SLAC-PUB-1390 (Rev.) LBL 2637 (Rev.) July 1974 Revised October 1974

N* RESONANCE PARAMETERS AND K-MATRIX FITS TO THE REACTIONS

 $\pi N \rightarrow \Delta \pi + \rho N + \epsilon N^*$

R. S. Longacre, † A. H. Rosenfeld, T. Lasinski, G. Smadja† Department of Physics and Lawrence Berkeley Laboratory University of California, Berkeley, California 94720

R.J. Cashmore^{††} and D.W.G.S. Leith

Stanford Linear Accelerator Center Stanford University, Stanford, California 94305

ABSTRACT

From a partial wave analysis of the reaction $\pi N \rightarrow \pi \pi N$ we extract 50 couplings and partial widths for N* resonances decaying into $\Delta \pi$, ρN and ϵN . Three different methods of determining the resonance parameters are compared. The signs of the $\pi \Delta$ couplings are found to be consistent with the predictions of ℓ -broken SU(6)_w, if one assigns P'_{11}(1415), P''_{11}(1730) and P₃₃(1700) to [56, L = 0⁺] supermultiplets. The signs of the ρN couplings are inconsistent with SU(6)_w symmetry in its ℓ -broken form, but in good agreement with the observed photon couplings.

(Submitted for publication.)

^{*} Work supported by the U.S. Atomic Energy Commission.

[†] Present address: D. Ph. P. E., CEN, Saclay, B. P. No. 2, 91 Gif-Sur-Yvette, France.

^{††} Present address: University of Oxford, Keble Road, Oxford, England.

We have completed a partial wave analysis of the reaction $\pi N \rightarrow \pi\pi N$ for energies up to 2000 MeV, using a generalized isobar model in which the $N\pi\pi$ final state is treated as a coherent sum of $\Delta \pi + \rho N + \epsilon N$ sub-states.¹ A unique set of amplitudes has been found describing the inelastic πN scattering throughout this entire energy range.² In Ref. (1) we presented 28 Argand plots of these energy independent $N\pi\pi$ amplitudes. We have now made K-matrix fits to these Argand amplitudes and have extracted the resonance couplings and partial widths. These parameters should be expressed in terms of T-matrix poles, but are more usually described as parameters in various approximations to Breit-Wigner amplitudes. Since these methods cannot agree in general, we have estimated the resonance parameters in three different ways described below. The signs of the resonance couplings are accessible only from the study of inelastic scattering, and are very powerful tools in the classification of resonant states and in testing models.³

We now summarize the three methods used in finding the resonance parameters; further details may be found in Ref. (4). The first two methods rely on approximating the T-matrix $T_{if}(U^P)$ between an initial state, i, and a final state, f, as a Breit-Wigner amplitude:

$$T_{if} = \frac{\pm \sqrt{x_i x_f} \Gamma/2}{E_R - E - i\Gamma/2} + (constant background).$$

where for any channel $x_i = \Gamma_i / \Gamma$. T_{if} then describes a circle of diameter $\sqrt{x_i x_{f^*}}$. We determine the sign of the coupling from the direction of the amplitude at resonance; if the circle lies above the origin we say that the final state has a positive coupling⁵ and on Table I we attribute a positive sign to the resonant amplitude $\sqrt{x_i x_f}$.

-2-

Method I: "Eyeball Fits to Existing Argand Plots".

This is the most direct approach. We consider only the initial state $i = 1 = \pi N$, and rely on the elastic partial wave analysis of Ayed and Bareyre⁶ for the parameters E_R , Γ and x_1 . We then draw by eye and compass a best circle through the $\pi\Delta$ amplitude on the Argand plot, measure its diameter and call it $\sqrt{x_1 x_{\Delta}}$. The $\pi\Delta$ width Γ_{Δ} is then $x_{\Delta}\Gamma$ (Ayed). We independently repeat the procedure for the ρN and ϵN channels, and do not ask whether the whole T-matrix would satisfy unitarity. The results are displayed in Table I for each resonance, as the first row labelled "Argand (T_{1j})". The \pm sign in Table I indicates that the resonant contribution to those amplitudes is not well determined.

