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ABSTRACT

From a partial wave analysis of the reaction 7N — 77N we extract
50 couplings and partial widths for N* resonances decaying into Am, pN
and € N. Three different methods of determining the resonance parameters
are compared. The signs of the 7A couplings are found to be consistent
with the predictions of {-broken SU(G)W, if one assigns Pi1(1415), P‘1'1(1730)
and Pg,(1700) to [56, L =0"] supermultiplets. The signs of the pN
couplings are inconsistent with SU(6 )W symmetry in its (-broken form, but

in good agreement with the observed photon couplings.
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We have completed a partial wave analysis of the reaction 7N — 77N for
energies up to 2000 MeV, using a generalized isobar model in which the N7r
final state is treated as a coherent sum of A7 + pN + ¢N sub-states. ! A unique
set of amplitudes has been found describing the inelastic 7N scattering through-
out this entire energy rangea2 In Ref. (1) we presented 28 Argand plots of these
energy independent N7m amplitudes. We have now made K-matrix fits to these
Argand amplitudes and have extracted the resonance couplings and partial widths.
These parameters should be expressed in terms of T-matrix poles, but are more
usually described as parameters in various approximations to Breit-Wigner
amplitudes. Since these methods cannot agree in general, we have estimated the
resonance parameters in three different ways described below. The signs of the
resonance couplings are accessible only from the study of inelastic scattering,
and are very powerful tools in the classification of resonant s’cgtes and in testing
models. 3

We now summarize the three methods used in finding the resonance para-
meters; further details may be found in Ref. (4). The first two methods rely on
approximating the T-matrix Tif(IJ P) between an initial state, i, and a final state,
f, as a Breit-Wigner amplitude:

+ /xixf /2

if ER—E—iP/Z

T + (constant background).

where for any channel X, = I‘i/l". Tif then describes a circle of diameter
v XX We determine the sign of the coupling from the direction of the ampli-
tude at resonance; if the circle lies above the origin we say that the final state

has a positive coupling5 and on Table I we attribute a positive sign to the resonant

amplitude ./ XX



Method I: "Eyeball Fits to Existing Argand Plots".

This is the most direct approach. We consider only the initial state i =1 =7N,
énd re;fy on the elastic partial wave analysis of Ayed and Ba.reyre6 for the parame-
ters ER’ T and Xy. We then draw by eye and compass a best circle through the
TA amplitude on tﬁe Argand plot, measure its dié.meter and call it @ The
7A width T° A is then x AI‘ (Ayed). We independently repeat the procedure for the
pN and €N channels, and do not ask whether the whole T-matrix would satisfy
unitarity. The results are displayed in Table I for each resonance, as the first

row labelled "Argand (T lj)”. The + sign in Table I indicates that the resonant

contribution to those amplitudes is not well determined.

Method II: "Eyeball Fits to the Whole Unitarized T-Matrix'.

Here we still think in terms of drawing Breit-Wigner circles of radius
\/Tix? but we invoke the constraint of unitarity. For each of the 11 different
partial waves (1J P), we perform a K-matrix fit to the Argand amplitudes, using
the amplitudes of Ayed for the 7N channel6 and our own amplitudes for the Am,
pN, eN chamnels1 adding when needed a N7 or "dummy'' channel. From the K-
matrix we calculate a T-matrix, T (K), which satisfies unitarity. Now, even if
we looked only at the Argand curves for the top row, T1 Py of the matrix we could
make better estimates because the curves have been smoothed and modified to
satisfy unitarity. But we actually go further and take into account the Argand
plots of all the elements of the T-matrix. Thus, we can look at TZZ’ which

describes the reaction, 1A — N* — A, Eyeball circles through the Argand

curves T T — should then provide better-constrained estimates of

11° Tog» Ts3

I‘l, Fz, I‘3 — . In fact we not only draw Breit-Wigner circles through all the

Argand plots, but even slightly modify the Ayed values of E, and T in an attempt

R
to find an overall best fit. The parameters estimated from this whole T-matrix

method are shown on the second row for each resonance in Table 1.

-3 -



Method Il:  ""Search for Poles in the Unitary T(K)-Matrix of Method II.
This time we abandon Breit-Wigner approximations and use a computer fo
hunt foF the poles and the residues of the T-matrix. The definition for each I‘,f

is not entirely unique; they are, of course, determined by the complex residues

Vs of T £ at the pole using a formula
Ez = 'yz (kinematics)

However we have a choice of evaluating the kinematics at the pole or on the real

R

the real axis. These values of T

axis ata point E_, = ReEpole' We choose to evaluate the kinematic quantity on
g are listed in Table I as the third row, labelled

'"Pole’’.
Method IV: (Not presented because it gave ridiculous values).

For nearly-elastic resonances the poles in the T-matrix are closely related
to K-matrix parameters. Thus K-matrix pole energies have sometimes been
used to describe ER' But the resonances considered here are inelastic and have
large backgrounds, and we found that the K-matrix parameters yielded meaning-
less values for the masses and partial widths of the resonances (i.e., if inter-
preted literally they correspond to resonances which are shifted by:~100 MeV
from their nominal value and have much greater widths than given by Methods I,
II, or II). This is not surprising since the K-matrix is merely a good way to

parameterize the T-matrix in terms of real numbers, and the K-matrix pole

positions and residues even change along with the number of channels considered.

