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ABSTRACT

We present an isobar model formalism for analysing the re-
actiona+b - 1+ 2+ 3. Arbitrary spins are allowed for all the
particles. Polarized particles and weak decays of an outgoing
particle are discussed. We also show how to exten-d the formalism
to allow an isobar analysis of a three-body subsystem of an n-

particle final state.
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INTRODUCTION
- In this paper we discuss a general formalism for analysing reac-
tions of the form

atb—-1+2+3

Our formalism is completely general in that it allows arbitrary spins
for all the particles. The formalism was developed for an analysis of
TN - N7rw data, 13 which appears as a companion paper.

In Section I we establish our notation and normalization of states,
review the angular momentum decomposition of two-particle states,
and develop formulae for phase space and differential cross sections.
Section II deals with the T-matrix elements themselves and derives the
equations for the differential and total cross sectio.ns. Section III deals
with polarized particles, either incident or final, and with weak decays
of an outgoing particle. Section IV treats the problem of analysing a
three-body subsystem of an n-body final state. The appendices include
a review of angular momentum, a discussion of the reaction
a+b—> c+d using our notation, and the details of some of the more
important derivations.

SECTION I

In this section we establish our notation. We consider the reaction
atb—-1+2+ 3, where a is the beam, b the target, and 1,2,3 are
the three outgoing particles. We let j, k, and 1 represent any cyclic
permutation of 1,2, and 3. The diparticle is always composed of
particles k and 1. All quantities pertaining to the diparticle are indexed
by a subscript i. The following quantities are summarized in Fig. 1.

a. Total CMS energy and angular momentum - W, J

b, CMS f{four-momenta - P, Py Qj Qk Q1
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c. Particle spins - %y OJ. Tx %y

d. CMS helicities - K Hy Hj My B

e. Mass of diparticle - Wj

f. Spin and CMS helicity of the diparticle - jj XJ.

g. Incident orbital angular momentum and total spin - L, S

h. Outgbing orbital angular momentum and total spin - Lj’ Sj
In the diparticle rest-frame we have the quantities

i. Four-momenta of the decay particles - 9 9

j. Helicities of the decay particles - Vi Y

k. Orbital angular momentum and total spin of decay particles -

1., s..
3]
Angular momenta are coupled in the following manner:
S=0_+0,
T=1+F%
sj= O + 04
=1+ 5.
TN
S=07.+7..
3] J
T=L.+5,
J J

We assume that L, Lj’ and lj are chosen so as to conserve parity. We
. . s -

use | to represent a fixed set (pa My Hj Hye p.l) of all five helicities. For
simplification in later sections, n represents the set of quantities

n=4(;J; LS L.S.,;j. 1. 8.}, : 1)

=0 7557 054 i/ (

where j specifies the grouping of the final-state particles into a single
one (j) and the pair (kl).

We use the helicity formalism with the phase convention of Jacob

and Wick14 (hereafter called JW).
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Particle States, Phase Spaces, and Cross Sections

™ One-particle states are defined with the phase convention of JW al-
though the normalization is different. If qu)\ represents a state with
momentum p along the z axis and helicity \, then the general state is
defined by [cf. JW Eq. (6)]
[BA) = (P84 A) = R(4:6,-9) ;. (2)
We choose the normalization to be
(p'6" &', N | pOo,\) = 2E8° (5 B)6 5, » (3)

which differs from JW by the factor 2E/(Z1r)3. We also define states

b
Xp)\ y
Y S-A -
= (-1)°"" R(0, 7,0 = (-1 : 4
X_p)\ (-1) ( )gp)\ (-1) ‘i"_p)\ (4)
The general x state is given by
[-pA) = | -pBOA) = R(4,60, -4y - (5)
We shall denote these states by the minus sign on p. Thus
S-)\l
-pB®A) = (-1)° 7 [p T8 b)), (6)

Clearly these states have the same normalization as t pOo, ).

We also need to know how the states ’chb,)\) transform under
Lorentz transformations. Let the Lorentz transformation be 1, where
p' = lp and let U(l) be the unitary operator for 1. Wickio has shown

that s .
U)|pbd.x) =2 D/, (Qf)|p'o'¢,v ), (7)

where § is called the Wigner angle and # is a unit vector along

f;' X f)’ if © is always taken to be positive. This is clear, since in
the transformation the momentum vector makes a positive rotation
around the direction p X 1—3" and the spin lags behind, thus making a
negative rotation with respect to the momentum vector. We discuss

2 in detail in a later section.
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Multiparticle states are defined as the direct product of one-particle

states. Thus

-

-— -— — _ i ' 3 \
|p1>\1'p2)\2’“ ’ ’pnxn> - lp191¢1,)\1> | p262¢2’k2>” l pnenqbn’xn/ (&)
and
RN I Y - 1 g - -
61)\_1’p2)\2"."p;n)\n [ Byry Porgre s PRy Y

{(9)

- 3 L2

For two-body states it is sometimes more convenient to use the vari-

ables
P=p, * by
1 2 (10)
- 1 —~» -
Letting (p6¢) be the polar coordinates of ;, we have
Booor, N, ) = [ 5N B0, (11)
with the states on the right-hand side either { or X states. These
states are normalized such that
£p,
— 1
NN (B'.p 6 ¢! N\, | Bopoon N, ) oEL R2 . (12)
171 27 2 1 2
Now d?’pid?’p2 = d3Pd3p = ng pzdpdzw , where d2 w =dcos 6d¢. If W

is the total energy, W = E1 + EZ’ then

E, - E
AW = [w+§.}3( - 1>JEP‘§EP : | (13)
2p 12

With these two relations it is easy to show that the normalization is

(B0, NN, [ BLpho,r N, )

E, -E
= % [W + P-P( - 2 1>]<5(W'—W)63(P’—.f’)ﬁz(w" —w0)dy O
2p 2
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In the center of mass system, P = 0, so this reduces to

-

(Pt = 0’p'6'¢',)\'1)\'2 ip = Q,p9¢,)\1)\2 )
(15)

e}
' !
)\1 )\1 >\Z 2

= 2 s (w-w)s> (BB’ (' - )8
To discuss the decomposition of the two-particle states into angular
momentum states, we work in the two-particle center of mass and

assume particle 2 to be in an x state. For this case, using Eq. (11),

we have
B =0.p800,0,) = [BN ) |-B),) = R(6:0:-0) Fx Xpy - (16)

We now define a state of total angular momentum J and z-component

M by
J* 2
|B = O.pJ’M,)\i)\2> = NJJDM)\M:,9,—¢)]15=0,p9¢,>\1->\2>d W, (17)
where X =X\, -\,. Using Eq. 15 and the normalization properties of

1 2

the D-functions, we have

(P

it 1 { i — T
0,p'I'M', M N, | B o= 0,pIM, M, )
(18)

% 4w 4W

3
= NNy ZI _15—{SJJ'f’MMléxixvf’xzwz6 (Br-P)s (W'-W),

where W is the total CMS energy. Thus we choose

1/2 1/2 o
27 + 1
NJ=< e > (Z@T) . (19)

The factor (p/4W)1/2 [cf. TW Eq. (22)] comes from our choice of
normalization for the one-particle states. Using Eq. (17), the trans-

formation matrix is



b~
(D= O,p'9¢s)\'1)\'2 l'ﬁ = o,pJM,Kixz))

(20)
1/2 -(1/2)
mz(z;w 1) ( g> Dg/l’;(cp,g,_¢)§3(§1_§)6(W*_W)6 8

e -
4w 4W ),1,&17\27\2

In terms of the orbital and spin angular momentum, I and S, we have

the standard expansion:

P =0,pIM,LS )