Method II: "Eyeball Fits to the Whole Unitarized T-Matrix".

Here we still think in terms of drawing Breit-Wigner circles of radius $\sqrt{x_i x_f}$ but we invoke the constraint of unitarity. For each of the 11 different partial waves (LJ^P), we perform a K-matrix fit to the Argand amplitudes, using the amplitudes of Ayed for the πN channel⁶ and our own amplitudes for the $\Delta \pi$, ρN , ϵN channels¹ adding when needed a $N\eta$ or 'dummy' channel. From the Kmatrix we calculate a T-matrix, T (K), which satisfies unitarity. Now, even if we looked only at the Argand curves for the top row, T_{1f}, of the matrix we could make better estimates because the curves have been smoothed and modified to satisfy unitarity. But we actually go further and take into account the Argand plots of all the elements of the T-matrix. Thus, we can look at T₂₂, which describes the reaction $\pi \Delta \rightarrow N^* \rightarrow \pi \Delta$. Eyeball circles through the Argand curves T_{11} , T_{22} , T_{33} - should then provide better-constrained estimates of Γ_1 , Γ_2 , Γ_3 - . In fact we not only draw Breit-Wigner circles through all the Argand plots, but even slightly modify the Ayed values of $\boldsymbol{E}_{\mathrm{R}}$ and $\boldsymbol{\Gamma}$ in an attempt to find an overall best fit. The parameters estimated from this whole T-matrix method are shown on the second row for each resonance in Table I.

Method III: "Search for Poles in the Unitary T(K)-Matrix of Method II.

This time we abandon Breit-Wigner approximations and use a computer to hunt for the poles and the residues of the T-matrix. The definition for each $\Gamma_{\rm f}$ is not entirely unique; they are, of course, determined by the complex residues $\gamma_{\rm f}$ of T_{ff} at the pole using a formula

$$\frac{\Gamma}{2} = \gamma^2$$
 (kinematics)

However we have a choice of evaluating the kinematics at the pole or on the real axis at a point $E_R = ReE_{pole}$. We choose to evaluate the kinematic quantity on the real axis. These values of Γ_f are listed in Table I as the third row, labelled "Pole".

Method IV: (Not presented because it gave ridiculous values).

For nearly-elastic resonances the poles in the T-matrix are closely related to K-matrix parameters. Thus K-matrix pole energies have sometimes been used to describe E_R . But the resonances considered here are inelastic and have large backgrounds, and we found that the K-matrix parameters yielded meaningless values for the masses and partial widths of the resonances (i.e., if interpreted literally they correspond to resonances which are shifted by ~100 MeV from their nominal value and have much greater widths than given by Methods I, II, or III). This is not surprising since the K-matrix is merely a good way to parameterize the T-matrix in terms of real numbers, and the K-matrix pole positions and residues even change along with the number of channels considered.

Discussion

Of the three methods described above, obviously (III) is the most stable and attractive method of obtaining resonance parameters: (1) we expect pole positions and residues in the T-matrix to be independent of our parameterisation of the T-matrix providing that it is good. This expectation stems from work on the $P_{33}(1236)$ resonance⁷ and investigations of our own;⁴ (2) we expect the pole

- 4 -

position and residue to be closely related but <u>not</u> equal to the Breit-Wigner parameters. For example, consider the elastic background-free, text-book resonance "P₃₃(1236)" (which we have omitted from Table I because it has no $N\pi\pi$ channels). Ayed and Bareyre⁶ quote $E_R = 1231$, $\Gamma = 109$, but we find the pole to be at (1212 - i 101/2) MeV and its complex width on Table I would be $|\Gamma| = 97$ MeV at an angle of 24⁰. This large angle is also found by all other pole searches.⁷ We expect, and find, that pole and Breit-Wigner parameters will diverge even more when we have either large backgrounds, or wider resonances.

