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ABSTRACT 

The transformation between current and constituent quarks is 

discussed as it applies to real photon transitions. The general 

algebraic structure of such transitions is presented, and a resulting 

set of selection rules is derived. Many specific amplitudes for both 

mesons and baryons are worked out, and both their magnitudes and 

signs are compared with available experimental data. 
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I. INTRODUCTION 

A complete knowledge of the nature of the transformation from constituent 

to cur&t quark states, together with the identification of the observed hadrons 

with simple (constituent) quark model states, would permit one to calculate all 

current induced transitions between’hadrons. A major step in this direction has 

been taken by Melosh’ who was able to formulate and explicitly calculate such a 

transformation in the free quark model. While the details of such a transfor- 

mation certainly depend on strong interaction dynamics, it is possible that 

certain general algebraic properties of the transformation abstracted from the 

free quark model may hold in Nature. 

We shall assume that such a transformation does indeed exist, and that 

some of its algebraic properties can be abstracted from the free quark model. 

For the case of the axial-vector charge, the many consequences of this for 

pion transitions have already been extensively worked out and compared with 

experiment. 2,3 Here we report the results for real (q2 = 0) photon transitions. 

In the next section we present the origin and the basic properties of the 

theory along with the assumptions involved in applying it to actual hadrons. The 

general algebraic structure of photon amplitudes is discussed, as well as the 

method of calculating specific matrix elements. We derive a set of selection 

rules which include, and generalize, the old result4 that the transition from the 

nucleon to 3-3 resonance should be magnetic dipole in character. This general 

discussion of the theory is completed by a comparison with other theories with 

a related algebraic structure. 

In Section HI the photon transitions between meson states are detailed, 

along with a comparison of the predictions with the available experimental data. 

Then we turn to a detailed exposition of baryon electromagnetic transition 
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amplitudes in Section IV. A comparison of the predicted amplitudes with 

experiment, in both their magnitude and sign, is found in Section V, The signs 

are test;ble through a multipole analysis of pion photoproduction y N- N* - nN, 

where the signs of the previously calculated pion decay amplitudes 3,3 also come 

into play. As reported m’a previous paper, 
5 consistency of experiment and 

theory is found, including agreement with the relative signs of pion decay ampli- 

tudes obtained from analyzing nN - N* - 7rAr A summary and some conclu- 

sions are found in Section VI. The general outlook is very good, encouraging 

further study of the underlying dynamics and the extension to the q2 # 0 region. 

II. PHOTON AMPLITUDES AND THE TRANSFORMATION 

FROM CURRENT TO CONSTITUENT QUARKS 

As we shall be concerned with current induced transitions between hadrons, 

let us first consider the algebra formed by the 16 vector and axial-vector charges, 

&o(t) and Q;(t), which are simply integrals over all space of the time components 

of the corresponding currents measurable in weak and electromagnetic inter- 

actions : 

&o(t) = / d3x q(%t) , 

&o(t) = jd3x A;((;;: t) 0 

(la) 

( lb) 

Here a! is an SU(3) index which runs from 1 to 8. At equal times these charges 

commute to form the algebra abstracted from the quark model by Gell-Mann, 
6 

[Qa(t), QP(t)] = if oBr QY(t) 

[Qa(t), Q’(t)] = if Orpy Qg (t) 

[Q”,cV, Q@] = i faP ‘Q’(t) 0 

W 

W) 

(2c) 
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This is the algebra of chiral SU(3) X SU(3), for it can be easily shown that 

Eqs. (2) are equivalent to the statement that the right-handed charges, Q”! + Q$ 

and th;left-handed charges, Q” - Qz, each form an SU(3), and that they com- 

mute with each other - hence, chiral SU(3) x SU(3). For a! = 1,2,3 the QO1,s 

are the generators of isospin rotations; for (Y = 1, 0 . . ,8, they are the generators 

of SU(3) 0 The last of Eqs. (2), sandwiched between nucleon states moving at 

infinite momentum in the z direction, yields the Adler-Weisberger sum rule. 7 

Taken between states at infinite momentum, 8 the Qol’s and Qf ‘s are “good” 

operators, i. e, , they have finite (generally non-vanishing) values as p, - m o 

These values are the same as those of space integrals over the z components 

of the respective currents. If we adjoin to the integrals of the time component 

of the vector currents and the z-component of the axial-vector currents (which 
01 

commute like $ and ha 2 gz ), integrals over certain “good” tensor current 

densities, the SU(3) X SU(3) algebra between states at infinite momentum can be 

enlarged still further. Letting the index Q! correspond to an SU(3) singlet when 

01 = 0, we have 36 charges which commute like the products of SU(3) and Dirac 

?F matrices: 2, q Pgx, q pvy, and $- gz, wherea! =0,1,0..,8. These 

act as an identity operator plus an SU(6)Walgebra of 35 generators. We refer 

to this algebra, introduced by Dashen and Gell-Mann’ in 1965, as the SU( 6)w 

of currents 0 We denote these generators collectively by F1, and use them to 

label the transformation properties of our states and operators. Note that 

Pg CT andg x’ fi y z’ which commute with z boosts and are “good” operators, are , 