1/2
_ 2L+ 1 ; ‘

=Z |55 771 C(S,,5,,5 | A, -};) C(L. S, T| 0,3 -%) (21)
M

[P = 0,pIM, M\, ),

with the normalization

<f5' =0, p' J'M':L'S'I ﬁ =0, PJM’ LS >: 6JJ;éMMséLLI6SSr63(§"§)6(W.“W)
(22)
Ifparticle 1 is a photon, one instead usually uses the multipole
expansion
ii3 = 0,pIM, jm )
{21a)
-y |2itt 1/2(_1)‘3(;(- S,  TIN, s -N)P = 0,pIM, N N, )
| 2@TE D 3rSys TI A =2 P = 0, pIML A R 7
12

where the total (spin plus orbital) angular momentum and parity of the
e .

photon are j and w = (—1)] respectively. For e = 0, we have the elec-

tric 27 -pole and for e = 1, we have the magnetic 2] -pole. These states

are normalized such that

<i5'= O’pl J'™M, j"lT' —:5 =0, pJM’ J’T> = BJ'JréMM!6ij 6.“.."|.63(§' ’ﬁ)ﬁ(w‘ "W).
{22a)

In-the rest of this section we dealindetail withthe numericalfactors
appearing in cross-section formulae. The normalization, Egs. (3) and

(10), are such that the number of particles of type i in a volume V is
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ZEiV/(ZTT)3. In 2 volume V the total number of states available is
v d3pi/(217)3, so that the density of final states per particle is d3pi/2Ei'

Thus the number of three-particle final states available, dpF, is given

o ey
dop =\ 7% i2E2>(2E3>' (23)
A 3

The probability of transition (in all space and time, Vt -« ) is given by

4 2
K (Pt - Pin)Mi dp s (24)

where M is the transition matrix element with our normalization of

states, i.e., M = {out lT |in). The relation with the S-matrix is

. _ .o 4 L
<out|S[1n) = 6out,in+ id (Pout-Pin) (outl Thn) . (25)
Equation 24 then gives
4 2 _ lim Vt 4 2
‘6 (Pout_Pin)M I TVt (211')4 ® (Pout-Pin) s M‘ (26)

so that the transition probability per unit volume per unit time is

em st -P. )| M| dpr . (27)

With the normalization of Eq. 3, the incident flux is

2E 2E ](P P )
a b a b 4F
+ = e, (28)
[(hf} LG)3j E. B (Zv)6 \

h F is the i iant flux fact d F =[( )2 2 2]1/2
where is the invariant flux factor an =L(p, py) -m my .

In the CMS, F = pW.
The density of final states dpF together with the 54 function of
Eqg. (27) give

dp =8%(p__ -P (29)

ut in)dpF'
Berman and Ja.cob15 have discussed this phase space and reduced it to

dp = § dE, dE, dcos® d§ da (30)

where ©,3, and @ are the Euler angles specifying the orientation of the
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final three-particle state with respect to the incident system. KEquation

(30) canbe further manipulated to give

- dp = 1 -q—i—?—i— dw® dcos6 dcos® d¢ da {31a}

P= 8 2Ww, "1 1 /

= E.—-i dw, dcosf, dcos® -d¢ da (31b)

8 "W 1 9COsTy (245

- % aw?y1 dwf dwg dcos® dd da, (31c)

where w, is the invariant mass of particles 2 and 3, and 6, is the angle

i
between particles 1 and 2 in the (23) CMS, Q1 is the momentum of

particle 1 in the (123) CMS, and q, is the momentum of particle 2 or 3

in the (23) rest frame.

The differential cross section for the case of spinless particles is

TTZ 2
dcr=ff]M{ dp , (32)
which is the basic expression we use in the calculation of our formulae.
SECTION II
Initially we discuss the reaction proceeding through just one inter-
mediate isobar, i.e., j is always fixed at a certain value of 1,2, or 3.
Later we treat the case of more than one type of diparticle.
In terms of the transition operator, T, the matrix elements in the
center of mass are
W s @juj,ﬁkuk,ﬁl my [T [Pk Py ) (33)
The operator T is assumed to be the product of a production operator
T and a decay opei‘ator Td' Assuming that only two-body intermediate

states are produced, we have

Pa_ da 3 5
[TV /2 E 2 E ZEn6 (am+ n)
m'n m n

<Qu S Qe T8 1 0 (8 _p QO [T
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Within the Isobar Model one assumes that the intermediate state con-
sists of an isobar state recoiling against a single particle and that ’I‘d

operates only on the isobar state, therefore
<§jp'j’ Qe Qi [T (R T )

3 .
=2E_6 (ﬁj'am)oujum Qe Qi [ T4 18 k), (35)

so that Eq. (33) becomes

£, = ;\‘3 (Qpmy - iy [T, | -5j>\j> <5juj, - 5j’\j ITP EXUNS N (36)
J

We have assumed the isobar to be in an x state [ cf. Eq. (5)] and have

changed the isobar helicity to )\J.. One term represents the production

of the isobar and particle j; the other term represents the decay of the

isobar into particles k and 1. We now discuss each term separately.

Production Amplitude

Since we have assumed the diparticle to be in an x state, we use
. (20 P_M_> Dy o, ~QN |
Eq. (20) to decompose both ]pap.a pbp.b) and (DJHJ —QJ J’ into angular

momentum states. We have
- _—» )\ —
<quj’ Qj 3 ITP l paua’ Pbe>

1/2 1/2 -
iy i1 <4_W> <_ﬂv_> DJ* L )DL (eam) (37
}.LJ.— : P‘b

M 4T P Qj Mp_ -

X(Q=0,Q.IM,p.\. |T_|P =0,pIM, :
( IMo e [T pIM, 1, )
Since we have not as yet specified a coordinate system, we do not give
angles as arguments of the D-functions. We will return to this point
later. Using Eq. (7) from Appendix A and converting from helicity

states to LS states, we have
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= [@L+1) @L, + 1y]1/2

‘ (38}
7 i I
X C{¢o ,O'b,S }ua, -p.b) C(L,S,J|O,|.La—|d.b)

X C(0 5.5 S, | 1ss -X) (L, S, 7|0, =N,
(@350 S5l 15 -2g) CULy 85, 7] 0y

J

-1
D (3 beam)
uj-Kj By iy

X (Q = O,QjJM,LiSJ.l TP| P = 0,pJM,LS) .

If particle a is a photon, instead of converting to LS states, one would
prefer to couple to the multipole states defined in Section I. We may
now use rotational invariance to write the reduced partial wave produc-

tion matrix element as

T3,
= | = = J .
(4 = 0,Q,IM, L;S, Tp|? 0,pIM, LS) TLSLij(W, W) - (39)

Decay Amplitude

_The decay amplitude is most easily evaluated in the rest frame of the
diparticle. We use Eq. (7) to transform the states. Recalling that the
diparticle is in a ¥ state, its transformation is quite simple. (While
the X state reduceé to a simple form in its rest frame, it also implies
a fixed direction for the z-axis, along the direction 5). in this frame.
The decay angles GJ. and ¢J. are then the angles of Ek in this coordinate

system; i.e., only ¢J. is unspecified, since the x and y axes are not

yvet defined. ) Thus
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(Bye Gy [T 5 » >

-

N (65a )Dol* @) @ov v | Tl - A (40)
V1 ?kpkjk vlpljl k'k™¥11" 7d ' j

Using Eq. (4) to convert the states of particle 1 to X states, we can

then insert an angular momentum decomposition. Converting to an LS

representation, we have

( By Oy [ Ty | b" /
- 1/2
:__j.. (21+1)1/2C(o- o s‘v -v,) C(l.,s j‘Ov-v)
) e k1S5 e ) 10 e
7. % g, % O, % g.,~-V
XD (decay)D X (¢%a) D} (@a) (-1 b ! (41)
ik k M J 1% )

X{(q =0,q.j.-N.,1.8. [T j.~-N.).
(q U™ JJI d.JJ J>
The reduced decay matrix element is then just a function of wj,

-\ -x - gl .
(G = quJJ Jls|Td|3 e BJJ(WJ.) (42)

