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ABSTRACT 

The on-shell Faddeev equations provide a consistent and convergent 

phenomenology for the description of non- relativistic three-hadron 

systems. A finite matrix approximation retains the complica.ted energy 

dependence of the interference between two,-body channels in three-body 

ohservables even though only a small number of terms are retained. 
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The on-shell limit of the Faddeev equations’ is mathematically ambiguous 

in the sense that the three-body bound state spectrum depends on how this limit 
-2 is’ taken. But the original equations are physically ambiguous. There is no 

unique experimental or theoretical way to construct the dynamical input to the 

equations -the “off-shell” t-matrices assumed by’ Faddeev to be given by “local 

potentials” bounded by const r I 
3/2-1-e . Nevertheless, for a three-hadron system 

which scatters via the materialization and exchange of additional particles of 

finite mass, the on-shell Faddeev equations provide a unique phenomenological 

non-relativistic limit. This interpretation suggests a practical method for 

solving the equations. 

The full three-particle transition matrix from a state of three free particles 

of specified momenta to another such state is determined by nine two-variable 

functions (times appropriate angular functions) called, in the notation of Boll& 

and Osborn, 3 &vJ afi;QaAa;Q’ A’ The replacement of the off-shell 

-ii P 
CPU 9 4, ;Pb > qb;z) * 

t-matrices t: (q,!, q;;z - p, ) by their on-shell values : 
a 

ryQ(q2J/21r2 = -ei6 sin 6/2nZqo 

in the equations for &Z J 
a 

reduces these equations to the one-variable set 

(1) 

where 

(Po,P;z) = $ h .Q h (P,;P’ 9) t2) 
Q! Q’YY 

p2=2n w2- 
9’ 

q2 = 2p$2 ; nr= my(m(y+mp)/(mol+mp+my) ; cly= m m Q! P /(m,+m$ 

g * = IP, * m,dtm,+m$ 1 
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and 

J 
Xa@;Q A .A, (Pi) = y F K&;Q h -Q’h’ (P,: Pb?? (3) 

cl! o!’ /3 
P o! @‘P P 

The three-body T-matrix is then given in terms of the solution of this equation 

+ NJ (YP;Q (4) 

Alternatively, we could have used the equation for the dependence on p’ 
P2 

of some 

function R which satisfies a simi1a.r equation. The existence of these two alter- 

native equations for .AdJ 
a!p 

is all that is required to establish unitarity, as has been 

shown by Freedman, Lovelace and Namyslowski. 4 

It. is obvious that the non-relativistic Faddeev equations cannot correctly 

describe any three-hadron system above production threshold for a fourth hadron, 

but it is often ignored that they also cannot be expected to be accurate at energies 

(negative in the non-relativistic sense) corresponding to four (virtual) hadrons in 

the system. This is a very severe limitation in the three-nucleon system, as 

this “anomalous threshold” corresponds to 3N-t r at an energy E M - (Edfm2/3MN) = 

- 9.2 MeV only 10% below the - 8.48 MeV binding ener& of the triton ! 5Y6 This 

pion can be expected to generate “three-body forces” and “off-shell effects” just 

as significant as the ‘*off-shell effects” coming from any phenomenological 

potential or off-shell t-matrix constructed to describe two-nucleon scattering 

experiments. The simplest and most consistent way to construct a non- 

relativistic phenomenology for three-hadron systems is to limit the description 

to energies greater than the first four-hadron “anomalous threshold”. This 
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physical cutoff removes the ambiguity in the three-particle bound state spectrum 

mentioned above. 2 

OnEe we have excluded from consideration values of the three-body energy 

z - E+iO’ less than some finite threshold -co (determined a priori from the 

hadronic mass spectrum), the one-variable on-shell Faddeev equations can be 

reduced to matrix equations by projection onto some set of functions +-(p2) 

complete on the interval 0 < p2 < CO - - 

II 

co 2 
dP 9,1P2) $gP2) = &y and well 

defined for p2 greater than this negative threshold. An obvious choice is 

@P2) = 
J-j 

(p2+2n E ) 
Y 0 

The convergence of the on-shell equations has already been proved, 7 and is re- 

confirmed here by the convergence of the integrals in the matrix approximation 

to the integral equation. Since the geometrical factors VJ are simply functions 

of angles in their physical range, 3 we need only prove convergence for J=O=Q=A, 

in which case V J 
QY = tma+m P )/2mcrPa!. 

If we define the leading term in the kernel for this case 

koq(z) = lrn 
0 

dPi $?P2,, SrndP2 6$P2) K”~;oo;oo@a,P~z) 
0 

(6) 

then this constant becomes 

ds 7; (s2) Io,,ts2) 

where the purely kinematical quantity Izy(q2) is given by 

(7) 

m 

s s 

csc e 
csc e dx dY N-Y) 

0 0 

z sec2 e 
I 

-1 

- II q2(x+y)2 + eO sec2 8 1 -1 [ q2(x-y+ csc ej2 
-1 

+ co CSC’ e 1 63) 
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The auxiliary variables x and y were introduced to remove the absolute value 

sign in the limits on the original q2 variable (cf. Eq. (2)) coming from the use 

of radiakvariables in momentum space. The transformation is 

PC! = 5 q [l + sin e (x-y)] 

p = JZT q cos 8 (x+y) 
t 

(9) 

tan e = mcr/(ma+mp) 

Note that the kernel only depends on knowing the two-body phase shifts for real 

physical energies, and that the only singularity in the integrand is the physical 

branch cut generated by on-shell kinematics in the transformation from one two- 

body channel to another. This same branch cut occurs in the usual Faddeev 

equations, but with variable limits; here the constant limits on the variables of 

integration make it easy to handle numerically. In fact, if we use a representation 

for T with the physical property of a branch cut starting at -p2/4 (where p2 is 

given in terms of the masses of the two particles and the mass of the lightest 

third particle which can be exchanged between them), the integral can be changed 

to an integral over the discontinuity across this cut; for the effective range 

approximation, this cut reduces to poles, and the integral can be evaluated 

explicitly. One of the remaining integrals is then elementary leaving at most a 

single non-singular integral for numerical evaluation. All of this remains true 

if any of the indices (JQ hn) differ from zero. Further, the driving term x$ 

requires only two integrations, so can be evaluated analytically for pole repre- 

sentations of 7. 