Discussion

Of the three methods described above, obviously (III) is the most stable and
attractive method of obtaining resonance parameters: (1) we expect pole positions
and residues in the T-matrix to be independent of our parameterisation of the T-
matrix providing that it is good. This expectation stems from work on the

P33(1236) resonr:x.nce7 and investigations of our own;4 (2) we expect the pole
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position and residue to be closely related but not equal to the Breit-Wigner
parameters. For example, consider the elastic background-free, text-book
resonance "P33(1236)" (which we have omitted from Table I because it has no

Nnm channels)., Ayed and Bareyre6 quote E, =1231, I' =109, but we find the

R
pole to be at (1212 - i 101/2) MeV and its complex width on Table I would be
[T| =97 MeV at an angle of 24°, This large angle is also found by all other
pole searches. 7 We expect, and find, that pole and Breit-Wigner parameters

will diverge even more when we have either large backgrounds, or wider reso-

nances.

Results.
1. Agreement between the three methods:

(@) The spread in masses is typically 10-20 MeV, although for F37 (1930)
and P33(17 00) the agreement is rather poor; )

(o) in general, the total widths agree to ~ +20% with P11(1700) and
D13(17 00) showing bad discrepancies;

(c) one can actually predict just by looking at the Argand plots how
well the three methods will agree. For example, D13(17OO) has mis-shapen N77
Argand plots with a very small circle in AwDSlS( XX\~ 0.1), and one expects
discrepancies, since for such a shape a pole does not simulate a Breit-Wigner.
On the other hand, D1 5 and F15 show smooth circles with little background, and
the three methods agree to within +30%.

To be more objective we have guessed that the diameter of the resonance
"circle! is a measure of the agreement to be expected between the different
methods. Figure 1 shows the ratio of the resonance widths as estimated by the

three methods, as a function of the diameter of the resonance circle, ( xle).



It is clear that for circles of diameter > 0.3 the estimates for I‘f agree to within
about £20%, but this spread increases roughly inversely as the coupling.
It will be necessary for future theories to present resonance parameters in

terms of T-matrix poles. When we bear in mind the 50% errors possible in going
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sent tests of SU(3) and quark model predictions seem quite reasonable.

2. Quark Model Assignments from Signs in Table I
It has recently been emphasized that the determination of coupling signs and
branching ratios is important for the classification of resonant states, and testing

8,9 The signs of the

our understanding of underlying constituent dynamics. 35
resonant ainplitudes and couplings of the N* to the A, pN, and e¢N channels using
the three methods described above, all agree. Further, the couplings imply:

(a) Signs of Ar decays are consistent with L-broken SU(6)W or Melosh transfor-
mations. For the [70,1 ] supermultiplet the signs are those of ”Anﬁ—SU(G)W”,
while for the [56, 2+] , our FP15 sign selects ”Normal—SU(G)W" (see references
3,8,9). (b) that the new D13(17OO) should be classified as a [70,1 ] member
while the P11(1700) and P33(1700) should be classified as members of a {56, 0+].

(c) that there are indications of radial excitation structure now emerging in the

baryon spectrum:

-+
[56, 0 ] State
n=90 Proton P33(1236)
n =2 P, (1420) Pao(1700)
n=4 P,,(1700)

(d) that the signs of the pN couplings agree with the related photoproduction

data.lo
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FIGURE CAPTION
Ratios of Resonance Partial Widths as estimated by our methods I, I, and
III. "P" (for pole) means T° IVH/ '’ where I" comes from the eyéball fit to
a single row of energy-independent Argand plots. "T" (for '""T-matrix)
means I‘II / I‘I.. We plot only cases with partial widths I" > 10 MeV. The
ordinate \/;;:; is the ''diameter' of the smaller of the two resonance circles

(Method I or Method II).



Table I. Resonance Parameters evaluated three different ways (see text). 1f there is more than one resonance per Argand plot,
we add a prime to the first, two primes to the second, e.g. P34(1232), Pg3(1900). Notation such as pN 51 is explained in

“* the previous letter, ref. 1. The partial widths via method III (Pole) are calculated by rpe-= (residue)2 X Kinematics evaluated
at E = Re(Epole). We then tabulate II'! and phase. (8 signs for the plN, ¢ N amplitudes corrected July 1974)