Recalling the definition of n in Eq. (1) and combining equations 38, 39,
41, and 42 (remember that p stands for the set K, My “j Haye |.L1), we see

that fp. can be written as

_ M, .
fp = 41,‘31 gn(J) Tn(W’Wj)’ (43)
where
) )
Tn(W,WJ.) = TLSL S (W, WJ) Blj sj(wj) (44)
and
w 1/2
] w i 1/2
gi(J) - ?(?ﬁf&;) [(2L + 1) 2L, +1) (21J.+1)] /

X Clo 0,8 ks -p)C(L.S, T [0, -1y)

(Eq. 45 continued)
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| J
XZ Cl0..j;,S !H,—)\.)C(L,,S..J10,}~L.—7\.)D (;” "beam)

X j "7 i M}-*j By (45)

o J_] i

XE, ClOy 0 s5ive -1)C s 5510 vy DYy 1y, _y (decay)

k"1 ] ik

o, x g, % o, -V '
x DK (_elfﬁk} D, (sl.ﬁl> (-1 L.

kP J ry

Although it is included in n, we have explicitly written the type of isc-
bar with g;. Since the isobar quantum numbers are included in n,
Eq. (43) is valid when there are more than one j-type isobar.

Up to this point we have made no mention of a coordinate system and
our formulae are completely general. Some simplification occurs with
various choices of axes. We choose the Y-axis to be the normal to the
three-particle plane. (Another common choice is to take the Z-axis as
the normal to the three-particle plane.)

?:Z)‘jxﬁk:ékx?bl:ﬁlxﬁj- (46)
In the case of the Isobar Model it is then convenient to choose the Z-axis
asa polar vector inthe three-particle plane. We choose zZ along_éj . The
polar angles of the bearnare @ and &, while the particies j, k, and l have polar
angles ((~).,§.), (G k’§k)’ and (@ , §1) respectively in the CMS. With our
choice of axes it is clear that <I> @k’ ®. are either 0 or 7w and 8 =0. These
angles are summarized in Fig. 2. In this case we also have

ﬁk = - ﬁl = Y. Fori convenience we introduce the angles dJ., Bj,yj, where

, | _ ) ) )
R(aj,ﬁj,yj) = R(j" " beam) = R(§j, ej, §J.)R(<§,®, $). (47)

We then have the following simplifications in the expression for gi:
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o (48)

Dk* k T Kk

(Bﬁ ) e d“ {’G)y
Ve B 3Ok kHk )

01 x 1
D (e.ﬁl) - d
1 N

% 1
(-6.) .
"1‘“1 ]

At this time we can now consider the angles 63.( and 6? . WickiO dis -

cusses these angles in detail and shows that

k
o = - = ! : : !
cos,}. {coshp - cosh O'kcosh o'k) / (s1nho'k sn’xhok) s
(49)
cos@? = {coshp - cc:shcr1 cosho

1) / (sink o, sinh'o}),

where

tanh p = vj = velocity of j in CMS,

tanh 0=V T velocity of k in CMS,

tanhgi{z V{(: velocity of k in (kl) rest frame,

with similar equations for 1. We want to further clarify the sign of the
rotation angles. Figure 3 illustrates the effects of the Lorentz transfor-
mation in a non-Euclidean plane. Remembering that the spin lags be-
hind the momentum during a Lorentz transformation, o;'le sees that for
particle k a positive rotation about the Y-axis is needed, and for par-
ticle 1 a negative rotation about the Y-axis (corresponding to ﬁl = -Y
above.} We understand 8? and leare always positive in Eqgs. (48) and
{49). In terms of the Sfcapp16 angle §I the Wigner angles are

k

6 =6 - & - Yy

) (50)
5

@:L:H.-Lv_-g\.-

013 '93 [1} T
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where ij and @U are the CMS angles between 5). and 61{, 51 re-
spectively.

" The Reduced Production and Decay Transition Matrix Elements

We now look at the function Tn in more detail. Tn as defined in
Eq. (44) is composed of two factors and we consider each separately.

Production Matrix Element

T,
LSL S,
P73

convenience near threshold one can explicitly write the barrier pene-

The {irst factor T (W,WJ.) is the production amplitude. For

tration factors 17

\ L.+(1/2)
(aw)-1/2 i +H1/2) gy -1/2 57 ) (51)

J

The charge dependence is also removed by including the isospin vector

addition coefficients. Thus

J'jj

TLSLJ.SJ.(W’ w3) .
L+1/2) it (1/2)
ab_,ab _,.Dj Dj P Q; ’ I35
= W rod
= CEI% I, 1L, I)C(I 7,1 ,IfIZ,IZ) T TLSL}'S;(W,“W};,
{(52)
J3.
where TLJSL.S.(W’W'HS a function slowly varying in Wj’
i7J

1% and Iz are the isospin and z-component of isospin for a, Ib and
I: are the isospin and z-component of isospin for b, Ij and I; are the
isospin and z-component of isospin for j, \ID and II; are the isospin and
z-component of isospin for the isobar, and I is the tetal isospin.
F}l'rther explicit dependence on W or Wj can be introduced asg factors in
'rlngij(W,wj). One popular choice is a form factor of the form

-L./2
(1+R2Q?) i (53)

which includes a radius of interaction R.
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Decay Matrix Element

- Taking the charge dependence out of the decay term we have

i o j.
BJS (Wj)ZC(I}\,IL,IDg k .1 ]

z’ "z .
i _ - 37

e

where we have used the same notation as before.

_].
To evaluate A {(w.)one uses either the Watson final-state interaction

l.s.
1
theorem or a modified Breit-Wigner function. Using the Watson the-

orem, one takes

. . 1/2
j. i . q, \
73 e’ sinbd k)
Al o I3 1 (4w./‘ : (53)
iTh gy i
kl

where & is the elastic scattering phase shift at the mass WJ.. We

1
have added the extra factor (qk/4wi) /2 to ensure the proper threshold
behavior in our normalization. With Breit-Wigners one may choose

either the relativistic or nonrelativistic form. For the relativistic case

one uses
. o R i//Z
3. _ rWQL {w L)
Al =) ve L0 il (56)
J3 (W5~WJ) - iwel (W)
where
Eqa-(WjWleH p(w.)
I.w,) =T, s 57
) 11 . . .
and wy is the resonance mass, Jackson = has given a discussion of

the different forms for p{w). For the nonrelativistic case one uses

i T.w)/2] 12

A = @rwy t? —

1. s. 0 (WO~W.)-§.F.(W.)/Z ’
i SR

(58)

where I'.(w.) is defined as before. Both of these forms are defined

£

such that in the limit of zero width we have

o 1s 2 2 2
im (A7 o () [T = 6w - wy) (59)
r ST -
. R
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Cross Sections and Threshold Dependence

We are still considering just one diparticle pair (kl) but there may
still be multiple isobars in this system. From Eq. 32

the differential cross section is, for unpolarized incident particles

and without observing the polarizations of the final particles,

where
= _ . -1 & or
E—[(Z(fa'i‘ 1) (wb+1)} = - (61)

Since we are concerned with unpolarized cross sections, we may inte-
grate over a (the angle of rotation about the incident beam} in Eq. {31a)

to give
TquQ.

dp = 8w WJ.

dwjz dcos 63. dcos © dg . {(62)

The total cross section then becomes

TTZ - T * * TquQj 2
- g f - 3~ 3 3~ =
o j——*wp E angngm Tn(W,wj)Tm(W,wj) 5 = c"iwj dcos G;} dcos © do.
(63
This expression can then be reduced (as in Appendix C) to give
T (2J+1) ; 12 2 4
Y g & 2o_+1) (20b+1)j‘Tn(W’wj)! dw, - (64)

We note that isobars of different quantum numbers in the (kl} subsystem
do not interfere.

