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ABSTRACT 

From a partial wave analysis of the reaction TN - ~7rN we extract 

50 couplings and partial widths for N* resonances decaying into AT, pN 

and EN. Three different methods of determining the resonance parameters 

are compared. The signs of the 7rA couplings are found to be consistent 

with the predictions of B-broken SU(6)+ if one assigns Pi1(1415), Py1(1730) 

and P33(1700) to [56, L = O+] supermultiplets. The signs of the pN 

couplings are inconsistent with SU(6)w symmetry in its e-broken form, but 

in good agreement with the observed photon couplings. 
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We have completed a partial wave analysis of the reaction TN - 7rnN for 

energies up to 2000 MeV, using a generalized isobar model in which the N7r7r 

final state is treated as a coherent sum of An + pN + EN sub-states. ’ A unique , f 

set of amplitudes has been found de.scribing the inelastic TN scattering through- 

out this entire energy range. 2 In Ref. (1) we presented 28 Argand plots of these 

energy independent N~7r amplitudes o We have now made K-matrix fits to these 

Argand amplitudes and have extracted the resonance couplings and partial widths. 

These parameters should be expressed in terms of T-matrix poles, but are more 

usually described as parameters in various approximations to Breit-Wigner 

amplitudes. Since these methods cannot agree in general, we have estimated the 

resonance parameters in three different ways described below. The signs of the 

resonance couplings are accessible only from the study of inelastic scattering, 

and are very powerful tools in the classification of resonant states and in testing 

models. 3 

We now summarize the three methods used in finding the resonance para- 

meters ; further details may be found in Ref, (4)0 The first two methods rely on 

approximating the T-matrix Tif (LT’) between an initial state, i, and, a final state, 

f, as a Breit-Wigner amplitude : 

T = 
+& r/2 

if ER-E -iI’/ + (constant background), 

where for any channel xi = ri/rO Tif then describes a circle of diameter 

,/s We determine the sign of the coupling from the direction of the ampli- 

tude at resonance; if the circle lies above the origin we say that the final state 

has a positive coupling5 and on Table I we attribute a positive sign to the resonant 

amplitude 4% . 
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Method I: “Eyeball Fits to Existing Argand Plots”. 

This is the most direct approach. We consider only the initial state i = 1 = nN, 
c, 

and rely on the elastic partial wave analysis of Ayed and Bareyre’ for the parame- 

ters ER, I’ and x1. We then draw by eye and compass a best circle through the 

nA amplitude on the Argand plot, measure its diameter and call it ,/K. The 

nh width I’, is then xAI’ (Ayed). We independently repeat the procedure for the 

pN and EN channels, and do not ask whether the whole T-matrix would satisfy 

unitarity. The results are displayed in Table I for each resonance, as the first 

row labelled “Argand (Tlj)“. The f sign in Table I indicates that the resonant 

contribution to those amplitudes is not well determined. 

Method II: “Eyeball Fits to the Whole Unitarized T-Matrix”. 

Here we still think in terms of drawing Breit-Wigner circles of radius 

,/x but we invoke the constraint of unitarity. For each of the 11 different 

partial waves (IJ’), we perform a K-matrix fit to the Argand amplitudes, using 

the amplitudes of Ayed for the nN channel’ and our own amplitudes for the AT, 

pN, EN channels’ adding when needed a NV or “dummyl’ channel, From the K- 

matrix we calculate a T-matrix, T, (KJ, which satisfies unitarity. Now, even if 

we looked only at the Argand curves for the top row, Tlf, of the matrix we could 

make better estimates because the curves have been smoothed and modified to 

satisfy unitarity. But we actually go further and take into account the Argand 

plots of all the elements of the T-matrix. - Thus, we can look at Tz2, which 

describes the reaction 7rA - N* - ETA. Eyeball circles through the Argand 

curves Tll, T22, T33 - should then provide better -constrained estimates of 

rl, r2, r3 - o In fact we not only draw Breit-Wigner circles through all the 

Argand plots, but even slightly modify the Ayed values of ER and r in an attempt 

to find an overall best fit. The parameters estimated from this whole x-matrix 

method are shown on the second row for each resonance in Table I. 
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Method III: “Search for Poles in the Unitary T(K)-Matrix of Method II. NN 

