N* RESONANCE PARAMETERS AND K-MATRIX FITS TO THE REACTIONS

$$
\pi N \rightarrow \Delta \pi+\rho N+\epsilon N^{*}
$$

R. S. Longacre, \dagger A. H. Rosenfeld, T. Lasinski, G。Smadja \dagger
 Department of Physics and Lawrence Berkeley Laboratory University of California, Berkeley, California 94720

R.J. Cashmore $\dagger \dagger$ and D.W.G. S. Leith

Stanford Linear Accelerator Center Stanford University, Stanford, California 94305

Abstract

From a partial wave analysis of the reaction $\pi N \rightarrow \pi \pi N$ we extract 50 couplings and partial widths for N^{*} resonances decaying into $\Delta \pi, \rho \mathrm{N}$ and $\epsilon \mathrm{N}$. Three different methods of determining the resonance parameters are compared. The signs of the $\pi \Delta$ couplings are found to be consistent with the predictions of ℓ-broken $\mathrm{SU}(6)_{\mathrm{W}}$, if one assigns $\mathrm{P}_{11}^{\prime}{ }^{(1415)}, \mathrm{P}_{11}^{\prime \prime}(1730)$ and $\mathrm{P}_{33}(1700)$ to $\left[56, \mathrm{~L}=0^{+}\right.$] supermultiplets. The signs of the $\rho \mathrm{N}$ couplings are inconsistent with $\operatorname{SU}(6)_{\mathrm{w}}$ symmetry in its ℓ-broken form, but in good agreement with the observed photon couplings.

(Submitted for publication.)

[^0]We have completed a partial wave analysis of the reaction $\pi N \rightarrow \pi \pi N$ for energies up to 2000 MeV , using a generalized isobar model in which the $\mathrm{N} \pi \pi$ final state is treated as a coherent sum of $\Delta \pi+\rho N+\epsilon N$ sub-states. ${ }^{1}$ A unique set of amplitudes has been found describing the inelastic $\pi \mathrm{N}$ scattering throughout this entire energy range. ${ }^{2}$ In Ref. (1) we presented 28 Argand plots of these energy independent $N \pi \pi$ amplitudes. We have now made K-matrix fits to these Argand amplitudes and have extracted the resonance couplings and partial widths. These parameters should be expressed in terms of T-matrix poles, but are more usually described as parameters in various approximations to Breit-Wigner amplitudes. Since these methods cannot agree in general, we have estimated the resonance parameters in three different ways described below. The signs of the resonance couplings are accessible only from the study of inelastic scattering, and are very powerful tools in the classification of resonant states and in testing models. ${ }^{3}$

We now summarize the three methods used in finding the resonance parameters; further details may be found in Ref. (4). The first two methods rely on approximating the T -matrix $\mathrm{T}_{\mathrm{if}}\left(\mathrm{IJ}^{\mathrm{P}}\right)$ between an initial state, i , and a final state, f , as a Breit-Wigner amplitude:

$$
\left.T_{i f}=\frac{ \pm \sqrt{x_{i} x_{f}} \Gamma / 2}{E_{R}-E-i \Gamma / 2}+\text { (constant background }\right)
$$

where for any channel $x_{i}=\Gamma_{i} / \Gamma_{。} \quad T_{i f}$ then describes a circle of diameter $\sqrt{x_{i} X_{f}}$. We determine the sign of the coupling from the direction of the amplitude at resonance; if the circle lies above the origin we say that the final state has a positive coupling ${ }^{5}$ and on Table I we attribute a positive sign to the resonant amplitude $\sqrt{x_{i} x_{f}}$.

Method I: "Eyeball Fits to Existing Argand Plots".

This is the most direct approach. We consider only the initial state $\mathrm{i}=1=\pi \mathrm{N}$, and rely on the elastic partial wave analysis of Ayed and Bareyre ${ }^{6}$ for the parameters E_{R}, Γ and x_{1}. We then draw by eye and compass a best circle through the $\pi \Delta$ amplitude on the Argand plot, measure its diameter and call it $\sqrt{x_{1} x_{\Delta}}$. The $\pi \Delta$ width Γ_{Δ} is then $x_{\Delta} \Gamma$ (Ayed). We independently repeat the procedure for the ρN and $\epsilon \mathrm{N}$ channels, and do not ask whether the whole T-matrix would satisfy unitarity. The results are displayed in Table I for each resonance, as the first row labelled "Argand $\left(\mathrm{T}_{1 \mathrm{j}}\right.$ ". The \pm sign in Table I indicates that the resonant contribution to those amplitudes is not well determined.