I3
If we now use a Breit-Wigner form for Alj s (Wj) and take the limit

1]
as I‘J.(Wj)—»O, the cross section reduces to
T \ (27+1) Jj}- 2 |
=3 ¥ o0 (zofD) | TrsLs, (Moo )| (65)
P a b i%j

Since in this limit the diparticle has become a stable particle, this
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equation should be the same as that for the reaction a+b - ¢ + d.
C‘amparing with Eq. B.7 of Appendix B, we do have agreement.

Other Isobars

Up to this point we have been dealing with j-type isobars only. Un-
fortunately one usually must include k- and 1 ~-type isobars as well.
Since we have included the type of isobar in the index n, Eq. (43) is

still valid. For k-type isobars we have

J; h
k ; k
T (Wow )= T, o o (Wow B~ (w,). (66)
n k L-S*_;kSk k lksk k
and
w 1/2
i W k : 1/2
k) = — | —=— [ (2L+1) (2L, +1) (21, +1
ghix) = 2 (WPQkQJ 2L+1) (2L, +1) (21, +1)]
{
C(Ga}o.b’shu' 3 'Hb)C(L) S)-I&pr-a”“-b)
. - J
{ T M -
" Lo Jir Sy i “NJCUL S T 00 kg -2y B0 b -y e P Vi)
(67)
C )G o K (6, )
G.,:0 ., [V, -V, {.A,rsx xj | s ¥V —V;)d_ _
vlvj 1 k' 1 j Tk k I >\k i VJ. k
1l & e G5
d (673 d 2 (=673 (-1} .
Vi by k Vj pj k
For l-type isobars we have the equations
( ! X 6
TatWow) = TLSLXSI(W’WﬂBllsl(Wl) (68)

and
. \‘1/2
= X (————1—-} [eLet) L) @1+t)] Y2

i VT foo Q.
A le ij/’

(Egq. 69 continued)
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C(Ga,cb’b {Haﬁ Hb/C(L;SJJ;ODfJ‘a ,u~b]

. ; . J
1 - ! -
)\zi Clo .38y | By -2 )CL S, T1 0,0 -2)

LN e (0 PV (69)
1 1%7a

: j
< i . . i _ 1
Gy ClOp 08 iy v )C sy 1 0ovp-vigd oy (9
ik 1]
. @ [6] v
q 3 (Gf}dvk (-91‘;) (-1) © K
it kM

In each case we have preserved the cyclic order of j, k, and 1. The
total transition amplitude in the case of more than one subsystem con-

taining isobars is then written as before:

- Meos
fp =Z g, (J)Tn(w,wj). ) (43)
n

This coherent addition implies some double counting of the amplitudes
which has, in practical situations, been shown to be small. 18

In the case when there are identical particles present,care has to be
taken to ensure that one uses a correctly symmetrized combination in
Eq. 43. Our cyclic ordering of the particles j, k, and 1 will not neces-

sarily ensure this and this has to be explicitly introduced.

Symmetry Properties of the Amplitudes

We next discuss the symmetry properties of gz under certain cir-
cumstances.
Parity: Consider the case of p— - p, the result which occurs under

the operation of parity. In Appendix D we show that

_ o_tp 0, ~ K O.tu. o, + o+ »
g Faq(-1) 2 24) P Py ) gk Mk(-i) "1gh

- ()

where 7 is the product of all five parities. For any specific problem



this reduces the number of independent gg. For the case of wN-N7w,

-

n= - 1 and we have

g Mooy Bt (71)

where g, is the incident nuclecn helicity and p,. is the final nucleon
i ¥ i

helicity. Since Tn is independent of 4, we have

f =3 g1 = gfi*'r : (72)

n

=

Interchange of two particles: We may also discuss the properties of

our amplitudes gi (WJ.Z, wi, wf) under the interchange of two particles

k and 1. Such a change is relevant for discussion of symmetry proper-

ties in the presence of two identical particles.

In our formalism a cyclic order is always preserved and thus inter-
— _—

changing k and 1 leads to a change in the coordinate system, Y- - Y.

Associated with this, we have the changes

W - W,

2z 2
k“*VVl, Wlﬁ’Wk,

© -0, ¢ >+,

2 2
w.—»w}., W

= — = =0 - = ¢ = — =
@J. 0 @j 0, 3. 2,70, ByEm>- By =W, (73)
QJ - T _Qj’ Qk—-a— r-'_egf Gf -— T!'—Gk
65—~ o, 6 6~
A
Gk» 91, 91—> gk*
%}( — 9}, 9:]!-‘* G’k,

Ha ™ Har Hp™ My

Hj - F‘-j’ M ™ Bgr By 7 By

We find that (see Appendix E) for j-type isobars,
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Batphtite 2 20 2
. Wy Wy ]
n ! (74)
e T §.t0, t0 Lo Mg >
_T_4y @ j Tk OTL, . kL i TathTiTkd 2 2 2.
(-1) {-1) (-1} gnj (wj,wk,wl),
for k-type isobars,
R I U
€nk : “j"}vl’wk (75)
2}

HaTHp T TR 1>Sl+gj+gk( 1)11 Batphstty 2 2 2
. - - 1

= (-1)

and for l-type iscbars,

HabpHitte 20 2 2,
R T S LR N e N e L D

(-1) (_1) gnk (VVJ-)W s W

= (—1) k 1)“

SECTION III

Scattering from Polarized Targets and the

Measurements of Final Particle Polarizations

The formalism we have developed can be used to discuss polarization
experiments when the particles have arbitrary spin. However, this
becomes involved and for the sake of simplicity we consider the case

- 4
B?, where M is a0 meson and B is a 1/2+ baryon. 19

M, B1-» M2 M3
We use helicity states for the incident and final particles. The ref-
erence coordinate systerm we use in all our calculations is OXYZ where
OY is perpendiculé‘;r to the three-particle decay plane and OZ lies in
the three-particle plane (see Fig. 2). We have used the prescription

of Jacob and Wick for constructing general states, i.e.,
lp6d N ) = R(¢,6,-0) | p00, 7). (79)

Now Eq. (79) can be viewed in a passive sense; i.e., it gives the

orientation of the rest frame with respect to OXYZ in which the spin
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components X are defined. This rest frame is obtained from OXYZ by
the operation R{¢,6, -¢). These final coordinate axes are then the

helicity frame axes. These are described in Fig. 4 and we see that the

particle has spin component A along OZ''! in thé coordinate system
OXIIIYI‘!Z!!! .
Final Particle Ccordinate Systems: For our final particles the

helicity frame axes are defined by

! - — — | o
oY ijpk// 2 pjx Kl (80)

OX' =0Y'X0Z’
and are demonstrated in Fig. 5.

Initial State Coordinate System: In this case the helicities are de-

fined in a rest frame oxiyiz . which is obtained from OXYZ by rotation

1
through the Euler angles §,0, -$; thus, OZ, is along the incident mo-
mentum ;a' Now, if we use a polarized target, then we define a very
specific initial coordinate system. Let this coordinate system be

Oxyz with Oz along ;af Then Oxyz is related to OXiYiz1 by a rotation

o around the OZ, axis. We have the following relations between co-

1
ordinate frames:
- Y 1 . -
OXYZ OXi‘iZ’i Euler angles $,0, -3,
OXiYizi - Oxyz Euler angles 0,0, a, {81)
OXYZ - Oxyz Euler angles ¢,0,a-¢.

