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ABSTRACT 

The asymptotic power behavior of the electromagnetic form factors are 

examined for two- and three-body s-w&e bound states both relativisitc and 

nonrelativistic. In the nonrelativistic case we consider local and separable 

two-body potentials and we make use of the Faddeev equations in order to 

define the three-body bound states. For local potentials which behave as 

G2,- e (0 < 0 5 1) for large momentum transfer, we obtain for the asymptotic 

power behavior of the form factors of the two- and three-body bound states 

F2(y2) = ( ly*r) -3-e and F3(q2) = ( 13) -6-2e, respectively. For separable 

potentials V = g( IFI) g( Iktl) and g( IFI) = (l~l)-‘-e we find F,(2) = ( lTl)-2-e 

and F3G2) = ( 13) -5-e, respectively. For the relativistic case, we consider 

the two- and three-body Bethe-Salpeter equation in the ladder approximation. 

We treat the spin zero case only but we believe that our final conclusions will 

not be affected by the introduction of spin l/2 particle. With an interaction 

which behaves as (k 2 -’ at large momentum transfer, we obtain F2(q2) = (q2)-l-’ ) 

and F3(q2) = (q2) -2-2e D 
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I 

I. INTRODUCTION, RESULTS AND CONCLUSIONS 

- 
The evaluation of the electromagnetic hadron form factors has been a con- 

stant t;sk for the last five years. l-6 It soon became clear that the large mo- 

mentum transfer behavior of the form factors provides a powerful mean of 

studying the constituents’of the hadrons and their dynamics. It is by now well 

accepted that the behaviors Fn(q2) = + and F,p(q2) = +2 are compatible 
7 q (4 ) 

with the experiments. This fact suggests that the pion and the nucleon certainly 

are of a different nature as far as the electromagnetic interaction are concerned. 

It seems also to suggest that the pion is less composite than the nucleon because 

of the faster decrease of the proton form factor. Recently, the previous be- 

haviors have been derived from the minimal quark structure of the pion and the 

proton; 899 so far, however, the three-particle bound state has not been treated 

in a convincing way and this leaves the question open whether the underlying two- 

and three-particle structure can explain the different behavior of the two form 

factors. 

It is the aim of this paper to investigate the large q2 behavior of the form 

factors of the two- and three-particle s-wave bound states in a systematic way, 

both in relativistic and nonrelativistic theories. Throughout the paper we con- 

sider power behaviors only, neglecting possible logarithmic factors. Here, in 

a first approach, we restrict ourselves to spinless constituents. We do not 

believe that the case of spin I/2 constituents makes a real difference on our 

final conclusions. This case will be discussed elsewhere. 10 

We shall consider the potential scattering case (II) for two main reasons. 

First, because many features of composite particle models can be explained by 

means of the nonrelativistic quark model; 11 moreover, the Bethe-Salpeter 

equation in the ladder approximation reduces to a nonrelativistic form in the 
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large momenta limit, as it can be recovered from various (equivalent) three- 

dimensional equations. 12-15 The second good reason for studying the potential - c, 
theory is the firm mathematical ground on which the nonrelativistic three- 

particle theory in the form of the Faddeev equations 16 is based (we do not con- 

sider three-particle forces). 

For both two- and three-particle cases, we shall assume the two-body local 

potentials V( IQ) 
Ifl=L 03 

( IiTpe, 0 > 0, and the separable potentials 

V(g G) = g( lk7) g( Ik7l) with g( Ia) 
IjqZ 03 

(,kf)424 , 0 > 0. Our choice of 

the potentials is determined by simple reasons. For the local potentials, the 

limiting behavior ( lk7)-l is characteristic of the singular potential (-h/r2) which 

produces the unpleasant feature of a wave function fall-off depending on the 

coupling constant. 17,18 On the other hand, an even more singular potential 

gives rise to the exponential decrease of the wave function and of the form factor 

both, lg and this does not seem to be the physical case. As far as the separable 

potential is concerned, the choice f3 > 0 is imposed by the very existence of 

scattering processes, The use of nonlocal potentials is suggested both by the 

existence of tensor forces in the spin l/2 case, and by the structure of the rela- 