T-matrix Resonance Nrn Arm Np Ne Check
property used JF Mass T x;p Ty Vxpxp Tp vxgxp Ta Vxgx, Ty Vixpxe re Zx;
in estimate (MeV) (MeV) (MeV) (MeV) - (MeV) (MeV) (MeV)
Su o Shyy NeySSy; o S
I Argand(T;) S7; 1520 75 034 26 000 0 ¥0.12 3 £01_ 2 041 +Ng
IL Ty y 1610100 0.20 20 -006 2 +0.09 4 -0.09 4 030 +Nn
1L 1 38| + _% y
U. Pole 103 1381 i + 105l 1J31 104714Nn
I Areand(T;;) Siy 1675 150 054 81 -0.16 7 £0.23 15 =023 15 0.79 +Nn
moTiK) W M 1geo 130 045 38 015 6 3016 8 —025 18 0.69 +Nn
nI. Pole 1648 117 gle1r 41| #0015 = 116] 10.7214Nn
-58° 27° 112° -11°
P13 PPy Npy PPy PSHy
L Argand(Ty;) Pj; 1415 180 034 97 -030 30 0.00 0 %018 11  0.77
L Tii(K) 1390 200 054 110 -0.37 50 ~0.23 20 +0.28 20 1.00
a1, ole 1381 209 11861 -* 114 - 151 4%, 1101 10.85)
{6s° {s2° {is7e 1+108°
§ Ty T g e 5% % s n
. TNl f X 15 -0, +0. 15 +0. .00
nL ol 1708 17 {30 -y sl # ey 11.051
1-146° -37° +18° +130°
13 Npy, PPyg
I Argand(Ty) Pg 1695 115 014 16 —0.35 101 1.02
1L Iij%L(,) ! 1720 150  0.20 30 ’ -0.40 120 1.00
L Pole 1716 124 {118} -+ fis8] 10.681
-83° -46°
Dis DSy3 DDy Np3, DS;3  DPy3
I Argand(T;) Djs 1524 220 056 67 +0.27 16  +0.24 12 +032 22 00 0 098
1. Iiﬁ y 1520 150 0.60 90 +0.24 15  +0.30 23 +0.24 15 +0.17 7 100
1. Pole 1514 146 (881 +¢ 1171 4 q123] +F o l22] +x 2] 11031
. +2° +54° -22° {900 0°
L Argand(Ty) Dig 1710 100 009 9 +015 25  -0.10 11 0 0 -02 44 089
il Iiﬁg) J 1710 300 0.1 30 +0.16 75  -0.14 60 -0.07 15 —0.2 120 1.00
01 Pole 1710 607 T g+ 161 =% {I357] 10.84]
-138° -49° -67° +162° +72°
Dy5 DD;s )
L Argand(T;;) Dj5 1660 145 041 59 -0.45 72 0.90
I Tj 3 1660 150 045 67 -0.50 83 1.00
1L Psle 1663 146 {162 -+ 4193] 11.061
-17° +5°
F1s FPy5 FFi5 Nog, FPys  FDy5
L Argand(T;;) Fyg 1680 125 059 74 +026 14 0 0 +0.27 15 -028 16 0.95
1L, Iij%xg) J 1670 130 059 78 +0.25 13 -0.08 1 +0.30 19 -030 19 1.00
0. Pole 1668 132 TR T I TS {|;3| -y 11.00!
-15° 0° -90 -39° -39°
531 SD3j Npy, 883,
1. Argand(T;;) Sgq 1625 160 032 51 +0.40 80 20.18 16 0.92
1j 31
Il Iiﬁ;g) 1600 150 0.40 60 +0.40 60 ~0.28 30 : 1.00
I, Pole 1583 143 |37 T -y 2] 10.981
-136° -22° -152° :
. P33 P33
I Argand(T;) Pgz 1900 205 019 39 -0.36 140 0.87
11 Iij%}S) ! 1640 300 0.10 30 -0.30 270 1.00
L. Pole 1609 323 {171 -+ e 10.721
-77° -94°
Dss DS33 DDs33 Nps, DS33
L Argand(Ty;) Dgg 1725 190 017 32 -0.25 70 0 0 %020 45 ‘ 0.77
o TiK) 1680 240 0.20 48 -0.24 72  -0.10 12 +0.30 108 1.00
1. $ole 1681 245 (361 = puls ey 28] o 184) 11.061
+16° +29° -145° 104
F35 F¥35 Neg, FPss
L Argand(T;) Fs5 1870 255 0.4 36 0.2 26 -0.28 143 0.80
I Ti(K) 1830 220 0.18 40 ~0.20 48 -0.33 132 - 1.00
m. Pole . 1813 193 132 STE {198) 10.871
e o 198
Fs7 FFg7 Npg, F¥s;
I Argand(T;;) Fg7 1930 235 041 96 -0.25 36 +0.18 19 0.64+7
I TilK) 1925 240 040 96 -0.32 60 -0.24 36 0.80+?
1. Pole 1994 958 {185] =+ 177 -7 139l 11.001+?
-17° -9° +52°

*In Method III we get the widths directly from the T-matrix residues, and are unconcerned with vVxxy,
except for its sign.
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Fig. 1. Ratios of Resonal}fe Partial Widths as estimated by our methods I, II, and IIL
"P'" (for "pole'') means T I/I‘I where I'* comes from the eyeball fjit to a single row of
energy-independent Argand plots. "T" (for "T-matrix'") means T’ /1"1. We plot only
cases with partial widths I' >10 MeV. The ordinate  /x X¢ is the '"diameter" of the
smaller of the two resonance circles (Method I or Method 1II).



