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ABSTRACT 

A simple argument is advanced for how it happens that two- 

dimensional electrodynamics is a theory of massive spinless bosons. 
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It is well-known that, once the computational dust has settled, two dimen- 

sional q;antum electrodynamics (TDED) collapses to a theory of a massive 

spinless non-interacting Bose field. Sophisticated arguments for why this occurs 

have been presented by Lowenstein and Swieca. ’ The purpose of this note is to 

supply a simple way of seeing why it is so. 

The first observation required is that, in the gauge AJ(x, t) = 0, the inter- 

action reduces to a self-interaction of the charge density via the (two-dimensional) 

Coulomb potential, 2 

j”(x,t) Jdy lx-YI jO(y,t) (1) 

Next, as is known from work on the Thirrtig model, 3 the free Dirac theory 

in two dimensions may equivalently be discussed in terms of the associated 

vector current 

(2) 

and the symmetric, traceless, conserved tensor operator constructed from the 

current, 

TPV(x,t) = g (j’“, j”l - gFvjhjh . 

That is, H = J dx Too generates the free field equation of motion for $, given the 

anti-commutator { $ (x,, t) , z,6? (y, t)} = 6(x - y), and the definitions Eqs. (2) and 

(3). The result is not obvious, however, and depends for its demonstration on 

the operator equation3 

i7r 1 .l 5 .o 
ax $(x, z) = -xj-- 1 J + 7’ J g 14) 
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which is true in two dimensions. 

It s possible to proceed by postulating a set of commutation relations 

satisfied by jP with itself, and with Ic). 495 For the free theory, this is unnec- 

essary. The required “current algebra” can be derived, and is 

[ 
j,k t) , j,(y,t) = 0 1 ; (54 
Ilj,(x,t) , j,bW] = 0 ; (5b) 
[j,(xA , j,(y,t)] =$a, W-Y> . (5c) 

This current algebra is solved by setting6 

J n jP(X9t) = c TV av Z(x,t) , (6) 
where % is a canonical (pseudo) scalar field. Then TP ’ is the canonical energy 

momentum tensor for thismassless fie1d.A consistent choice for an associated 

Lagrange density is 

do) = l/2 (ap T) (ap ii+ (7) 

C Note j 
P 

= 8 P@ is also a possible choice. However, current conservation 

demands @is a massless free field, but places no constraints on z. 
3 

The result essential to our argument is that, using Eqs. (4) and (6), one can 

show 

- 1 Ho = -i$,r a,#, = (8) 

where e. is the free Dirac field in two dimensions. This amazing relation is 

expected to be true only in two dimensions, and is a result of the fact Eq. (4) 
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reduces trilinears in 50 to a single $. Using this equation, in interaction repre- 

sent&Ton Eq. (1) becomes 

2 
% = 1/2(aPT)(aPZ) + & 

s 
dylx - yl a,g(x,t) ay %Y,t) 

- i/2(ap%)(aF1 Zp2$ IS2 . 
(9) 

But this just describes a massive (pseudo) scalar field, of mass p 2 = e2/x and 

nothing else; this was the desired result. 

Admittedly, we have seemed cavalier in obtaining this result, paying little 

attention to defining the various operators we have introduced with any rigour, 

and substituting free theory equations into the interacting theory. In fact, however, 

a rigorous momentum space analysis can be carried out. This analysis verifies 

the conclusions stated above. 

As an example, consider TDED in the finite spatial interval [O ,7r] . The 

use of a finite interval may be viewed as an alternative to Klaiber’s procedure 

for regularizing the bad infrared behaviour of the theory. 1,798 The particular 

interval chosen is a matter of convenience. Any interval of arbitrary length L 

may be adopted. Taking the limit L - ~0 at the end of the calculation turns 

momentum sums into momentum integrals. 

It has been shown recently’ that 

= ~(n-1/2)(b~bn+c~cn)+(p2/4) k P-‘[P+P++PP+~P+P]~ , 
n=l p=l 

where 9’ is given by Eq. (1) ; and 
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P(P) = P 
-l/2 7r 

J-1 
dx jO(x, 0) cos px - i j’(x, 0) sinpx 

0 I , 111) 
-c\ 

satisfy Bose commutation relations [p(p) , p+(q)] = 6p,q . This Hamiltonian 

may be diagonalized by means of a Bogoliubovtransformation, 

fi = eiS H .-is 

= W,, - T) + 5 E(P) P+(P) P(P) + E. 9 ” 
P=l 

(12) 

where Ho is the free Dirac Hamiltonian, and 

T = :PP+(P) P(P) ; 
p=l 

; 

E,=Ki$ [Wp) -p-(gj)] . 
The analogue of Eq. (8) in this case is 

10 

2 Ho=2 +T , 

, @a) 

( 13b) 

(13c) 

(13c-O 

(14) 

where the conserved charge Q = f dx j”. This equation may be verified by 

explicit, though tedious calculation, using identities which follow from Eq. (4). 

Fourier analyzing Eq. (4), one obtains 

k-l 
& bk + 2 P P;bk+p + p<l- c; $k-l + pglh pp bk-p = ’ ; 

P=l 
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and an accompanying equation for c obtained by interchanging b-c where they 

appear explicitly in Eq. (15). 

The validity of Eq. (15) as an operator equation may be verified explicitly 

by brute force. As mentioned earlier, the key to why this relation is possible 

is that p and p+ are bilinear in fermion operators, hence many terms anti- 

commute to zero under summation. 8 

Implicit in Eq. (10) was the consistency requirement for TDED in axial 

gauge, 

& I+phys>=o 9 (16) 

This constraint follows, essentially, because the vector current is conserved, 

but the divergence of the axial current contains an anomaly. However, these 

currents are related by aP = ePv jv . Consistency demands (in this gauge) that 

Eq. (16) be true. 11 

Combining Eqs. (12), (14), and (16) 

fi = P+(P) P(P) l (17) 

All reference to the fermions has disappeared. This is a property of the solution 

independent of our choice of interval, and of boundary conditions in the interval. 12 

As the size of the system L- a, E. diverges logarithmically. This is the only 

remnant of the infrared problem. 

To summarize, one first casts TDED as a theory of self-interacting fermions, 

by choosing a convenient gauge. This done, one attempts to represent as much 

of the theory as possible in terms of the currents, based on the experience with 

the Thirring model that these are the only genuine observable% 3,495 Unlike 

the Thirring model, however, in which $ preserves a role as an intertwining 
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operator between inequivalent irreducible representations of the current algebra, 

the vanfshing of the charge in TDED deprives + of even this role. Indeed, the 

2 *P presence of massive excitations follows trivially from ( 0 + p ) J = 0. The 

point being made is that $,can be eliminated entirely from the problem. In the 

language of Ref. 12, there are no “quasi-particles”, only plasmons. 

I thank Professor T. M. Yan for comments on the manuscript. 
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