tivistic potential as recovered in the three-dimensional version of the Bethe- 

Salpe ter equation D 10,12-15 

Our results are as follows. For the two-body and three-body bound states 

form factors we obtain F2(T2) = ( Ia) -3-e and F,(2) = ( I~)-s-2e~ with local 

potentials, whereas we obtain F,(z) = ( 13) -24 and F3G2) = ( I$J-~-~’ with 

separable potentials ,, 

In the framework of relativistic theories, we consider (III) the s-wave bound 

states of two and three particles described by the two-body Bethe-Salpeter equa- 

tion in the ladder approximation (III A) and by the relativistic Faddeev 
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equations (III B) . 12-15 ’ 2o We shall assume a two-body interaction of the form 

V(k) 2 = (k2)-‘, 
kern 

8 > 0. Our interactions correspond to the Aq3 theory for 

I 
8 = 1 and to the A(p4 theory for the limiting case 0 = 0. For the latter case it 

has been proved 2,4,18 that the high momentum transfer behavior of the two- 

body wave functions and form factors depends on the coupling constant, as in 

the singular (- A/r2) potential,, 

Our results for the asymptotic behavior of the two- and three-body form 

factors are F2(q2) = (q 2 -l-‘, F3(q2) N (q2)-2-2e; ) 

Since the Arp4 theory leads to that strange dependence on the coupling 

constant, we define the physical form factors as given by our superrenormaliz- 

able interaction in the limit 8 - 0; the asymptotic behavior of our “pion” and 

“nucleon” form factors turns out to be (q2)-l and (q2)-2, respectively. 

The spin $ constituents, which are more interesting for the physical situa- 

tion, present some technical difficulties: apart from the complicate spin- 

structure of the three-body wave function, there appears a delicate region of 

integration so that one has to be more careful than in the spin zero case. How- 

ever, we do not agree with Ref. 4, note 25, where the author claims that the 

consistency argument, widely applied in our paper, does not work for super- 

renormalizable interactions. 

Finally, it is worthwhile to remark that our results are in agreement with 

the predictions given in Ref 0 8 and in Ref 0 9. Furthermore, our wave functions 

turn out to be integrable as it was assumed in Ref. 8 as a crucial hypothesis. 
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II. POTENTIAL SCATTERING 

In the framework of a potential scattering theory we shall discuss the 

asymp;tic behavior of the two- and three-body bound states form factors at 

large momentum transfer; we shall consider s-wave bound states only. Further- 

more, in order to simplify things, we shall always assume that only one particle 

is charged. Let us start with the two-body case. Here the charge form factor 

reads: 
.- 

where the wave function zj satisfies the homogeneous Schroedinger equation: 

GiT = --L 
q2-E 

di?V(r- -i;i z/J(~ (2) 

If we now consider a central potential which behaves at large Ikf as 

I,@ N ---A-- 
Iqi+e 2 

we get the following behavior for 11, and F2: 

bo, (3) 

(4) 

In the limiting case 0 = 0 which corresponds to the potential (-h/r’) the form factor 
- -2-2 ,\/$Y behaves like ( Iql) (0 <h < l/4) with an unpleasant dependence on the 

coupling constant A (a similar phenomenon occurs in the Bethe-Salpeter equa- 

tion2’ 4’ 18)0 With an even more singular potential, the wave function and hence 

the form factor) becomes exponentially decreasing. 19 In conclusion, with a 

central potential, the desired l/q2 behavior of the “pion” form factor is achieved 

only with the singular potential (-h/r2) and only in the particular limit h - l/4. 
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For the three-body case, we consider the Faddeev equations 16 with minor 

changes in the notations. Let r 1, F2, F3 be the three-momenta of the three 

particl& and let us introduce the new variables: 

Q= F1+F2+F2, .T= m3g - m2F3 tm2+m3Gl - ml(iQG3) 
m +m 2 3 

, -;;;= - 
m +m +m 1 2 3 

(5) 

and their cyclic permutations ‘;tz, T2 andz3, c30 Q is the total momentum, zl 

is the relative momentum between the particles 2 and 3 and c is the relative 1 
momentum of the particle 1 with respect to the cluster 2-3. These variables are 

the most suitable ones for our purposes and any pair {s, <\ can be used for the 

description of the system. From now on we shall assume equal masses and m = 1. 