Method II: "Eyeball Fits to the Whole Unitarized T-Matrix".
Here we still think in terms of drawing Breit-Wigner circles of radius $\sqrt{\mathrm{x}_{\mathrm{i}} \mathrm{x}_{\mathrm{f}}}$ but we invoke the constraint of unitarity. For each of the 11 different partial waves (IJ^{P}), we perform a K-matrix fit to the Argand amplitudes, using the amplitudes of Ayed for the $\pi \mathrm{N}$ channel ${ }^{6}$ and our own amplitudes for the $\Delta \pi$, $\rho N, \in N$ channels ${ }^{1}$ adding when needed a $N \eta$ or "dummy" channel. From the Kmatrix we calculate a T-matrix, $\underset{\sim}{\mathrm{T}}(\underset{\sim}{\mathrm{K}})$, which satisfies unitarity. Now, even if we looked only at the Argand curves for the top row, $\mathrm{T}_{1 \mathrm{f}}$, of the matrix we could make better estimates because the curves have been smoothed and modified to satisfy unitarity. But we actually go further and take into account the Argand plots of all the elements of the T-matrix. Thus, we can look at T_{22}, which describes the reaction $\pi \Delta \rightarrow \mathrm{N}^{*} \rightarrow \pi \Delta$. Eyeball circles through the Argand curves $\mathrm{T}_{11}, \mathrm{~T}_{22}, \mathrm{~T}_{33}$ - should then provide better-constrained estimates of $\Gamma_{1}, \Gamma_{2}, \Gamma_{3}$-。In fact we not only draw Breit-Wigner circles through all the Argand plots, but even slightly modify the Ayed values of E_{R} and Γ in an attempt to find an overall best fit. The parameters estimated from this whole $\underset{\sim}{T}$-matrix method are shown on the second row for each resonance in Table I.

Method III: "Search for Poles in the Unitary $\underset{\sim}{T}(\underset{\sim}{K})$-Matrix of Method II.
This time we abandon Breit-Wigner approximations and use a computer to hunt for the poles and the residues of the T-matrix. The definition for each Γ_{f} is not entirely unique; they are, of course, determined by the complex residues γ_{f} of $T_{f f}$ at the pole using a formula

$$
\frac{\Gamma}{2}=\gamma^{2} \text { (kinematics) }
$$

However we have a choice of evaluating the kinematics at the pole or on the real axis at a point $\mathrm{E}_{\mathrm{R}}=\operatorname{ReE}_{\text {pole }}$. We choose to evaluate the kinematic quantity on the real axis. These values of T_{f} are listed in Table I as the third row, labelled "Pole".

Method IV: (Not presented because it gave ridiculous values).
For nearly-elastic resonances the poles in the T-matrix are closely related to K-matrix parameters. Thus K-matrix pole energies have sometimes been used to describe E_{R}. But the resonances considered here are inelastic and have large backgrounds, and we found that the K-matrix parameters yielded meaningless values for the masses and partial widths of the resonances (i.e., if interpreted literally they correspond to resonances which are shifted by : $\sim 100 \mathrm{MeV}$ from their nominal value and have much greater widths than given by Methods I, II, or III). This is not surprising since the K-matrix is merely a good way to parameterize the T -matrix in terms of real numbers, and the K -matrix pole positions and residues even change along with the number of channels considered.

Discussion

Of the three methods described above, obviously (III) is the most stable and attractive method of obtaining resonance parameters: (1) we expect pole positions and residues in the T-matrix to be independent of our parameterisation of the Tmatrix providing that it is good. This expectation stems from work on the P_{33} (1236) resonance ${ }^{7}$ and investigations of our own; ${ }^{4}$ (2) we expect the pole
position and residue to be closely related but not equal to the Breit-Wigner parameters. For example, consider the elastic background-free, text-book resonance " $\mathrm{P}_{33}(1236)$ " (which we have omitted from Table I because it has no $\mathrm{N} \pi \pi$ channels). Ayed and Bareyre ${ }^{6}$ quote $\mathrm{E}_{\mathrm{R}}=1231, \Gamma=109$, but we find the pole to be at (1212 - i $101 / 2$) MeV and its complex width on Table I would be $|\Gamma|=97 \mathrm{MeV}$ at an angle of 24°. This large angle is also found by all other pole searches. ${ }^{7}$ We expect, and find, that pole and Breit-Wigner parameters will diverge even more when we have either large backgrounds, or wider resonances.