Transition Matrix Elements: We have calculated transition matrix

elements from initial states defined in the frame OXiYizi, whereas we
require transitions from states defined in Oxyz to discuss scattering

from polarized targets. If Au. is the amplitude for transition from

OXiYiz1 and A‘H is the transition amplitude from Oxyz, then
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Si{p_ -y e
LA e 2" : (82)

If we<sonsider only the reactions of the type wN - Nnw,then Eq, (82) re-~

duces to

Polarization Experiments: We assume we have a coordinate system

pclarization is described in the helicity frame.

a) Unpolarized cross sections: The initial density matrix is
T > . . . .
p- = (1/2) 1. The differential cross section is then written as

. (84)

— 2

-~ 1 + ]
I =Trace[&' p"A'] = % A f > A
0 i

I
[\\[ [

H
C TR o

b) Polarized target: The initial density matrix is now pi = —é—; 1 +§brb§

We then have a differential cross section

-

-
Ip = Trace [A'p

ped o]

Xty -1 [t+ B -,
4]

(e
o

S

Trace [X' 5, &' .

[\)l e

IGC_[:

where fgb is the polarization vector of particle b in the Oxyz frame.

R »
¢} Final Polarization {of Particie 1}: Here I pf = (1/2)A'A'7, where
<> 0
Trace (pf) = 1. The final baryon polarization is given by
I P o= L TraceXAG (86)
s T1° 2 race{! “0'1) 86}

d) Depolarization Tensor: For final polarization from a polarized

target we have — -
£ e d 3 -
1 = A ptAT, (87)
P

where Trace (pf) = 1. The component of spin of particle | along an axis

M (:Xa Y: or Z) is PIM a.nd is giV‘E‘,ﬁ b’y"

‘e

- ot
P = Tracelpion,) -

@
o)
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Then - *—i_:"+
—_— 1 t
- IpPiM = TracelA'p A GIM)
(89)
=1 ¢ L =P .
Lo P T 2% Poi, v
and
I D = L Trace(ag, A Topy) (90)
o0bi, 1M~ 7 tTacelAoy, M’

These results are sumrnarized in Table 1.

e) Decay of Final-State Baryon: If the decay is weak, e.g., A—>p7 ,

then this decay angular distribution will analyse the parent baryon
polarization, and thus this is an appropriate place for the discussion
of such situations. We introduce the decay amplitude directly into the
transition amplitude.

We have shown previously {Eq. (43)] that the transition amplitude for

the process a+ b = j+ k +1 can be written as

where n is summarized in Eq. (2). Now suppose we consider particle
j undergoing weak decay to two other particles and we define their
spin states with respect to the helicity frame axes of the parent particle.

Then the amplitude for this decay is

D -
mimz_ <01m102m2 IT %G'“j>
(91)

Lde i , pj—m

= Pm,, m-m, 1C( S -
LZS B C<01’GZ’Sd‘ g m IY‘i,C(Ld,bd,(rj p,j m,m)YL (Gd,¢d),
d°a d
LdS
where B is the partial wave amplitude for the decay.
L.S
d d_ , D
B = {0,0,L,8,|T !o'jpj> : (92)

Thus we find that the final amplitude for producing particles k and 1 in

states t Qkp-k/‘ l Ql“1> together with the decay products in states



i A" s . -
oy, ) §sz? ; with respect to the helicity frame axes o
-
is
{ L.=
=2 X . 2. 4B T oie,,0.,S, im,,m-m,)
H by T T b a1 ;1}. L3S RS Al B R 17
. L ) C G :
AN

I ; e oy <B J ™
X C(Ld’”d’g p.j I, m) ‘LJ;‘ { :‘f.l”'“d)’*‘“n I
(S8

in the reaction

many simplifications result, g, = 5
f Ld 1 1
= = 5 /B Ci1 =, = | 4. ~-m )
ra s L A i NV G ST N 1, ,. TN
m EX 7oL LT=0,1 4> 2’ 2 ! 4 4
Ha Mty Bty By =gmY ) A e R

M. -m N T T
1, . a}.b,‘-‘(l”rl, (95)

Fuarther, if we perform the from polarized targets, definin
Ny Py =

a specific imitial coordinate sys!

Ty
(96}

f! =1 4
g Pl gty ty BT Ty iy :
SECTION IV

Analysis of Three-body States Okt in Production Reactions

Anocther fruitful area for application of the formalismn we have de-
veloped is in the study of three-particle states formed in production
experiments. We are particularlv concerned with reactions of the type

a+b-—=>c+X
{(97)

3
S T e
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of which there are many examples being studied at present, e.g.,
mT+p—-p+t (Ai’AZ’A3)’
k+p-p+(Q.L) (98)
m{k) + p - wk)+ N*.
We now develop the slight changes necessary to deal with these reac-
tions. We use a notation essentially the same as that described in
Section I. The only modifications are:

a) We have to define the quantities pertaining to the extra particle c.

We use
o, - intrinsic spin of c,
He — helicity of c,
P. — four -momentum of c.

b) All quantities referring to particles a,b, and c are measured in
the total CMS.

c) All quantities pertaining to particles j,k, and 1 are measured in
the (jkl) CMS. This includes variables used in the development of the
formulae for the decay of the three-particle state.

d} We do not make a spin-parity decomposition of the incident state,
so that I. and S are not needed. Further, I will represent the total spin
of the (jkl) system and not the overall angular momentum in the process.

e) We use two coordinate systems, S and S', both in. the {jkl)
rest frame. S 1is used to describe the decay of X — jkl. This system
is the one defined with respect to the final state for the discussion of
2 - 3 particle processes in Section II. On the other hand, S' is that
particular coordinate frame, in the rest system of particle X, in which
we choose to describe the spin (or helicity) state l JM ) of X. Thus the

intermediate particle X has spin projection M with respect to the Z'

axis of S' . The choice of S' will reflect our prejudices about the type
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of production process occurring, since one will try to choose S' in
such a way as to make the spin {or helicity) density matrix of X, P!
‘as simple as possible. Thus one would choose, e.g.:

i) S' as the Gottfried-Jackson system if one is interested in one-
particle exchaﬁge, cr generally if one expects a simple t-channel spin
structure;

ii) S' as the helicity frame {defined from the s-channel for the re-
action a + ‘b —~ ¢ + X) if one is concerned with s-channel helicity con-
servation.

The intermediate state ¢ + X will be characterized by a wave func-

tion of the form

nM
p=_Z f (M .s,t) | aM) [pu ), (99)
nMp.C RabpHe ¢ ¢
nM . . . .
where f (", s,t) is the amplitude to produce in the reaction
HatpHe

a+b > c+ X astate X with quantum numbers n,i.e. the set(j;J;LJ.,Sj;
j.,l.,sj), and spin projection M in the coordinate frame S'. This ampli-

tude depends upon Mo HpH o the CMS helicities of a, b, and c; s and t,
the Mandelstam invariants for a+h - ¢ + X; and 7, the mass of X.
For the decay of X we use the coordinate system S, which we have

used earlier in Section II:
z=3,/149,|,
J J
Y = B3.X3. |
Y 'CEJ. X q,/ 6j Sl (100)
X =YXZ.
We require the following transition matrix elements for the decay of

X - jkil:



= {“" ' IS . -~ e | . d i !