For practical purposes, we write down some relations between the different 

variables 

Cl + c2 + T3 = 0 

We assume that the particle 1 only is charged; then the form factor reads: 

F3ki2) = // d’;: dql #$i;;, ;T;, $Q++$?!, ‘;; - 3 , 

. 
where I# = $’ + G2 + e3 and I)’ are the Faddeev components satisfying the 

(6) 

(7) 
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equation: 

= -G&E) 

Here GO(E) = 1 HO-E , where Ho is the free three-body Hamiltonian and E (the 

mass of the three-body ground state) is below any.threshold. Ti(E) is the two- 

body scattering matrix between particles j and k (i # j # k). 

In order to evaluate the asymptotic behaviors, we now introduce the “vertex 

function” cp : 

ql = cpl + cp2 + cp3 , &GoC$ (9) 

and we consider the once-iterated Faddeev equations: 
% - 

d 
3 

I = Tp(&jGoCP ’ + TlGOT3GO~l + T1GOT2GO(+’ + TlGOT3GO(P2 

(P2 = T2GOTlGO~2 + T2GOT3GO(P2 + T2GOTlG0 (P3 + T2GOT3G0 (P1 

‘p3 zz 3 
T3GOT1G0 Cp + TQGOT2G0 cp 3 + T3GOTlGov2 f T3GOT2GO(P 1 

t 10) 

The first term of the first equation reads explicitly: 

JJ dg2dz2 l- 3 +2 tl($,?2 + z ql; E - 4 ql - 
-E+j” 

o t2( -T - ; q2, p2; E _ 2 -” _ $ z2) 1 
1 4 ql -72 92 +;;2a;;;+qi -2 -E 



I 

where { kll, qlt and (i;‘z, q2\ are related by Eq. (6) a The highT2 behavior of the 

form factor (7) is given once we know the behavior of #(or CP) for large I2 and 

IQ (w^e always suppose that the low momenta do not create any trouble). In this 

region the t-matrix behaves as the potential up to logarithms so that, for the 

potential (3), t(g i?) = 
,g-- ;p+e 

; by means of a simple consistency argu- 

ment we find that the only behavior consistent with Eq. (11) is given by 

1. - 1 1 1 
---l+8 ,I: -++~p+e - i+e 

2q1 1 1 q 

We can obtain this result starting with a definite ansatz on the asymptotic be- 

havior of the vertex function (for example the estimate (7.36) of Ref. 16). Be- 

cause we are faced with an Euclidean metric, we can apply the Weinberg 

theorem2’ and the asymptotic behaviors are simply given by a.power counting. 

We find inconsistency, unless the ansatz is precisely the one given in formula 

(12), The behavior of (32 and (p3 is easily found, so that from (9) and (12) we 

recover the following behavior for the wave function: 

1 + 1 1 1 r 1 1 
I qll l+e 1 Iz q>Z$ l+e J 

+ l--3+e + 
‘5 ql+kd 1 I qll 1+e 1-i q7;1’ l+e II 
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The three terms which appear in Eq. (13) are easily understood. Equation (13)) 

in fact, turns out to be symmetric in <I, r2, F3 and, consequently, in PI, c2, z3. 

By coznting the powers in Eq, (13) and by observing that no dangerous region of 

integration exists (we could express everthing as a function of $I, s2, F3), it 

turns out that the wave function $ is integrable and 

t 14) 

From (7)) (13) and (14)) making use of the Weinberg theorem, 21 we finally get: 

F3@i21 = 
1 

ITI - * l-$ 6+2e 
o<e (15) 

which has to be compared with F,(2) = 1 
ITa 3+e 

given in Eq. (4). The asymptotic 

behavior of the form factors, therefore, does depend on the number of the con- 

stituents (at least for 2 and 3). The slowest decrease we can achieve is lclm3 

and IT? in the limiting case 8 - 0. 