Results.

1. Agreement between the three methods:

(a) The spread in masses is typically 10-20 MeV, although for F_{37} (1930) and P_{33} (1700) the agreement is rather poor;

(b) in general, the total widths agree to $\sim \pm 20\%$ with $P_{11}(1700)$ and $D_{13}(1700)$ showing bad discrepancies;

(c) one can actually predict just by looking at the Argand plots how well the three methods will agree. For example, $D_{13}(1700)$ has mis-shapen $N\pi\pi$ Argand plots with a very small circle in $\Delta\pi DS_{13}(\sqrt{x_1x_{\Delta}} \sim 0.1)$, and one expects discrepancies, since for such a shape a pole does not simulate a Breit-Wigner. On the other hand, D_{15} and F_{15} show smooth circles with little background, and the three methods agree to within $\pm 30\%$.

To be more objective we have guessed that the diameter of the resonance "circle" is a measure of the agreement to be expected between the different methods. Figure 1 shows the ratio of the resonance widths as estimated by the three methods, as a function of the diameter of the resonance circle, $(\sqrt{x_1x_f})$.

- 5 -

It is clear that for circles of diameter > 0.3 the estimates for Γ_{f} agree to within about $\pm 20\%$, but this spread increases roughly inversely as the coupling.

It will be necessary for future theories to present resonance parameters in terms of T-matrix poles. When we bear in mind the 50% errors possible in going from Breit-Wigner to pole parameters the factors of 1.5 to 2 discrepancy in present tests of SU(3) and quark model predictions seem quite reasonable.

2. Quark Model Assignments from Signs in Table I.

It has recently been emphasized that the determination of coupling signs and branching ratios is important for the classification of resonant states, and testing our understanding of underlying constituent dynamics. ^{3,8,9} The signs of the resonant amplitudes and couplings of the N* to the $\pi\Delta$, ρ N, and ϵ N channels using the three methods described above, all agree. Further, the couplings imply: (a) Signs of $\Delta\pi$ decays are consistent with L-broken SU(6)_W or Melosh transformations. For the [70,1⁻] supermultiplet the signs are those of "Anti-SU(6)_W", while for the [56,2⁺], our FP₁₅ sign selects "Normal-SU(6)_W" (see references 3,8,9). (b) that the new D₁₃(1700) should be classified as a [70,1⁻] member while the P₁₁(1700) and P₃₃(1700) should be classified as members of a [56,0⁺]. (c) that there are indications of radial excitation structure now emerging in the baryon spectrum:

[56, 0 ⁺]	State					
n = 0	Proton	P ₃₃ (1236)				
n = 2	P ₁₁ (1420)	P ₃₃ (1700)				
n = 4	P ₁₁ (1700)					

(d) that the signs of the ρN couplings agree with the related photoproduction data. 10

- 6 -

REFERENCES AND FOOTNOTES

D.J. Herndon, R. Longacre, L. R. Miller, A. H. Rosenfeld, G. Smadja,
 P. Söding, R. J. Cashmore and D. W. G. S. Leith. LBL 1065 (Rev.), Stanford
 Linear Accelerator Center Report No. SLAC-PUB-1108 (Rev.). Submitted
 for publication.

A.H. Rosenfeld, D.J. Herndon, R. Longacre, L.R. Miller, G. Smadja,
P. Söding, R.J. Cashmore and D.W.G.S. Leith. LBL 2633, Stanford Linear
Accelerator Center Report No. SLAC-PUB-1386. Submitted for
publication.