=z 5\Qj”"J’Qk‘d“k’M1*L'i Lfnm,>ss(nm nM) ¢ (101)
g — —e . ; \ 3-

= (O : T ‘ ¢ y ,

- }’Zﬂ g (\L&}}‘LJ Q-KLK}_‘:,Q—‘LL*} M i ﬂfﬂ.)s Dn’lM(a’B’Y)’

[T

where o, 8,y are the Euler angles defining the transformation from S
to S'. This matrix element depends on all the quantum numbers n, M

of the jkl state, as well as on the helicities “j“k‘“‘} and the continuous

1 . o . 2 2 .
variables describing the jkl state, n .o, ﬁ,y,wj and W - We will

My
write briefly Gn%/fk *

for this decay matrix element. Its calculation

involves the evaluation of (ié_.pi, ékuk’ 51% t T nm) , which is just the
,; J - L

transition matrix element calculated in Section II, provided that the

factors associated with the partial wave decomposition of the incident

beam are ignored. From the results of Section II we have

~ 1/2
S S - Fovo w.
ﬂjki:,}_\ﬁu (g B s JE N E (121 \ 1/2
G M z Dogelan B V) ;i""""‘"ﬂn = L<u_,j+1, (21j+1)]
[ M—} k.}
XE (G2 Lo = "J':'%“\ ,:‘L ;Sei‘I:O ")\) * ( -7@-9"1-)
)‘j ] }J 33 J S ! rJﬁ} ] m’M-')‘.j §J ] CPJ
(102)
X | | FEIINTE
=z Cio ,0,,8. v, ,-v,.}Cll,s,,j. 0,v, -v.} d ' 6.
VW 11 : : A 1 5! - -
ViYy k'3 kT it k1 Kj’vk v J
Oy a, ; o‘l-vl‘g
Xd )t (67) 4" (-6)(-1) P T (P, w,)
kM i*r ] J = j
Heo by b
- ] kMl s - -y )
= 8 TR W) (102a)
Where NN ) jj.g " J,F
Ln( ™M ,Wi) = LL:—’S (T, '\Rri}" Dl:s.(wj) . (103)
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The forms and amplitudes we introduce into Tn were discussed in
Section II.
The amplitude for a final state derived from an intermediate state

X of quantum numbers n, M is then represented by

< Lot
oM Gn%\:k 1 (104)
M'a“b“c

and the differential cross section for the process is given by

nM Jp'k“'l
Ao bbb sigy) = | 3, fu_p p MG, (105)

Symmetry properties due to parity conservation: If a conventional

choice for S' is made with the Z' axis a polar vector and the Y' axis
an axial vector as in the Gottfried-Jackson frame, then a familiar re-

sult is obtained:

M -M LT e S y-
£ =M ) 2 20 P Py © T M,
“a“b“c “‘a p‘b “C a C
(106)
where Ny is the parity of the intermediate state X . Similar calculations

as those in Appendix D result in

TNTIY) L.+1, g.tu, o, +u o, TS VIRV
J Rl _ I T3oay d dp_ay kK Tk 4101 j Tk 1
g 35 = (0™ T ey T ey KRy g1 :

(107)

Differential cross section: In general we write the unpolarized

cross section as

%

, s .
dg «  » oM Gpidkpl Z0 g M GHQHM",ﬁ) : (108)
Habpte Habphe o n Habphe 7
“j”k“l

where do is the differential cross section over seven variables which

we take to be “m, t,a, ﬂ,y,wjz, w12<. We can also write d¢ in the form
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nn' // "L Pkp'l ,NP' p’k“tl"é)

TAe C R Pmm B CaM Sniw (109)
; \ k1
n'M
where we have defined an unnormalized density matrix
nn' nM n'M' %
P Cou & £ f . (110)
MM Bt i i
This matrix has the properties
nn'  _ ,’/ n'n Yo
MM' TP
\
J-M, ,,J'-M'
=nmg (=171 iV (111)

Integration over afy leads to the well-known result that the Dalitz plot
distribution is independent of the magnetic quantum number M with
which X 1is produced. Careful manipulation of Eqs., 102 and 109
leads to the other well-known result that waves of opposite parity do
not interfere in the Dalitz plot.

Use of Eq. (409) allows the measurement of the fo71§w1ng parameters

of interest:

nn'

a) pMM' the production density matrix,
b) TTJjS the coupling of the intermediate state to the various

decay channels.

In the case in which the intermediate state is composed of three

by
pseudoscalar mesons, the expressions for G %\/i are simplified since
g. =0, =0, =0. Inthis case we have
j k 1
1/2
Moty By I srr"-’m‘w 0 1/2
= {L’ B.v Y [¢2 .
nM A Pran @Y7 L ) @1+1)]
Wl Q;qk
J
(112)
J ¥ j R
= 3(:5101““\D e
X B Oy Tlo Dl 3, 545 ot9) P Tt )
J / J
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An analysis of Ai’AZ production using a formalism similar to this has

been performed by Ascoli et al. 20

)

Clearly we can extend this formalism with only slight modification
to the case of a group of particles recoiling against the particle X in-
stead of just one particle c. The internal variables describing this

group of pé.rticles enter in the function an (s, t,r, -0 )
MaFpHe
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APPENDIX A
In this appendix we review some of the properties of rotations and

their representations. Most of the material should be familiar but we

wish to restate all the properties used in the text using our notation.

. . . 21
All sign conventions are those of Rose.

1

Since a given rotation may be expressed in a number of different
ways, convenience is usually the deciding factor. We shall use either
of two methods. A given rotation will be specified either by its Euler
angles, @ By, or by the angle and axis of rotation, f7. In terms of the
angular momentum operator J, the rotation operator R is
-iaJ_ -ipJ -iyJ -i61. ? . (A.1)
Ri{a,B,y) = ¢ Z e Y e Z-e

If in some coordinate system, § can be expressed hy {-sind, cos¢, 0)

then

R(61) = R($, 6, -9). (A.2)

One other equality we use is
R{0,6,0) = R{(2™7,6, -2w) = R(-27, 6, 2m). (A.3)
Since the product of two rotations is again a rotation, we have
Rla,B.v) = R{a", 3", v" )R{a". B">v"). (A.4)
To discuss a matrix representation of the rotations R, we consider

the vector space spanned by the basis vectors §3m> , where

Z . .
37 im) = j(5+1) [im),
(A.5)

\

J|jm)

m |jm) ,
with J = aJX + bJY + CIZ. {The usual choice for J is Jz. This choice
makes evaluating the matrix elements much easier but is not necessary.)
The elements of the matrix corresponding to R are then given by
j _ /o i .
‘ - A\ rY i ° .
D! (R} ={jm R|jn) (A.6)

In terms of the matrices, &g, {(A.4) is written
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j = j noan ympl 1 ! 1
D) @ By) =2 DL (e p",y")D] (@, puy"). (A.7)
Espressing R in terms of the Euler angles and making the usual
choice of J =7, the matrix elements simplify to

THmetmy)y) (), (A.8)

R~ I -
Dmn(a’ﬁ’\{) € mn

where the functions dinn(ﬁ) are real. These functions satisfy the gen-

eral relations

J - m-n .j _ m-n ,j
dmn(ﬁ) = (-1) dnm(ﬁ) = (-1) d-m—n(ﬁ),

j - 4y ) - ca)itm g
& mop) = (1Y e = 0T al e,
(A.9)
al (pr2m) = (-0% dJ__(p),
j =g
d (-py=a (e .
The normalization integrals are
j j' = el
jdmn(ﬁ)dmnm) dcosp = (2i + 1) 6jj' ’
(A.10)
8112

j it 87
Drnn(a’ ﬁ!Y)Dmlnx(a: B’Y) da dCOSﬁ d\{ - (2_] + 1)6JJ|6mml6nn!
We use the same conventions as the Particle Data Group for the

vector addition coe}fficients:22

Cliysipeilmy my) = (Gyipmymy 13 pim) . (A1)
We have the following relations for these coefficients:
o Wt
C(J1’JZ’J |m1’m2) - ('i) C(JZ,Ji’J mzymi)

gty (A-12)
= (-1) Cliyripri |-m,, -m,).
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APPENDIX B

We consider the case of a2+ b -+ ¢ +d using our normalization of

states. From Egs. (29) and (32) we have the differential cross section:
2 3 3
= 2 .4 d d
= £ %8 -5 -p. =L &P
W= g RS PPy PP E S TES (B.1)
and
> (B.2)

Assuming that both b and d are in Y states, we have from Eq. (38):

_ W -1/2 ot ek , 1/2
£,= 7 (pa) L%HS [(2L+1) (2L'+1)] Clo s 0 Slugimry)

e
1S
(B.3)

{ N i ' - 1 1 _
xc\L,s,Jlo,ga b )CO 0. S e )CIL, 8, T10, 0 -1y
(c *beam) (B =0, qiM, L's'lTI B=0,piM,Ls) .