It is interesting to remark that the three-body result is not affected by the 

existence or nonexistence of bound states in the two-body subchannels; in fact, 

for large momentum transfer, the two-body t-matrix is dominated by the scat- 

tering part and not by the discrete spectrum (cf. Ref. 16, Theorem 4.2). 

In the second part of this section we shall discuss the case of separable 

potentials for reasons given above. Let us assume a separable contribution to 

the potential: 

i+%) = hg(El) g(@l) (16) 

Furthermore, we shall assume that this part of the potential is dominating at 

short distances so that we can consider an interaction entirely described by the 
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potential (16). The related t-matrix is given by the simple expression 22 

-h t(z ‘lifr; E) = g( Ii?i) t(E) g( I’i;l) 

where 

t(E) = 1 

1+47rh / 
00 

21g( 173, I2 
o dl$ z2 

q -E+ie 

In order that t(E) may exist, we have to assume: . 

i&h = y-$m e>o 
ITI - * 

Then, in the two-particle case, we immediately obtain from (1) and (2): 

Qts? = 1 
13 -co ,-+,2.5+e 3 F2G2) 

1 
iq,L m ,yJ2+B 

(17) 

(18) 

(1% 

(20) 

If we insert the t-matrix (17) in Eq. (8), we obtain the following simple structure 

of the three-body bound state wave function: 

g(,sl) t(E - $$ - $ ~2)ffi(l<l) 

1;“1+$‘;;“,+fq” -E 
(21) 

where the functions 2’ satisfy the (noniterated) coupled equations: 

3 -2 l-2 

i&l~l, = 
&Iv+; $1) t(E -4 P -zQ )g($F+<I) 

-2 - - -2 _ E qi +qi*p+p -iQ” [ $( I’F;l) + Zk( Gl) 1 
i f j # k = 1, 2, 3. (22) 

From the assumption (19) and the structure (18) of the t-matrix, it directly 
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follows that the only behavior compatible with Eq. (22) is: 

(23) 

This leads to the asymptotic behavior of the wave function: 
3 

(24) 

This wave function is not integrable but the same analysis we have applied in the 

local case still works and we obtain: 

F3z2) = ’ 
6’1 5+2 e 

Therefore, the I3 -2 behavior of the two-body form factor is achieved with 

the potentials (16) in the limit 8 - 0 without any dependence on’the coupling 

constant. With the same limiting potential the three-body form factor behaves 

like I;;im5. 

III. RELATIVISTIC MODELS 

A, Two-Body 

Next we consider the asymptotic behavior of the form factor of relativistic 

two- and three-body bound states. Again, we only consider s-wave bound states 

and always assume that the masses are equal, m = 1, and only one particle is 

charged. 

For the two-body bound state, the electromagnetic current in the ladder 

approximation is shown in Fig. la and it can be written: 

- 11 - 



I 

i - 
I 

where ‘pQ is the vertex function satisfying the Bethe-Salpeter equation (cf D Fig. lb) : 

‘PQ(p) = (- i A) / d4k V(p-k) Go(k) qQ(k) (27) .- 

Go(k) = $Q + k)2 - I]-’ [( + Q - k)2 - 1] -’ (28) 

We assume the interaction of the form: 

00 

dp2 ,o dP2) = 
-6 

V(P) = 
(p2+IJ2) ’ 

(P2) , O<OLl 
0 2 

P --*cQ (2% 
so that 

-0 
VP) = (P2) (30) 

Here, the Av3 and the Aq4 theories are described by 6’ = 1 and 6 = 0, respec- 

tively. By means of a simple consistency argument it is straightforward to 

derive from Eq. (27) the following asymptotic behavior of the two-body wave 

-8 
(pQ(P) = (P2) 

p?& 00 

which, inserted in Eq. (26), gives for the form factor: l-4 

(31) 

F2(s2) = 
q2NxJ 

(s2j -1-e 
(32) 
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From Eqs. (30) and (32) it follows that with a Aq3 theory we obtain 

F2(q2) = (cI~)-~ whereas we reach the l/q2 behavior in the limiting case 8 - 0, 
4 

e > 0. For 8 = 0, the consistency argument does not apply any longer and 

this reflects the well-known fact that in the Arp4 theory, which corresponds to 

the case 0 = 0, the large’momentum transfer behavior of the form factor depends 

on the coupling constant 2y 4Y l8 (cf. the potential in Section II). 

