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ABSTRACT 

We propose as an ansatz the constancy of the ratio 5 of the non-diffractive 

pieces of v 3 and v WE for w 2 12. This enables us to obtain a simple relation 

between the experimental data and the fixed pole residues R p, Rn, as well as 

some constraints on the constant v WF= limw_ =v W;’ n. For ,$ = 2/3 and 

Rp = 1, we obtain Rn = 0.37 and v WF= 0.20. 
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INTRODUCTION - 4 

Some five years after its existence was conjectured’, the J = 0 fixed pole 

in nucleon Compton scattering still presents a certain irritation to the phenom- 

enologist. Let us present a brief review of the problem. The existence of a 

fixed pole at J = 0 in the Compton amplitude T2 (where 7rW2 = ImT2) receives 

strong support from analyses2 based -on light cone expansions and, more intu- 

itively, from parton model calculations3, where it reflects the existence of 

seagull (or seagull-like) terms due to the scattering of light from the partons. 

Application of finite energy sum rule (FESR) techniques to the amplitude 

v T2 leads in a standard way to the sum rule4 

Wq2) = 0(w-1) - F;Symp(u,q2) 1 . (1) 

where w = 2mv /q2, v = -p.q/m, R(q2) = mPots2)/s2, F2 = v W2, with the 

fixed pole appearing in T2 as T2 v 2 - /3,(q2) v -2 + other terms. The upper 

limit on the integration is such that for u 2 w*, F2(w, q2) -Frymp(w, q2). 

If now we suppose that for q2 2 1 Ge 9, F2bw2)~ F2(a) (Bjorken scaling5) 

then Eq. (1) implies that R(q2) 2- R = constant (which may be zero), and 

that P,(q2) Iq2 for large q2. Ifg indezd po(q2) a q2 (polynomial residue6) then 

we can compare R as obtained from Eq. (2) with the results of analyses of on- 

shell Compton scattering. For the proton7, this implies Rp N 1.0; while for 

the neutron8 Rn = 0 f 0.5. 

Even a qualitative examination of the present data shows that to obtain 

Rp = 1, from Eq. (1) Fi must decrease considerably at large w from its value 

N 0.33 in the range w = 5 to 10. The previous attempt’ to present a quantitative 



discussion of this possibility involved a rather detailed analysis which made 

heavy”use of a secondary trajectory with a(O) = - l/2. It was concluded that 

it is possible to fit present data on v W’ , satisfy quark model sum rules, and 

have Rp= +l. There was, however, very little donstraint placed on Rn, and a 

vdue Of ( W2)diffra&ive 5 0.12 seemed to be favored. 

In this note, we wish to present a simple scheme which will allow us to 

place rather narrow bounds on R R” and FP=lim 
P’ n 2 w-kVW;=lim Cd-~ VW$ 

The basic approximation we shall make (next paragraph) will allow us to obtain 

these bounds without any assumptions as to the “asymptotic” forms of FF’” 

(beyond w = 12). 

THJ? ANSATZ 

Let us suppose that for w L w* (which we take as 12 in this paper), we may 

write 

F;(w) = F;+ F2 w) Rc 

F;(w) = F;+ 5 F$ W) (2) 

where I$ - 0. 
cd--,” 

Two assumptions have gone into Eq. (2): 

(1) limw_,Fg = limw4,Fi =FF and 

(2) for U> u*, FFn/F$’ =const = 5 o 

The first assumption is canonical in either Regge or par-ton model lore. The 

second assumption, our ansatz, is true in a simple Regge pole model with 
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degenerate f” and A2 trajectories. If there is a lower effective trajectory 

whichis important for w > w*, then to conform to this assumption its F/D 

ratio must be similar to that of the 2+ octet. For orientation, a totally anti- 

symmetric (F) coupling (or quark model additivity) would imply t = 2/3. 

BASIC EQUATIONS 

If these assumptions hold, then we can find from Eq. (2) a linear combi- 

nation which is purely diffractive beyond w = w*: 

Since the FESR (1) is a linear relation, we may write 

Rn - tRP = (I,(w*) - 5 Ip’“*)) -iyfd, F;symp(w,S) . 
0 w* 

where I 
p,n= 1 s dw F;‘n(w). 

According to Eq. (3), FyymP(w, [) = constant = F$w*) - 5 F$ w*) and hence 

Eq. (4) becomes 

Rn = yn( o*) + [ (RP - Yp(w*)) 

(3) 

(4) 

= ( yp(u*) - ripn(u*)) -I- < tRP - ^ipb*)) (5) 

where y p,n(o*) = Ip n(w*) - W* F;‘“(w*) 
’ , 

and y pn=rp-T . 
n 

The diffractive limit is obtained from Eq. (3), evaluated at w = w*: 
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p= 
2 F;( w”) - / (1 - 5) 1 (6) 

where Fr = Fi - Fi . 

Eqs. (5) and (6) will provide the basis for our discussion. 

DATA 

The quantities rp(w*), %,(u*) are in principle determined by experiment. 

The former is rather well constrained. With a change in variable to 

w’ = w ;t M2 
d 

q2 , we can use a recent compilation by Bodekl’ to obtain 

Ip(12) = 3.33 f 0.08 

F;(12) = 0.33 * 0.01 

and hence 11 yp(12) = - 0.63 f 0.12 

As might be imagined, r 
Pn 

is much more problematic. We present our 

results for two different sets of data: (a) The recent 6’ and 10’ SLAC-MIT 

data12. This is plotted in Fig. 1. (b) A compilation by Bodekl’ for 

0.15 I x’ < 1 ( 1 Iw’5 6.67)) and some 4’ SLAC data reported 13 at the Bonn 

Conference for 7 L U’ 5 12. This set is plotted in Fig. 2. 