X DJ
“C’“d Ha't"b
For simplicity we take the beamn to be along the z-axis, in which case
T - i -
D L -u Lo *beam) = DJ N e h. (B.4)
HeTHe P kg by
We now have
3 3
d d 3 12 -
7t 7EY T gy 4w, (8.5)
c

in the CMS. Using conser-

where (, represents the polar angles of ¢
vation of energy and CMS momentum together with F = pW, we have
o 2-h=] N g 11/2 i
a0 =(p") " T | 3 [@LADEL+1)] Clo,, 0y, S|p ) -1y
1.'S!
(B.6)
a . - < 1 _ t ! _
XC(L, 8, 710, 8 -1 )C(0_ 04, S'lu_s -ny)C(L', S ,J}O,uc by)
X DY (w ("Q’:o,qJM,L's'!TlE:o,pJM,Ls>|Z % .

Homhg By mHy

Using Eq. (A.11) and integrating over dzw, using the normalization of

the vector addition coefficients, the cross section becomes
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_ T 2J+1
0 % ¥ o TD(20 71
p a b

P s [(B=0,q7M,L'S' I TIB =0, p7M, 1S} |

‘!
L'S {(B.7)
.For.dhe case of N - mN, L and L' are determined by parity, S = §',

and we have

P
gj :—%(J+%)‘<Jp,ﬂT§Jp>!2 . (B.8)
P

Thus we see that our equations reduce tc the usual equations for the
two-body process.
APPENDIX C
This appendix, along with the following two appendices, details
derivations of text equations. Here we derive Eq. (64). The total

cross section is given by

172 = MMk vqu' 2
0 =lw— T = g g™ T (W, w)T % (W,w.) 5oL dw, dcosh, dcos@dd.
o n n i7"m j j j

p i nin m SWWJ.
(63)
From Eq. (45), with our choice of axes, we have
Mok WZW' 1/2
ghgh™= —§——J——[ (2L+1)(2L'+1)(2L +1){(2L"+1){21.+1)(21'+1)] {C.1a)
n-m ™ pQR.q ] ] ] J
ik

XClo 0,8 '“a' -1, )C(L, S, J{G,ua-ub)(:(ca, 00 S Lua, “py )

X C(L’,S',J’iO,p.a—pb) (C.1b)

X2 C{.,j.,S. |p.,-N\)C(L.,S.,T10,u.-X.)C(0.,3i.,8 |u., -\
Nn i1 J) (J 370 TR J) (o5, 3} it J)
j
X C(L', S, J10,u.-)\) (C.1c)
A M B
J J' %
XD o {a.,B..y) D . L (e Bays) {C.14d)
By Xj Wby 33T uj-Xj womiy 3T

_ s - ' 1yt
X2, C(ok,ol,sjlvk WICA 50,10, v, vl)C(Ul',U‘ﬁj;V}’. V)

H
k"1 X c, s, itlo,v - C.1e
xoy st gilov v (C.1e)

jj JJ
X d—,\. Vv, -V (9j> d
k 1

Y ”k‘vi(ej) (C.1f)
]
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1 o1, L %17y
SEIR sy (B d ) (-8 (-1 T (1)

1 "R S T T G R S L B

(C.1g)

To evaluate the total cross section, we will discuss each of the parts
separately. Using Egs. (A.7) and (A.9) and summing over By and Ko

line {C.1g) becomes

o o o o o,V o,v!
k k, "k k., .1 1 1 1 1k 11
z 4,7 (ed (Si)dv (-6.)d i (-6.)(-1) (-1)
P RS s P G ¥t RS A6 L NP G Lot B
g g,~-V o.-v!
K 9 171 1"
d, =, 0)d  ,(0) (-1) (-1) (C.2)
k 'k 11
= 6v v 6v v
k' k 171
In (C.1d) we have
J J‘ 3%
D e By D Y o, (e Bly)
Nj)‘jHaMbJJJ RN wg vy 3T
J R B L R T 1 ' -
= Z D D It D 7®v = C'3
A “j‘)‘j M ) “_j_xj a7 Dy “a"“b@ 3) (C.3)

J' s

X DS,
ME by Hy

(2,0, -3).

Using the normalization Eq. (A.11) and integrating over dcos®dé

gives
J -1, T % -1, 4m
¢ - . e 6
j&cgid) dcos© dd I\E:M‘ D“j')‘}' M(_] )D“j')‘g M (j )2-‘—3’-%1 6JJ' ey
I -1, 4n
_Du =X, .u.-’)\’,(} i 2T+1 5ij (C.4)
[ A R
4
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With the delta functions from Egs. (C.2) and (C.4), the integration

of line (C.1f) over dcos 93. yields

o (@ )dj3 (6.)d cos 6 Z_ 5 (C.5
_ . - _ o. cos b, = 57 0. .. .5}
_xj vimvy ?\j VitV j ij+‘ JJ.JJ.

With this we see that isobars with different total spin, jj’ do not inter-
fere in the total crcss section.
With the delta functions and the orthogonality of the vector addition
coefficients, line {(C.ie) reduces to
— 3 ] - f —
VIE{VIC(Gk’ 0-1) Sj ,vk’ vl)C(lj’Sj’Jj§ O’vk Vl)c(ok’gl’sj{vk’ vl)

XC(',8',3.{0, v, -v
(J JJJ( K D

2j.+1
Sz P11 Os st (C.6)
j i3
Similiarly
2T+
Za (CAb) = =77 &p 1 Ogg
_2J+1
Z (Cete) = 57— 0 105 gt (C.7)
i j T3 T

With these intermediate results the total cross-section is given by

_ 4 1 1 25741 (27+4  (2iF1)
o= T L)L) 25 I

X 6 ) ) 8 ey

JJ' "LL! LJ.L’J. Ss! 8

1
S.8t71.1' " s.s!
3717V i {C.8)
4 2 *

“zr g St

5

(W,w.)dwz.
J J

—Z' 2 - [ n ] =7 W e
2 7 (20,+1) (20,71 | j j
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APPENDIX D

Here we derive Eq. (70) of the text.

1/2 :
W, ‘
g W= LA N 1 [(2L+1)(2L.+i)(21.+1)]i_/z
n T TTpQqu‘} ] J

From Egs. (45) and (48) we have

XC(o_, 0yt - _sby) C(L,S,JlO,—p.aﬂ.Lb) (D.1a)

y . . h)
XS Clo.,i.. S. | -mw.,- ) C(L.,S.,Tlo, -u.-\,)D ., B.1Y.
% ( " Jg By 3l 5 J) -uj-xj 'Haﬂkb(JﬁJYJ)

(D.1b)
, . Jj
>\v,2v C(Gk’cl’s' vk’-vl)c(l"s"Jj O’vk_vl)d—)\ vV, -V (GJ)
1 i k1
(D.1c)
g T o,-V
xak (éal (et (D.1d)
kP 0 itHy
Using Eq. (A.9),line (D.1d) becomes
. a, o,-Vv v, T Vot O
k k, .1 1 171 kMg 171 9k k
d =, (8d = (-6.)(-1) = (-1) (1) d, , (8.)
ke 3 iR ) Aty
02 g,-V
1
Xd L (-60)(-1) L | (D.2)
1M
g, +H v, + 0 g
1 Mo Ok k, 1 1
S R L N G L B G B
" L B
and line (D.1c¢c) becomes
j Aoy Fy
k
al (6.) = (-4) 7 d,] (6.). (D.3)
..)\.J vk-Vl 3 )\J - Vk+V1 J

Since

(D.4)
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line (D.1b) reduces to