- R.J. Cashmore, D.W.G.S. Leith, R.S. Longacre, A.H. Rosenfeld, G.P. Gopal, R.A. Stevens, V. Tayler, A. White. LBL 2634, Stanford Linear Accelerator Center Report No. SLAC-PUB-1387. Submitted for publication.
- F.J. Gilman, Stanford Linear Accelerator Center Report No. SLAC-PUB-1320, Lectures presented at 14th Scottish Summer School in Physics, 1973.
 J. Rosner, Review talk at 1973 Berkeley APS Meeting on High Energy Physics. p. 130, (AIP Conference Series, 1973).
- 4. R.S. Longacre, LBL 948 (Thesis, 1973).
 R.S. Longacre, A.H. Rosenfeld, T.A. Lasinski, G. Smadja, R.J. Cashmore and D.W.G.S. Leith, LBL 2636/Stanford Linear Accelerator Center Report No. SLAC-PUB-1389. To be submitted for publication.
 R.J. Cashmore, Stanford Linear Accelerator Center Report No. SLAC-PUB-1257. Paper presented to the Purdue Conference on Baryon Spectroscopy, p. 53 (Purdue, 1973).

A.H. Rosenfeld, Proceedings of 1973 International School of Subnuclear Physics, Erice, Sicily.

- 7 -

- 5. We assume that the Argand plots have been made in accordance with the "Baryon First" convention. See Ref. (1).
- 6. R. Ayed and P. Bareyre, Paper presented to the IInd Aix-en-Provence International Conference on Elementary Particles (1973).
- J.S. Ball, R.R. Campbell, P.S. Lee, and G.L. Shaw, Phys. Rev. Letters <u>28</u>, 1143 (1972); for a simple understanding and more references see F.S. Henyey G.L. Kane, Phys. Rev. D9, 302 (1974).
- F.J. Gilman, M. Kugler, S. Meshkov, Phys. Letters <u>45B</u>, 481 (1973), and Stanford Linear Accelerator Center Report No. SLAC-PUB-1286. Submitted to Physical Review.
- 9. D. Faiman, J. Rosner, Phys. Letters 45B, 357 (1973).
- R.J. Cashmore, D.W.G.S. Leith, R.S. Longacre, A.H. Rosenfeld,
 LBL 2635/Stanford Linear Accelerator Center Report No. SLAC-PUB-1388.
 To be submitted to Nuclear Physics. (1974).

FIGURE CAPTION

1. Ratios of Resonance Partial Widths as estimated by our methods I, II, and III. "P" (for pole) means Γ^{III}/Γ^{I} where Γ^{I} comes from the eyeball fit to a single row of energy-independent Argand plots. "T" (for "T-matrix) means Γ^{II}/Γ^{I} . We plot only cases with partial widths $\Gamma > 10$ MeV. The ordinate $\sqrt{x_{1}x_{f}}$ is the "diameter" of the smaller of the two resonance circles (Method I or Method II).

- 8 -

Table I. Resonance Parameters evaluated three different ways (see text). If there is more than one resonance per Argand plot, we add a prime to the first, two primes to the second, e.g. $P_{33}(1232)$, $P_{33}'(1900)$. Notation such as $\rho_1 N SS_{11}$ is explained in the previous letter, ref. 1. The partial widths via method III (Pole) are calculated by $\Gamma/2 = (residue)^2 \times Kinematics$ evaluated at $E = Re(E_{pole})$. We then tabulate $|\Gamma|$ and phase. (8 signs for th $\theta \rho_1 N$, ϵN amplitudes corrected July 1974)