This time we abandon Breit-Wigner approximations and use a computer to 

hunt foF the poles and the residues of the T-matrix. The definition for each If 

is not entirely unique; they are, of course, determined by the complex residues 

yf of Tff at the pole using a formula 

r - = y2 (kinematics) . 2 

However we have a choice of evaluating the kinematics at the pole or on the real 

axis at a point ER = ReE pole’ We choose to evaluate the kinematic quantity on 

the real axis. These values of Ff are listed in Table I as the third row, labelled 

?l?ole”. 

Method IV: (Not presented because it gave ridiculous values). 

For nearly-elastic resonances the poles in the T-matrix are closely related 

to K-matrix parameters. Thus K-matrix pole energies have sometimes been 

used to describe ER. But the resonances considered here are inelastic and have 

large backgrounds, and we found that the K-matrix parameters yielded meaning- 

less values for the masses and partial widths of the resonances (i.e. , if inter- 

preted literally they correspond to resonances which are shifted by: -100 MeV 

from their nominal value and have much greater widths than given by Methods I, 

II, or HI). This is not surprising since the K-matrix is merely a good way to 

parameterize the T-matrix in terms of real numbers, and the K-matrix pole 

positions and residues even change along with the number of channels considered. 

Discussion 

Of the three methods described above, obviously (III) is the most stable and 

attractive method of obtaining resonance parameters: (1) we expect pole positions 

and residues in the T-matrix to be independent of our parameterisation of the T- 

matrix providing that it is good. This expectation stems from work on the 

P33(1236) resonance7 and investigations of our own;4 (2 ) we expect the pole 
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position and residue to be closely related but not equal to the Breit-Wigner 

paramzters. For example, consider the elastic background-free, text-book 

resonance “P 33 (1236)” (which we have omitted from Table I because it has no 
I i 

Nm channels )- Ayed and Bareyre’ quote ER = 1231, I’ = 109, but we find the 

pole to be at (1212 - i 101/2) MeV and its complex width on Table I would be 

I I’ I = 97 MeV at an angle of 24’. This large angle is also found by all other 

pole searches. 7 We expect, and find, that pole and Breit-Wigner parameters 

will diverge even more when we have either large backgrounds, or wider reso- 

nances. 

Results 0 

1. Agreement between the three methods: 

(a) The spread in masses is typically lo-20 MeV, although for F37 (1930) 

and P33(1700) the agreement is rather poor; 

@) in general, the total widths agree to --+20% with P11(1700) and 

D13(1700) showing bad discrepancies; 

(c) one can actually predict just by looking at the Argand plots how 

well the three methods will agree. For example, D13 (1700) has mis-shapen Nn?r 

Argand plots‘with a very small circle in ArDS13( ,/yA - 0. l), and one expects 

discrepancies, since for such a shape a pole does not simulate a Breit-Wigner. 

On the other hand, D15 and F15 show smooth circles with little background, and 

the three methods agree to within *30’& 

To be more objective we have guessed that the diameter of the resonance 

“circle” is a measure of the agreement to be expected between the different 

methods 0 Figure 1 shows the ratio of the resonance widths as estimated by the 

three methods, as a function of the diameter of the resonance circle, ( ,/Ff). 
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It is clear that for circles of diameter > 0.3 the estimates for If agree to within 

about &200/c, but this spread increases roughly inversely as the coupling. 

- 

It will be necessary for future theories to present resonance parameters in , l 

terms of T-matrix poles ,* When we bear in mind the 50% errors possible in going 

from Breit-Wigner to pole parameters the factors of 1.5 to 2 discrepancy in pre- 

sent tests of SU(3) and quark model predictions seem quite reasonable. 