TR W ST T
J . i ] 7a’'D *
Duh (Q.s ﬁ-s\{.) = (-1) - (C{., B'i-\j;‘)
ST S Lih . w - Y.
HjJHa+HbJJJ *‘“f;“‘a“bJJJ
(D.5)
e R JE STRY
27, R LT |
= (-1)" (-1) 3+ ) DY = (@, B.,y.)
i i ’ s
ARSI N A
Using Eq. (A.10) and making all the substitutions,
1/2
w. / N c _+0, -8
h_ W R 1/2, ,L+5-J , 7 a b
g - [ﬁ——l———pgjqu {(2L+1)(2Lj,1, (21j+1)} (-1) (-1)
' —
XC(O-a:o.bss}“-a: "}J-b) C(L; S,J }Oy }J-a U‘b)
o .t+j.-S.
X 4.:{43'+SJ'_J(-3‘>JJJ Y (o 3. S, M) CL S0 T 10w 4N)
- O.o3., S, K. TN, 3 S., T 0, N,
Fj() 5 2R T i M
R T
27, M i N
X{-1) (_1)3 ] e DH'”‘ o (aj,{ﬁ.,\/;}
j- J H-a “b ] J
{D.6)
1j+sj-jj 0k+01~s; ! |
X ‘ivl (-1) (-1) y C{Ok’ol’sjf - Vi vl)C(lj,sj,jng, -vk+v1)
-N-v oty g
k1
X(-1) 3 G 4y (83)
5 Tk
oty Vit Oy ol

-0 e RS e, | 8

Since )\j, Vi and v, are just dummy variables, we can make the change
N -)\_, v

j j K™ " Vk’ and vl—> - vl. Thus

_ L+L .41, o _tu g, - 0.+
g 22 gy 2P gy

g t=(-1) I Jay KR o
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Since we have assumed that 1., Lj’ and lj are chosen to conserve

parity, we have that

: ‘ o LAL LtL 41,
M My, My My (1) = n(-1) (D.8)

where mn is the product of all five parities. Finally then

T T, O, +u o SV
- k "k S RV
g =n(-1) ¥ F(-1) -1 7 I (-1) © bt

(D.9)

APPENDIX E
In this appendix we derive Eqs. (74) - (76) for the interchange of
particles k and 1. From Eq. (73) we have the following changes under

interchange:
W - W

2
k 3

y Wy W

1
0 '»@’ §_’ §+T¥,

2 2 2
WwW. ™ W., W - W
j j k

G)J. - @J., e, ~ @l’ 0,~ 0.,

§J ::O»gyj:(), ék:0*§k:0, §1=W—> §1:w,

9.—>'rr~9.,6k—> TT—QE, GI»W-GR

ot et
et
[ROF R
ot

8, - 8., 6. > 6.

-
-

g, —~ 67, 6~ 6

yk“’ejl

WIL.
DO
bt e G

b

- eﬁ,

B
omed
1
wot

sl

g ™ Hgr B~ My
Most of the changes are obvious. For convenience we shall let
p'o= ma“b“j“l”k)' We also indicate the type of isobar with an

additional subscription on g.

For j-type isobars, we have



§
-
1

- }1/2
p,' 2 2 2 _ E j fyo571 1 2%, + ’}/’/2 ¢ " -
gnj(ijl W) = ”—L.“PQaqkj Hui“i}(-_;.;j.i)} Clo .o, sik )
XC'I—" ’j\ ? -
{L,5 Oop -1tp)
(E.1)
X B GO S s -N)CIL, S, T 0, -A) DY (el By
X I M RS M i3 S L LA
X % Cloy, | ) C( C G .S (-6.)
; G150, 8,1V, , -V 1.,8.,3.: C,v, ~vy3 d T-6,)
Vil PYr?7i0KT L 3 37350 k 1 -,\Jj Vit Y j
e} 2 g, -v
xal (6ha < 65 <l
kMo itk )

Now since G)J = $. = 0, we have a; = $, B, =0, V5= - $, thus
J J

' =d+nm=a.+7m, B. =B, y.=-F-m=y.-7, and

J ® J 63 }33 YJ - YJ

—imw .- N,y im{e -1 -
(uJ i N “Lb)DJ

J , \
D e plyl) s e Y o e By
B 7*'5 Pl SRR LS B T N e
(E.2)
From Eq. (A.9) we have
j- j"‘)‘: 3
al m-6.) = (-1) 3 4’ 8.},
_}\j vk—vl( 3) (-1] -?xj vl—bz{( 3)
lo} v, -4, O,
1 1 k1M1 1 -
d, (67) = (-1) d, " (-6.) (E.3)
kM J k'
C V.-, T
af ey =t Fa X )
M : L

Since Vi and v, are just dummy indices, we let v, —-V] and Vi s Ve

Thus
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1/2

W, !
21WZK W [_._L_} [ (2L+1) (2LJ.+1)(21j+1)] 1/2

8 (W
Q.4

. o o B
X C(Ga,ob,slpa, ) C(L'S, 7|0, -iy)

M -}.Lb—u.+)\.
X 2 Clo..5.8 lu.,-2)CL.,S,T|0,m.- )(-1) ? b3
)\j (.J JJ }!p} J) (J ] l MJ J)( )

3
X D (a [3 \/) (E.4)
By 7\ ho-Hy
' 1+s —3 3.
X\, Clo, 0| v c<1,s,110v—v)<1) 33y
Vi1 kU1 bk )
X (6.)
-)\J vk-v1 j
o o g, -V v, - V.-
K 1 K Vk kM 17
xa X (6% al (-60) (-1) (-1) (-1)
"4 'S RS L}
1. s,t0, +0 T A T LRV
1 K b kM 2 2 2
(iR ey @ R ghwiwpwl)(74)

For k or l-type isobars, the interchange is only meaningful when
k and 1 are the same type of particle. In this case similar calculations

give for k-type isobars:

1 s. +g .40 M- ~HL -, -
w2 2 2 k k'™ 71 a b 'j k'l |J. 2.2 2
= {-4 - -
g k( wywy )= (-1) (-1 (-1) (wJ Wi Wy
(75)

and for l-type isobars

1 s.+0.+0 TR p-p,k—p.
w', 2 2 2, _ 1 175 7k a'b 7] 1 M 2 2 2
g 1(W W W k)—(—i) (-1) {-1) gnk(wj wkwl).

-\

j
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Table I. Expressions for all observable quantities in the reaction
MB - BMM. Amplitudes Ap‘ ", with Helt, = + 1/2 are written as
ety = +- . f7i

A LN LN

IOAx = Re [A_H_ A+’_‘_’ eia] + Re [A_+ A X eia]

IOAy_ = Im [A++‘A+f eia]'+ Im [A_+ A x eia]

O LA T e T T

IOP)((G)= Re [A_, A X1+ Re [A _A_¥]

1OP§°)= “Im (A, AX) - Inm [A__A_*]

R TN S T N P L PO

ID =Re[A _AZ e 4+ Re (a,, AT et

IQD.y = -Im (A _AX e - (A, A '

10, =Re (A, A* %) - ke [a A* ™

IODyX = ~-Im [A+_ A_: e-ia] + Im [A++ A eia]

IDyy = Re (A, A el - pe [a LA e

IDy, = In (A, A e'® -In [a_, A &%

I,y =Re (A AX]-Rela A*]

ID,y=-Im[{A A¥]+Im([A A *]

R N I e TSN L TV
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Figure Captions
Fig. 1. Notation for the reactiona+ b — j+ k + 1.
a) Quantities in the center of mass rest—frame,
b) Quantities in the diparticle rest-frame.
Fig. 2. Definition of angles in our coordinate system.
a) Beam angles in center of mass rest-frame.
b) Angles of particles j,k,1in center of mass rest-frame.
c) Angles of particles k,1 in the diparticle rest-frame.

Fig. 3. Symbolic diagram of the effect of the Lorentz transformation
L. on the momentum vectors. Although the diagram is not
quantitative, it does show the correct direction for the various
angles.

Fig. 4. Illustration of the effect of the rotation ﬁ(-d), O, ¢) on the
axes OXYZ.

Fig. 5. Final state helicity frame axes for particle j.
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