For Data Set (a),, we obtain 

I ‘12) = 0.55 f 0.12 
Pn 

FPn(12) = 0 038 f 0 01 2 . . 

Ypn(12) = 0.09 * 0.12 
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For Data Set (b), 

Ipn(12) = 0.70 f 0.12 

Fpn(12) 2 = 0 . 051 -f 0.01 

Tpn(12) = 0.09 + 0.12 

It should be noticed that the value of ypn( 12) is insensitive to one’s choice 

between these sets of data. Thus, from Eq. (5), the relation between Rn, Rp 

and 5 is the same whichever data set is used. 

BOUNDS ON Rn 

In order to narrow the range of parameters, we shall now set R = 1 and 
P 

examine the possibilities which ensue. In view of the comment at the end of the 

previous section, we can then reduce Eq. (5) to the numerical form 

Rn = (1.63 f 0.12)[ - (0.72 f 0.17) (7) 

for either data set. 

The value of < is (in principle) determined by plotting F2(u, 0 (( Eq. (3)) 

vs. w for various values of t, and determining the value of 5 for which F2(w, 5) 

is flattest in the region w >w*. The data, of course, is nowhere nearly accurate 

enough to make this procedure possible. Instead, we resort to a study of Rn 

(and in the next section, FF)with [ treated as a parameter. 

Eq. (7) is plotted (without delimiting the errors) in Fig. 3. We make the 

following comments: 

(i) For [ = 2/3 ( pure octet, F coupling) we obtain Rn = 0.37. A slightly 

-6- 



different value of Rn (- 0.5) is obtained by taking < from the previously 

mentioned8 fit to on-shell rd data ([ N 0. 77). Either of the values is consistent 

with a linear residue for the neutron fixed pole. 

(ii) Eq. (7) is inconsistent with the naive quark model choice 

Rn/Rp = 2/3 = t. 

(iii) To achieve Rn = 0, Rp = 1 (the Thomson limit) would require a value 

[ = 0.45. This is outside the bounds tolerated by the on-shell analysis8. (It 

implies an AZ/f0 ratio of 0.38). 

(iv) Higher values of Rn (such as Rn = 1) are eliminated when one considers 

the value of P- 2 implied by such a possibility. To this we turn next. 

BOUNDS ON F; 

Eq. (6) forms the basis of the discussion in this section. The dashed lines 

(a and b) in Fig. 3 are graphic representations of Eq. (6) for the two values of 

Fpn(w*) obtained from the two data sets (a) and (b) described in the previous 

section. The error spread on each curve is about equal to the distance between 

the curves. It is clear that even if we were given a value of t, the resulting 

Fyis only roughly determined. However, with reference to Fig. 3, we can 

still make some interesting quantitative observations: 

(i) The condition l$ >O is seen to imply ,$ I 0.9. This in turn implies 

Rn 5 0.7 (for Rp = 1). Thus a solution with R p = Rn = 1 is excluded. 

(ii) With { = 2/3, we obtain I$= 0.22 f 0.02 for Data Set (a), 

FF= 0.18 * 0.02 for Data Set (b). In either case, we can see that P 2 must fall 

considerably below its present value for the consistency of our results. This 
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conclusion we share with all authors. However, our values of < are somewhat 

higher’7ha.n those obtained in Ref. 9. 

(iii) The quark model distinctly favors Data Set (b), since the quark charge 

sum rule140/ 1 (dx/x) (F; - Fi) = l/3 seems only a distant possibility with Data 

Set (a). In that case (and with Rp = 1), we can see from Fig. 3 that e is 

restricted to be 5 0.24 f 0.02 by the condition R$ 0. (The latter is practi- 

cally imperative in the seagull-parton interpretation3 of the fixed pole term. ) 

RESUME 

We have attempted to present a simplified framework for the examination 

of the fixed-pole residues in virtual Compton scattering. By dealing simulta- 

neously with the neutron and proton, and by postulating that for w’ 2 12, the 

non-diffractive pieces of Fi and F; bear a constant ratio (0 to each other, we 

have been able to set up two simple equations(5) and (6)) relating Rp, Rn, {, 

and the diffractive piece P 2 to various pieces of experimental data. With great 

insensitivity to the data for v W 
2P 

- v W2n, one can restrict Rn to values 5 0.5 

if Rp= 1. The diffractive piece Fydepends more strongly on v W 
2P 

- v W2n, but 

a value of - 0.20 f 0.04 seems to be indicated. 

I would like to thank Dr. F. J. Gilman for several useful discussions, and 

Dr. A. Bodek for a helpful guide to the data. 
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4 FIGURE CAPTIONS 

Fig. 1 v w2p - v wzn ys. w’, taken from J. Poucher, et. al., Ref. 12. Errors 

shown are statistical only. The interpolating curve is an eyeball fit 

to the data, and was used as the basis of obtaining the values of Ipn( 12), 

Fy(12) given in the text under Data Set (a). 

Fig. 2 lJwzp - vW2nVS. cd’. Points designated by circles are taken from 

A. Bodek, Ref. 10, those designated by triangles are from Ref. 13. 

The errors are statistical only. The interpolating curve is an eyeball 

fit to the data, and was used as the basis of obtaining the values of 

Ipn( 12)) FF 12) given in the text under Data Set (b). 

Fig. 3 Solid curve: “Reduced” Neutron Fixed Pole Residue Rn (see definition 

following Eq. (2)) vs. 5 = (v 3 - v W,$ / (v WF - v WF), for R = 1. 
P 

Dashed curves: Diffractive (Pomeranchuk) limits 

v Wf= lim cd-+* v WE = li”,4mv Wt vs. 5. Curve a (b) based on Data 

Set a (b) (see text). 
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