2. Quark Model Assignments from Signs in Table I. 

It has recently been emphasized that the determination of coupling signs and 

branching ratios is important for the classification of resonant states, and testing 

our understanding of underlying constituent dynamics. 3,8,9 The signs of the 

resonant amplitudes and couplings of the N* to the n-A, pN, and EN channels using 

the three methods described above, all agree. Further, the couplings imply: 

(a) Signs of AT decays are consistent with L-broken SU(6)w or Melosh transfor- 

mations. For the [70,1-l supermultiplet the signs are those of 1~Anti-SU(6)w”, 

while for the [56,2+] , our FP15 sign selects “Normal-SU(6)w1’ (see references 

3,8,9). (b) that the new D13(1700) should be classified as a [70,1-l member 

while the P11(1700) and P33(1700) should be classified as members of a [56,0+]. 

(c) that there are indications of radial excitation structure now emerging in the 

baryon spectrum: 

156, $1 

n=O 

n=2 

n =4 

State 

Proton P33(1236) 

plltlw P33(1700) 

p11t17~o) 

(d) that the signs of the pN couplings agree with the related photoproduction 

data. lo 
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FIGURE CAPTION 

1. Ratios of Resonance Partial Widths as estimated by our methods I, II, and 

III. rtPrr (for pole) means r III/r1 h w ere I? comes from the eyeball fit to 

a single row of energy-independent Argand plots. “T” (for “T-matrix) 

means rll/rl. We plot only cases with partial widths I’ > 10 MeV. The 

o rdina te J--* xlxf is the “diameter” of the smaller of the two resonance circles 

(Method I or Method II). 

-8 - 



I 

Table 1. Resonance Parameters evaluated three different ways (see text). If there is more than one resonance per Argand plot, 
we add a prime to the first, two primes to the second, e.g. Pi3(1232), Pi3(1900). Notation such as plN SSl, is explained in 

the previous letter. ref. 1. The partial widths via method III (Pole) are calculated by I‘/2 = ( residue)z X Kinematics evaluated 

at E = Re(E poIe). We then tabulate lrl and phase. (8 signs for the plN, EN amplitudes corrected July 1974) 

T-matrix Resonance NT 

JigrAAnIi 
P 

property used Jp Mass I- x, rl rk&$ r 
Check ___ - 

d$ rE xxi 
in estimate (MeV) (MeV) (.“leV) (l&V) (MeV) &V) (MeV) 

St, SDII NP,.SS,, SPll 
+0.12 

: 
aO.l 

+0.09 -0.09 : 
+* {l5! -+ {l4i 

68 
10.23 15 -0.23 :5" 
+0.16 -0.25 18 
+* 

1 
,!I -* 

112" {!:;A 

Npl.PPll PSI1 
0.00 0 ~1~0.18 11 

-0.23 20 +0.23 20 
-I 

( 
1151 +* 1101 

+37" 1 +108” 
+'I.32 99 +0.1s 31 
+o.zo 15 CO.28 30 
+* ( 13; +* {+,4$ 

118 
Wl~PP13 

--=-0 0.34 26 0.00 
0.20 20 -0.06 2 

{!,","I +* 
1 

I1 I (I no 
I. Ar and(Tlj) 

$: pp $ 

Si, 1520 
1510 
1496 

Si’l 1675 
1660 
1648 

75 
100 
103 

150 
130 
117 

0.41 +NQ 
0.30 +Nq 

10.47l+Nq 

0.79 +Nq 
0.69 +Nq 

10.72l+Nq 

0.77 
I .oo 

10.851 

1.05 
1 .oo 

Il.051 

1.02 
1 .oo 

IO.681 

0.98 
1 .oo 

Il.031 

0.89 
1 .oo 

10.841 

0.90 
1 .oo 

11.061 

0.95 
1 .oo 

11.001 

0.92 
1 .oo 

IO.981 

0.87 
1.00 

10.721 

0.77 
1.00 

11.061 

0.80 
1 .oo 

10.871 

0.64+? 
0.80+? 

ll.ool+? 