The use of the parameter 0 in the definition of the potential is essentially 

.23 the procedure applied in the analytic regularization; on account of the possible 

nonanalitic dependence of the renormalizable theories on this parameter, how- 

ever, we should not be surprised at this discontinuity. 

B. Three -Body 

For the three-body case we shall assume a pair-wise interaction between 

the constituents and we shall consider the ladder graphs given in Fig. 2 only. 

We make the Faddeev decomposition of the bound state vertex function, i.e., 

cp = cp’ + cp2 + cp3 where (pl is related to all the graphs in which the interaction 

between particles 2 and 3 comes first. Graphically, the once iterated relativis- 

tic Faddeev equations are shown in Fig. 3, where the zig-zag lines stay for a 

two-body t-matrix with a three-body propagator (cf. Fig. 4). It is easy to see 

that the iteration of Fig. 3 reproduces all the (uncrossed) ladder graphs. The 

integral equation for the vertex function can be written in a symbolical form 

similar to the nonrelativistic equation (Eq. (10)): 

d = TlGOT2G0 cp l -I- TlGOT3GOq1 + TlGOT2GO~’ + TlGOT3GO~2 

(P2 = T2GOTIGO~’ + T2GOT3GO’P2 + T2GOTlGO~3 + T2GOT3GOVI 

P3 = T3GOTlGO(P3 + T3GOT2G0q3 + T3GOT1GOq 2 + T3GOT2GOq1 (33) 
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where now, symbolically: 

- <p1pzp3 lTliPiPbP~ > = (PF + 1)64(pl- P;)64(p2+ P3 - pi - p$ tl(p2,p3; p;l,pg) D 
4. 

(34) 

- ~ 

Here, tl is the usual two-body Bethe-Salpeter scattering matrix between particles 

2 and 3 in the ladder approximation, and: 

<P1P2P31G01PiP$Pb> - 1 - 1 - 1 
6 

4 
(Pl-Pi16 

4 
(P2-Pb)G 

4 = 

p;-1 Pi-1 $1 
(P,-Pg) * 

(35) 

(Relativistic Faddeev equations have been written down by many authors in different 

approximations. See for example Refs. (12)-(15) and (20).) 

As we did in the nonrelativistic case, we introduce the four-momenta: 

Q = p1 + p2 + p39 kl= f (P,-P3)’ ql= 
2Pl - (P2 + P,) 

3 (36) 
I 

and their cyclic permutations r2, q2 and r3$q3 (the relation among them is 
I 

the same as given in Eq. (16)). The Eq. (33) now reads explicitly: 

(P;(kl,ql) = JJ&‘dq’tl( +Q - +ql+kl, fe -+ql -kl; 5Q-~q1+kt,~Q+~q’-kf-ql) ; 
I 

+Q - +q’ + k1)2 - 11-l [(+ Q + + q’ - k’ - qlJ2 _ I]-’ 

t2( + Q + ql, $ Q++ql -k’ -ql; ;Q+q’, +Q - +q’ -k’) 

0 
[ 
( +. Q + qt)2 - I]-’ [($ Q - + q’ - k’j2 _ 1 -’ 1 $Jk’ , q’) +fi . . $+lJ: . . (p2+/J . .(P3. 

m;(k2, q2) = -0 . 