If we look closely at Eq. (2)) we see that both the single scattering terms 

and the dynamical terms NJ 
0 

carry the same two-body phase shifts as a factor. 

If only S-waves (Q=O) are included, the full three-body T-matrix will then contain 

only three terms, and the entire content of the solution of the dynamical equations 
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which can show up in three-body observables are three complex numbers which 

multiply the two-body scattering amplitudes (phase shifts). For instance in a 

2S 1,2 Gree-nucleon final state (which differs from the spinless model given here 

only by numerical factors) the energy spectrum of the outgoing proton will be 

dominated by the n-n 1 So virtual state at the upper end, but the kinematics 

smears out the ISo and 3Sl n-p peaks producing another complicated structure 

at about a third of the total energy available to the proton. This means that the 

complicated n-d breakup spectrum can be described (once the S-wave phase shifts 

are put in this way) by a very small number of parameters, as has been noted 

previously. 8,9 This suggests that even the simplest approximation to the on- 

shell equations can have interesting physical content at low energy. Taking only 

the nine numbers given by Eq. (6) (and the corresponding driving terms x0 ) 
@P 

then gives an explicit approximation to the full three-body T-matrix (Eq. (2)) 

through the numbers 

0 
a-l ko!-l, CL!+1 

-t k” 0 
a!, o-1 ka-l, o!+l > %I!+1 (10) 

o!+l k”, 1 o!+1 - I x,-1 . . 

Xi = (1 - Gi~)lxP IP 
A 

A = 1 + ky2k;I + k”13kil + ki3k12 - k;2k;3k;l - k;Ik;lk(13 

It will also be of interest to see whether this approximation generates a pole in 

,M (three-body bound state) for negative real values of z greater than the 

anomalous threshold -co O 

Although we have so far assumed no two-body bound states, the same 

formalism can be readily extended to that case simply by using a represt-’ &~~tion 
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for r which has the appropriate poles, i. e. , r a (q2) = -Nz/(q2 + Kt) + ta!(q2). 

For the boundary conditions used above, the terms in dti 
QP 

proportional to 7 

still refiesent 3-3 scatterings, while the pole term will give the probability that 

two of the three particles end up as a bound pair, as can readily be seen by using 

Eq. (4) for & 
QP 

to calculate the configuration space wave function. Of course, 

if we evaluate KJ 
aP 

and xJ 
QP 

by contour integration, we must take care to pick up 

the pole contributions coming from the bound states. Further, by taking an 

appropriate weighted average over the initial state parameters p’ -p$ we can 

also calculate the amplitudes for elastic scattering, rearrangement collisions 

and breakup starting from one particle incident on some specific bound pair. Note 

that, formally speaking, the kernel in the equation still involves an integral over 

the two-body phase shifts only over positive energies; in order to generate the 

correct singularity structure we must require that our representation for 7 

extrapolate to the correct bound state poles at negative energies. The residues 

at these poles are physical parameters whose relative values can be observed in 

three-body systems that contain two or more bound two-body subsystems, and 

which indicate how much of the bound state is an “elementary particle”, and how 

much is to be attributed to a composite structure which can be separated into 

two particles using energies less than their rest energies. Only if we require 

that N20 = 2 K~ will the number of particles remain constant in the conventional 

non-relativistic sense. Thus, in general our formalism is ?uritary~~ only if 

interpreted consistently from a hadronic point of view, a statement which is 

obviously also true of the Amado model 10 when the ‘*renormalization constant” 

at the bound state pole is treated as a free parameter. 

We emphasize in closing that the equations developed above allow us to 

make unique predictions for all three-body observables in the energy range 
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- eO < E < m knowing only the two-body phases shifts in the physical region, and 

the positions and residues of their bound-state poles. Of course we cannot 

belie- these predictions as we approach the physical threshold for the production 

of a fourth hadron, or the anomalous threshold -E but within these restrictions - 0 
we have a consistent non-relativistic on-shell phenomenology. The range of 

validity of the theory can be extended, or the accuracy of the predictions within 

the specified range improved, only by explicitly introducing a fourth hadron and 

solving the four-body on-shell equations in the energetic region where only three 

or fewer particles can be present. Since these equations will also be reducible 

to one-variable integral equations, this task may not prove to be too formidable. 

Such equations would then provide the equivalent of ,,off-shell” effects in the 

two-body subsystems and “three-body forces” in a consistent way. But we could 

also mock up these effects phenomenologically simply by changing the xJ 
w 

without changing the way the two-body phase shi’fts enter the equations. This 

would generate a unitary three-body amplitude with parameters which, if experi- 

mentally required to be non-zero, I1 would unambiguously indicate three-body 

effects not explicable in terms of the on-shell properties of the two-body 

subsys terns. 12 
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