Pll PPll 
0.54 97 -0.30 30 I. Argand(Tlj) 

11. &j(E) 
III. Pole 

Pi1 1415 
1390 
1381 

Pi’1 1730 
171.0 
1708 

180 
200 
209 

16.5 
75 
Ii 

0.54 110 -0.37 50 
pr -* p; 

0.16 28 to.13 16 
0.20 -0.20 15 

L 
!,i;l -* 

146” (-$ 

P13 

0.14 0.20 it 

i!;g 

D13 DSl3 
0.56 67 +0.27 16 
0.60 90 to.24 15 

{Iss; +* 1171 
+2 i +54" 

0.09 9 10.15 25 
0.1 +0.16 75 

L 
I% +* 

138” 1!i$ 

D15 DD15 
0.41 59 -0.45 72 
0.45 67 -0.50 83 

{J$ -* j'y$! 

P13 1695 115 
1720 150 
1716 124 

-0.15 101 
-0.40 120 

-* {!f$ 

Np3,DS13 DPl3 
+0.32 22 0.0 0 
+0.24 15 +0.17 7 

DD13 
+0.24 12 
+0.30 23 

-0.14 60 $07 15 -0.5 120 

-* {J,“$ 1 
161 -* {I+":;; 

+162" 

I. Ar and(Tlj) 

,:;: p,p, 7 

I. Ar and(Tlj) 
$, &y s 

Di3 1524 120 
1520 150 
1514 146 

Di3 1710 100 
1710 300 
1710 607 

145 
150 
146 

W3.FPl5 FDl5 
+0.27 15 -0.28 16 
+0.30 19 -0.30 19 
+* pm; -* jig;! 

NP~,SSQI 

-to.18 16 
Ii.28 1261 30 i 

L 152" 

F15 FP15 
0.59 :i +0.26 14 
0.59 +0.25 13 

S31 SD31 
0.32 51 +0.40 80 
0.40 60 +0.40 60 

i- 
l37i +* p;; 

136 
p33 

O.-l9 
pp33 

-0.36 140 
0.10 z’o -0.30 270 

{!;;A -* {'!;;6 

D33 DS33 
0.17 32 -0.25 70 
0.20 48 -0.24 72 

1 1361 
+16" 

-* 1 11131 
+29" 

I. Ar and(Tlj) 

I;;; @’ ‘i 
Fl5 1680 

1670 
1668 

125 
130 
132 

1. Ar 

p-i,p 9 and(Tlj) 

S3, 1625 160 

g: 1600 1583 150 143 

Pi3 1900 205 
1640 300 
1609 323 

NP~, DS33 

a0.20 45 ' 
+0.30 108 
+* 

1 
1841 

+104” 
NP~, FP35 

-0.28 143 
-0.33 132 -. 
-* p,"y 

NP~. FF37 

iO.18 19 
-0.24 36 
-* 1 1391 

+52' 

DD33 

-o".lO 1: 

+* {$ 

FF35 
-0.12 26 
-0.20 48 
-* 1 1401 

+19" 

D33 1725 190 
1680 240 
1681 245 

F35 
0.14 36 
0.18 40 

I!,“$ 

F37 FF37 
0.41 96 -0.25 36 
0.40 96 -0.32 60 

{!;;J -* jlT7b 

I. Argand(Tlj) 
II. Tij(E) 

F36 1870 255 

III. Pole ; Ei :fi 

F37 1930 235 
1925 240 
1924 258 

*In Method III we get the widths directly from the T-matrix residues, and are unconcerned with 6 
except for its *. 
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Fig. 2. Ratios of Resonarf~ e Partial Widths as estimated by our methods I, II, and III. 
I “P” (for “pole”) means r /l? I where Y1 comes from the eyeball#t to a single row of 

energy-independent Argand plots. ltT’l (for “T-matrix”) means I? /r’. We-plot only 
cases with partial widtlis l? > 10 MeV. The ordinate Jxlxfis the “diameter” of the 
smaller of the two resonance circles (Method I or Method II). 


