volume surrounding 2, t of 

dimension dxdydzdt, given by 

Note that because our basic definition (Eq. (1)) is covariant, a constant amplitude 

in momentum space does not correspond (as it would in a non-relativistic theory) 

to a 6-function in coordinate space but to a source of finite size whose charge 

distribution falls off exponentially with a scale length H/me. This is a warning 

that if we try to discuss problems at distances shorter than that we must not use 

single particle wave functions, but instead the multiparticle scattering wave 

functions developed in the last section; this is just another example of the basic 

importance of the Wick-Yukawa mechanism in any quantum particle theory. 

The most important single case we can discuss is a system of two particles 

of opposite charge described accurately only for distances large compared to 
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s/me (or equivalently frequencies small compared to mc2/@, and to first order 

in e’/Fic. Then, if we treat one particle as the source of the field in which the 

._ 

other m:ves, the external field which we introduce into the wave function according 

to the prescription given in Section II is just the field due to the Coulomb potential 

-e2/ IE, - z2 I. By expanding the exponential to fir.st order in e2/J4c, factoring 

out the time dependence exp(-i mc2t/@, and keeping only the first term in an 

expansion in powers of (p/mc)2, the resulting wave function for the relative motion 

of the two particles satisfies the usual non-relativistic atomic Schroadinger 

equation, e. g. , that for the “hydrogen atom” if m = me/(l+me/Mp) . Thus, in 

the appropriate limit our particle theory can generate to first order all of 

non-relativistic atomic theory, once we add dicotomic spin variables and the 

Pauli principle (see below). The whole system of particle accelerators, 

analyzing magnets, particle detectors, counters, electronic computers, etc. , 

introduced in rather abstract form in the operational definition of particles given 

in Section II and articulated for scattering experiments in Section III can then be 

explained (to order e2/‘@) using conventional theories. 

This construction, which we have no space to de,velop here, implies that both 

‘! hotons!’ P and “fields” are simply convenient ways of describing how the motions 

of some charged particles in the past are correlated with the motions of other 

charged Particles in the future - a point of view developed in detail by Feynman 

and Wheeler in the forties. (20) Further, if we concentrate on the restrictions of 

measurability of electromagnetic fields using particulate measuring apparatus 

which satisfies the uncertainty principle, the analysis of Bohr and Rosenfeld (21) 
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demonstrates that the “commutation relationsf7 of the Maxwell fietds more 

ConveGtionally derived ,via “second quantization” are completely and precisely 

reproduced. That their analysis (like ours) cannot be extended down to dimensions 

comparable to g/me is explicitly recognized in their paper. 

Although, so far, we have derived equations only for spinless particles, the 

extension of the theory (to order e2&) to charged particles of spin l/2 is 

straightforward. We simply use the appropriate positive energy two-state 

(e.g., helicity) spinors for particles with one sign of charge, and corresponding 

“charge-conjugate” (but still positive energy) spinors for the other sign. Details 

are given in Stapp WI together with the additional assumptions needed to insure 

CPT and spin-statistics connections originally derived from “field theory”. 

Following the same route we used above to obtain the Schrcedinger equation, we 

can then derive the one-particle Dirac equation, and the properties of electron 

spin needed for most atomic theory. Note that we know, a priori, that this 

theory is inadequate for energies greater than 2mec2, or distances shorter 

than $/2mec. 

Whether this phenomenological theory can now be extended to a deeper level, 

and actually become the starting point for a particle theory that might replace the 

conventional quantum field theories remains uncertain. For hadronic physics, 
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the situation looks promising, as had been discussed elsewhere. (16,22) For 

quantum electrodynamics, the first question that must be resolved is whether 

the caR?ulation of the motion of two charged particles can be pushed beyond e2/8c 

to describe to the next order the reaction back of the motion of one particle 

moving in the “field” generated by the other on the motion of the first particle. 

To the extent that this motion depends on frequencies greater than 2mec2/Fr, we 

know that this is partly a four-body problem involving an electron-positron pair 

as well as the two particles with which we start. In some ways the problem is 

simpler than in conventional quantum electrodynamics, as we have no “self-energies’* 

or “vacuum fluctuations”, and the particles themselves in some sense have finite 

size. The success of French and Weisskopf (23) in computing the Lamb shift 

using conventional perturbation techniques and positrons in positive energy states 

makes correct results likely, but since the French-Weiskopf calculation still 

required “renormalization” to remove various infinities, success is by no means 

guaranteed. 
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V. CONCLUSION 

The basic concept of a particle exhibiting a Lorentz-invariant mass and 

charge7 and wave-particle duality, can be established by operational definitions 

using particle detectors and external electromagnetic fields in a manner analogous 

to actual practice in high‘ energy particle physics. Given these definitions, and 

the recognition that they entail fluctuations in particle number, and hence scat- 

tering and particle production, it is then possible to set up the conventional 

relativistic stationary-state scattering formalism, with the conceptual difference 

that the transition matrix is an arbitrary function that may be descriptive 

(kinematical) and need not be derived from a dynamical model (in particular need 

not require a postulate that there are “interactions”). By invoking the usual 

prescription which attributes electromagnetic fields to the charge and current 

densities calculated from particle wave functions, all properties of conventional 

quantum electrodynamics can be recovered to order e2/gc. This in turn allows 

a description to the same order of the particle detectors needed to start off the 

analysis, and also allows the electromagnetic field to be viewed as a mathematical 

convenience introduced to facilitate the calculation of dynamical correlations 

between particulate motions. Whether this self-consistent phenomenology can 

be extended to the calculation of effects of order (e2/FiQ2 and higher in agreement 

(to current experimental accuracy) with the results of quantum electrodynamics 

remains a problem for future research. 
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