Results.

1. Agreement between the three methods:
(a) The spread in masses is typically $10-20 \mathrm{MeV}$, although for $\mathrm{F}_{37}(1930)$ and $\mathrm{P}_{33}{ }^{(1700)}$ the agreement is rather poor;
(b) in general, the total widths agree to $\sim \pm 20 \%$ with $\mathrm{P}_{11}(1700)$ and $\mathrm{D}_{13}(1700)$ showing bad discrepancies;
(c) one can actually predict just by looking at the Argand plots how well the three methods will agree. For example, $D_{13}(1700)$ has mis-shapen $N \pi \pi$ Argand plots with a very small circle in $\Delta \pi \mathrm{DS}_{13}\left(\sqrt{\mathrm{x}_{1} \mathrm{x}_{\Delta}} \sim 0.1\right)$, and one expects discrepancies, since for such a shape a pole does not simulate a Breit-Wigner. On the other hand, D_{15} and F_{15} show smooth circles with little background, and the three methods agree to within $\pm 30 \%$ 。

To be more objective we have guessed that the diameter of the resonance "circle" is a measure of the agreement to be expected between the different methods. Figure 1 shows the ratio of the resonance widths as estimated by the three methods, as a function of the diameter of the resonance circle, $\left(\sqrt{x_{1} x_{f}}\right)$.

It is clear that for circles of diameter >0.3 the estimates for Γ_{f} agree to within about $\pm 20 \%$, but this spread increases roughly inversely as the coupling.

It will be necessary for future theories to present resonance parameters in terms of T-matrix poles. When we bear in mind the 50% errors possible in going from Breit-Wigner to pole parameters the factors of 1.5 to 2 discrepancy in present tests of $S U(3)$ and quark model predictions seem quite reasonable.

2. Quark Model Assignments from Signs in Table I.

It has recently been emphasized that the determination of coupling signs and branching ratios is important for the classification of resonant states, and testing our understanding of underlying constituent dynamics. ${ }^{3,8,9}$ The signs of the resonant amplitudes and couplings of the N^{*} to the $\pi \Delta, \rho N$, and $\in \mathrm{N}$ channels using the three methods described above, all agree. Further, the couplings imply:
(a) Signs of $\Delta \pi$ decays are consistent with L-broken $\operatorname{SU}(6)_{W}$ or Melosh transformations. For the $\left[70,1^{-}\right]$supermultiplet the signs are those of "Anti-SU(6) $W^{\prime \prime}$, while for the $\left[56,2^{+}\right]$, our FP_{15} sign selects "Normal-SU(6) W " (see references $3,8,9)$. (b) that the new $\mathrm{D}_{13}(1700)$ should be classified as a $\left[70,1^{-1}\right]$ member while the $P_{11}(1700)$ and $P_{33}(1700)$ should be classified as members of a $\left[56,0^{+}\right]$. (c) that there are indications of radial excitation structure now emerging in the baryon spectrum:

$\left[56,0^{+}\right]$		
$n=0$	Proton	$P_{33^{(1236)}}$
$n=2$	$P_{11}(1420)$	$P_{33}(1700)$
$n=4$	$P_{11}^{(1700)}$	

(d) that the signs of the $\rho \mathrm{N}$ couplings agree with the related photoproduction data. ${ }^{10}$

REFERENCES AND FOOTNOTES

1．D．J．Herndon，R．Longacre，L．R．Miller，A．H．Rosenfeld，G．Smadja， P．Söding，R．J．Cashmore and D．W．G．S．Leith．LBL 1065 （Rev．），Stanford Linear Accelerator Center Report No．SLAC－PUB－1108（Rev．）．Submitted for publication．

A．H．Rosenfeld，D．J．Herndon，R．Longacre，L．R．Miller，G．Smadja， P．Söding，R．J．Cashmore and D．W．G．S．Leith．LBL 2633，Stanford Linear Accelerator Center Report No．SLAC－PUB－1386．Submitted for publication．

2．R．J．Cashmore，D．W．G．S．Leith，R．S．Longacre，A．H．Rosenfeld，G．P． Gopal，R．A．Stevens，V．Tayler，A．White．LBL 2634，Stanford Linear Accelerator Center Report No。SLAC－PUB－1387．Submitted for publication．