$(k3, q3) = . l 0 
(37) 
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I 

1 In terms of the vertex function CP = cpl + (p2 + (Do, the electromagnetic current 

I - for the three-body bound state now reads (cf. Fig. 5): 
4 

I 
<$IJ,Ili,> = /I dqi dki qQ(ki, S;> [(+Q + Sg2 - 1-j-l ($Q + 29; + q& 

[ 
1 1 

(SQ- Tqi+ki) 
2 

-1 ‘1-l [($a -$qi- ki)2 - I]-’ ikSQ + qi+ q~2 - 11-1 

q&+q(k;’ qi + 3 % (38) 

In order to evaluate the asymptotic behavior of the form factor, ‘we need the 

behavior of the vertex function for large momenta. In this limit, the t-matrix 

reduces to the potential up to logarithms and the asymptotic integral equation 

reads: 

$$kl, ql) = j-j-dqldk’ [(a ql - kl - 5 q’ + k’)2] -’ [(+ Q - & qI + kT)2]-i 

-k’ -ql) 2]-1 bql - q’)2]-e k$Q + q’)2]-1 [(+Q - +q’ - k’)2] -I 

cp;(k’, q’) +//...~+?+/l*. .(P2$.G3 . 

(P;(k2, q2) = . . . . 

‘P;(kg , q3) = . o . . (3% 

If we first consider the integration over a finite volume, we immediately obtain 

the following behavior: 

#$~1~ kl) = k+ql - k1)2]-e [q;]-1 [q;]-e + . . . l 

= 2 _ kl)2]e bT1-l b;]-’ + 2 [(+ql + k1)2]-e (q;)-l [q;]-’ 

(40) 
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When the integration variables are big, we substitute this ansatz in Eq. (39) and 

evaluate the contribution to the asymptotic behavior coming from the other re- 
4 

gions of integration: k;l small and q’, = O(ql) or qh = 0( i ql - kl) and viceversa; 

qb = O(ql) and ($ q’ - k’) 
V 

= 0( i ql - kl) etc. The behavior (40) turns out to be 

dominant. Collecting from Eq. (39) the missing terms, we obtain for the vertex 

function (cf. (13)): 

~Q(qlakl) = [$j-1-e 1 [(&q, - k$“]-” + [&ql +Q,‘]-‘} 

1 
+ kg1 -q [ 

-1-e 

“I I[ 

2- -8 
411 -+ [ 

($ ql + k1j2 -e 
11 

‘l-l-’ [[q;]-’ + L+ql - kl)2]-e} 0 (41) 

I From Eq. (41) it follows that the wave function: . 

z/ = Go9 - QQ(ql, kl) = [(; Q + ql)2- I] -’ b+ Q - ; ql+kl)2-1] -’ 

is integrable. Furthermore: 

(PQ+q (klsql + ; 9) = 

tq2p2e 

2 
cl -* 

(43) 

ki, q1 fixed 

In order to evaluate the asymptotic behavior of the form factor (38), we 

first consider a finite region of integration and from Eq. (43) we obtain: 

W2) = 
q2.+ co 

tq2r2- 2e (44) * 
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The other regions of integration confirm the behavior (44) as the dominant one. 

The nucleon form factor would correspond to the limiting case .9 - 0 as it was 

neces;ary to consider in the two-body case in order to recover the correct pion 

form factor. So far, we have a consistency (although spinless) model for the 

pion and the nucleon form factors. 
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FIGURF: CAPTIONS 

1. The electromagnetic form factor in the ladder approximation for a two 
4 

body bound state (la) 0 The Bethe-Salpeter equation in the ladder approxi- 

mation for the wave (vertex) function of a two-body bound state (lb). The 

2, 

elementary two-body interaction is defined in formula (29). 

The general graph in the ladder approximation for a system of three 

particles interacting with a two-body interaction, 

3. The once-iterated relativistic Faddeev equations for the wave (vertex) 

function of a three-body bound state. The symbol ?j$ means the 

Faddeev components Gi(cpi) e The twisted lines represent the two-body 

Bethe-Salpeter T-matrix in the ladder approximation. 

4. 

5. 

The two-body Bethe-Salpeter T-matrix with a three-particle propagator. 

The electromagnetic form factor in the ladder approximation for a 

three-body bound state. 
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