T-r	matrix	F	lesona	nce	Νπ	_		Δπ	<u></u>	N	0	<u>Ne</u>	Check
prop	erty used	JP	Mass	Г	х _ј Г _ј		$\sqrt{x_1 x_\Delta} \Gamma_\Delta$	$\sqrt{x_1 x_{\Delta}}$	Γ'_{Δ}	$\sqrt{\mathbf{x}_1 \mathbf{x}_{\rho}}$	Γρ	$\sqrt{x_1 x_e} \Gamma_e$	Σx _i
in	estimate		(MeV)	(MeV)	(Me'	V)	(MeV)	•	(MeV)	(MeV)	(MeV)
I	Argand(T _{1i})	S'11	1520	75	S ₁₁ 0.34 2	6	SD ₁₁			$\frac{N\rho_1}{+0.12}$	<u>ss₁₁</u>	$\frac{SP_{11}}{\pm 0.1}$	$0.41 + N_{T}$
п. ш.	Tij(K) Pole		1510 1496	100 103	0.20 2 $\{ \begin{array}{c} 0.20 \\ -4 \end{array} \}$	0 81 3°	-0.06 2 +* $\{ \begin{array}{c} 1 \\ 0 \\ 0 \\ \end{array} \}$			+0.09	4 5 68°	-0.09 4 -* 4 $* 34^{\circ}$ -0.98 15	$0.30 \pm N_{7}$ $10.47 \pm N_{7}$
II. III. III.	Argand(T _{1j}) Tij(K) Pole	S ₁₁	1675 1660 1648	130 130 117	0.54 8 0.45 5 $\{ 6 \\ -5 \\ P_{11} \\ -5 \\ -5 \\ -5 \\ -5 \\ -5 \\ -5 \\ -5 \\ -$	8 11 8°	$\begin{array}{c} -0.16 & 7 \\ -0.15 & 6 \\ -* & \{ \begin{array}{c} 3 \\ 27^{\circ} \\ \end{array} \\ \underline{PP_{11}} \end{array}$			$\pm 0.23 + 0.16 + *$	8 { 15 112° .PP ₁₁	-0.25 18 -0.25 18 -11° PS ₁₁	0.79 +N1 0.69 +N1 10.72 +N1
I. 11. 111.	Argand(T _{1j}) Tij(K) Pole	P ₁₁	1415 1390 1381	180 200 209	$\begin{array}{ccc} 0.54 & 9 \\ 0.54 & 11 \\ 113 \\ -6 \end{array}$	0 0 66	-0.30 30 -0.37 50 -* 14 -32°			0.00 - 0.23 - *	0 20 { 15 +37°	$\pm 0.18 11$ +0.23 20 +* 10 +108°	0.77 1.00 (0.85)
I. II. III.	Argand(T _{1j}) Lij(<u>K</u>) Pole	Р <u>"1</u>	1730 1710 1708	165 75 17	0.16 0.20 1-14 P ₁₃	8 5 131 6°	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			+9.32 +0.20 +* N ρ_1 ,	99 15 { 3 {+18° , PP ₁₃	$+0.18 31 \\ +0.28 30 \\ +* \begin{cases} 171 \\ +130^{\circ} \end{cases}$	1.05 1.00 11.051
I. II. III.	Argand(T _{1j}) Tij(K) Pole	P ₁₃	1695 1720 1716	$ \begin{array}{r} 115 \\ 150 \\ 124 \end{array} $	0.14 0.20 {] {_{_{5}}}	6 80 61 83°				-0.35 -0.40 -*	101 120 { 68 {_46°		1.02 1.00 10.681
					D ₁₃		DS ₁₃	DD	13	NP3	, DS ₁₃	DP_13	
I. 11. 111.	Argand(T _{1j}) Tij(K) Pole	D ₁₃	$1524 \\ 1520 \\ 1514$	$\frac{120}{150}$ 146	0.56 0 0.60 9	57 90 381	+0.27 16 +0.24 15 +* 17	+0.24 +0.30 +*	12 23 $\{23\}$ $\{23\}$	+0.32 +0.24 +*	22 15 {[22] } 00°	$0.0 0 + 0.17 7 + 121 0^{\circ}$	0.98 1.00 1.03
I. 11. 111.	Argand(T _{1j}) Tij(K) Pole	D'' ₁₃	1710 1710 1710	100 300 607	0.09 0.1 {_12 D ₁₅	9 30 141 38°	+0.15 25 +0.16 75 +* { 77 -49° DD ₁₅	-0.10 -0.14 -*	11 60 {1541 -67°	0 -0.07 _*	0 15 161 +162°	$\begin{array}{cccc} -0.2 & 44 \\ -0.2 & 120 \\ -* & 357 \\ +72^{\circ} \end{array}$	0.89 1.00 10.841