3．F．J．Gilman，Stanford Linear Accelerator Center Report No。SLAC－PUB－ 1320，Lectures presented at 14th Scottish Summer School in Physics，1973． J．Rosner，Review talk at 1973 Berkeley APS Meeting on High Energy Physics．p．130，（AIP Conference Series，1973）．

4．R．S．Longacre，LBL 948 （Thesis，1973）。 R．S．Longacre，A．H．Rosenfeld，T．A．Lasinski，G．Smadja，R．J．Cashmore and D．W．G．S．Leith，LBL 2636／Stanford Linear Accelerator Center Report No．SLAC－PUB－1389．To be submitted for publication．

R．J．Cashmore，Stanford Linear Accelerator Center Report No．SLAC－PUB－ 1257．Paper presented to the Purdue Conference on Baryon Spectroscopy， p． 53 （Purdue，1973）．

A．H．Rosenfeld，Proceedings of 1973 International School of Subnuclear Physics， Erice，Sicily．
5. We assume that the Argand plots have been made in accordance with the "Baryon First" convention. See Ref. (1).
6. R. Ayed and P. Bareyre, Paper presented to the IInd Aix-en-Provence International Conference on Elementary Particles (1973).
7. J. S. Ball, R. R. Campbell, P.S. Lee, and G. L. Shaw, Phys. Rev. Letters 28, 1143 (1972); for a simple understanding and more references see F. S. Henyey G. L. Kane, Phys. Rev. D9, 302 (1974).
8. F.J. Gilman, M. Kugler, S. Meshkov, Phys. Letters 45B, 481 (1973), and Stanford Linear Accelerator Center Report No. SLAC-PUB-1286. Submitted to Physical Review.
9. D. Faiman, J. Rosner, Phys. Letters 45B, 357 (1973).
10. R.J. Cashmore, D.W. G. S. Leith, R.S. Longacre, A.H. Rosenfeld, LBL 2635/Stanford Linear Accelerator Center Report No。SLAC-PUB-1388. To be submitted to Nuclear Physics. (1974).

FIGURE CAPTION

1. Ratios of Resonance Partial Widths as estimated by our methods I, II, and III. "P" (for pole) means $\Gamma^{I I I} / \Gamma^{I}$ where Γ^{I} comes from the eyeball fit to a single row of energy-independent Argand plots. "T" (for "T-matrix) means $\Gamma^{\mathrm{II}} / \Gamma^{\mathrm{I}}$ 。We plot only cases with partial widths $\Gamma>10 \mathrm{MeV}$. The ordinate $\sqrt{\mathrm{x}_{1} \mathrm{x}_{\mathrm{f}}}$ is the "diameter" of the smaller of the two resonance circles (Method I or Method II).

Table 1. Resonance Parameters evaluated three different ways (see text). If there is more than one resonance per Argand plot, we add a prime to the first, two primes to the second, e.g. $\mathrm{P}_{33}^{\prime}(1232), \mathrm{P}_{33}^{\prime \prime}(1900)$. Notation such as $\rho_{1} \mathrm{~N}^{\prime} \mathrm{SS}_{11}$ is explained in

- the previous lerter, ref. 1. The partial widths via metiod III (Pole) are calculated by $\Gamma / 2=\left(\right.$ residuc) ${ }^{2} \times$ Kinematics evaluated at $E=\operatorname{Re}\left(E_{\text {pole }}\right)$. We then tabulate $|\Gamma|$ and phase. (8 signs for the $\rho_{1} N, \in N$ amplitudes corrected July 1974)

${ }^{*}$ In Method III we get the widths directly from the T-matrix residues, and are unconcerned with $\sqrt{\mathrm{x}_{1} \mathrm{x}_{\mathrm{f}}}$, except for its sign.

Fig. 1. Ratios of Resonance Partial Widths as estimated by our methods I, II, and III. "P" (for "pole") means $\Gamma^{I I I} / \Gamma^{I}$ where Γ^{I} comes from the eyeball fit to a single row of energy-independent Argand plots. " $T^{\prime \prime}$ (for " T-matrix") means Γ^{11} / Γ. We plot only cases with partial width's $\Gamma>10 \mathrm{MeV}$. The ordinate $\sqrt{x_{1} x_{f}}$ is the "diameter" of the smaller of the two resonance circles (Method I or Method II).

[^0]: * Work supported by the U.S. Atomic Energy Commission.
 \dagger Present address: D. Ph. P.E., CEN, Saclay, B. P. No. 2, 91 Gif-Sur-Yvette, France.
 $\dagger \dagger$ Present address: University of Oxford, Keble Road, Oxford, England.