I, 11. 111.	Argand(T _{1j}) Tij(K) Pole	D ₁₅	1660 1660 1663	$145 \\ 150 \\ 146$	0.41 0.45	59 57 521 521	-0.45 72 -0.50 83 -* { 93 +5°	-				ED.	0.90 1.00 11.06
	A	-	1000	105	$\frac{F_{15}}{0.50}$	74	$-\frac{FP_{15}}{+0.26}$	$-\frac{FF}{0}$	15	$\frac{N\rho_3}{\pm 0.27}$, FP ₁₅	$-\frac{FD_{15}}{-0.28}$	0.95
1. 11. 111.	Argand (11j) Tij(K) Pole	r ₁₅	1670 1668	130 132	0.59 0.59 {_} S ₃₁	78 75 15°	+0.26 + 14 + 0.25 + 13 + 151	-0.08 +*	1 _1! _90°	+0.30 +* Np1	19 { 13 {_39° , SS ₃₁	-0.30 19 -* { 28 -32°	1.00
I. II. III.	Argand(T _{1j}) Tij(K) Pole	s ₃₁	1625 1600 1583	$160 \\ 150 \\ 143$	0.32 0.40	51 60 371 36	+0.40 80 +0.40 60 +* 77 -22°	-		±0.18 -0.28 -*	16 30 1261 -152°	- , ,	0.92 1.00 10.981
I. II. III.	Argand(T _{1j}) Tij(K) Pole	Рÿз	1900 1640 1609	205 300 323	$\frac{133}{0.19}$ 0.10 $\{\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$	39 30 77 77	$-\frac{1133}{-0.36 \ 140}$ $-0.30 \ 270$ $-* \ 1571$ -94°	- DD。	9	Nø •	. DS • •		0.87 1.00 10.721
1. 11. 111.	Argand(T _{1j}) Tij(K) Pole	D ₃₃	1725 1680 1681	190 240 245	$ \begin{array}{r} 233 \\ 0.17 \\ 0.20 \\ \begin{cases} 1 \\ $	32 48 36 16	$\begin{array}{c} -0.25 & 70 \\ -0.24 & 72 \\ -* & \{113\} \\ +29^{\circ} \end{array}$	- 0 -0.10 +* FF	0 12 { 28 {-145	± 0.20 +0.30 +* N ρ_3	(-53) (0.77 1.00 1.06
I. 11. 111.	Argand(T _{1j}) Tij(K) Pole	F ₃₅	1870 1830 1813	255 220 193	0.14 0.18	36 40 32 46	FF07	-0.12 -0.20 -*	26 48 { 40 {+19	-0.28 -0.33 -*	143 132 1961 -59°	-	0.80 1.00 10.871
I. II. III.	Argand(T _{1j}) Tij(K) Pole	F ₃₇	1930 1925 1924	235 240 258		96 96 85 17	-0.25 36 -0.32 60 -* 77 -9°			±0.18 -0.24 -*	$\begin{cases} 19 \\ 36 \\ 139 \\ 139 \\ +52^{\circ} \end{cases}$		0.64+? 0.80+? 11.00+?

*In Method III we get the widths directly from the T-matrix residues, and are unconcerned with $\sqrt{x_1 x_f}$, except for its sign.

Fig. 1. Ratios of Resonance Partial Widths as estimated by our methods I, II, and III. "P" (for "pole") means Γ^{III}/Γ^{I} where Γ^{I} comes from the eyeball fit to a single row of energy-independent Argand plots. "T" (for "T-matrix") means Γ^{II}/Γ^{I} . We plot only cases with partial widths $\Gamma > 10$ MeV. The ordinate $\sqrt{x_{1}x_{f}}$ is the "diameter" of the smaller of the two resonance circles (Method I or Method II).