not the same as the spin components gxa ay and CT~. The appropriate algebra 

to use is that of SU( 6)w and not SU( 6) 0 For quarks, p = +l and quark spin and 

“W-spin” are the same; but for antiquarks, p = -1, we have -vx, -oy and flz 

instead of the antiquark spin components (7 cr and r 
x’ Y Z0 
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In what follows we will label states and operators by their transformation 

properties under this SU(6)w algebra of currents, For this purpose we shall 

often uze just the SU(3) X SU(3) subalgebra of the whole SU(6)w algebra of currents, 

as this subalgebra has elements which are known to be directly measurable in 

weak and electromagnetic interactions. The overall SU( 6) w representation will 

either be obvious or be made explicit. We will write 

{(A9WS 9 Lz\ 9 
z 

where A is the SU(3) representation under QcL + Qt , B the representation under 

Qa -Q$ and Sz is the eigenvalue of Qi, the singlet axial-vector charge. 10 

The quantity Lz is then defined in terms of the z component of the total angular 

momentum J, as Lz = Jz - Sz. The “ordinary” SU(3) content (under Qa) of 

such a representation is just that of the direct product A x B. 

All representations of chiral SU(3) x SU(3) can be built up from (3,l) 1,2, 

(19 3)42, (19 3)1/2 and (39 q1/2 which we define to be the current quark and 

cmuark states with spin projection f l/2 in the z direction, The 

quarks form a 6 and the antiquarks a z in the full SU(6)w of currents. 

Consider next combining three current quarks to form a baryon. If we 

take Lz = 0 and a symmetrical quark wave function, then we find the states with 

net spin S = l/2 and S = 3/2 transform as: 

S = 3/2, S z = 3/2: {(lo9 l)3/2* O\ 

S =’ 3/2, S = l/2: 
Z {(69 3, l/29 Ol 

s = l/2, sz = l/2: p9 3) 1/2’ 4 

s = l/2, sz = -l/2: ((39 6) 42 0) 

S = 3/2, Sz = -l/2: {Cd 61mlp Ol 

S = 3/2, Sz = -3/2: {Cl9 lo) -3/2$ Ol 
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and they all lie in a 56 of the full SU(6)w of currents. - In particular, if a nucleon 

at infinite momentum with Jz = l/2 acted under the algebra of currents as if it 

were simply composed of two current quarks with Sz = l/2 and one current 

quark with Sz = -l/2 in a symmetrical wave function, we would have 

IN > = I 56, {(6,3)1,2, O} > . (3) 

However, the SU(3) content of (6, 3)1,2 is just that of an octet (including the 

nucleon) and decuplet (including the A(1236)). Since QF is a generator of 

SU(3) X SU(3), it can only connect this representation to itself, Le., for Q! = 1, 

2,3 it can only connect the nucleon to the nucleon or to the A(1236). Further- 

. - 

more, such a classification of the nucleon gives gA = 5/3. Both these results 

are in glaring contradiction with experiment. The nucleon cannot be in such a 

simple representation. This is already apparent from the Adler-Weisberger 

sum rule7 itself, for it shows that the nucleon is connected by a generator of 

the algebra of currents, the axial-vector charge QF (in the guise of the pion 

field) to many higher mass N* ’ s. Thus the nucleon and these N*‘s must be in 

the same representation of SU(3) x SU(3). Conversely, the nucleon state must 

span many different representations 11 of the SU(3) X SU(3) and SU(6)w of currents. 

Therefore physical hadron states like the nucleon are not simple in terms 

of current quarks, i, e. , they are not in the irreducible representations (I.R.) 

of the SU(6)w of currents prescribed by the naive construction of baryons out 

of three current quarks (or out of quark-antiquark for mesons). As the next -- 

simplest possibility, let us assume instead that there exists a unitary operator, 

V, which transforms an irreducible representation (I. R.) of the algebra of cur- 

rents into the physical state: 

IHadron > = V I I. R. , currents > . (4) 
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The state ILR., currents > corresponds to baryons being built from just 

three current quarks and mesons from quark-antiquark. Thus, for example, 

the co4$lplicated nucleon state is written as 

IN> = Vl56-, {(6,3)1,2, 01 > . (5) 

All the complicated mixing of the real hadron states has been subsumed in the 

operator V. 

In the following we will be interested in evaluating the hadronic matrix 

elements of charge or current operators, @‘a0 Using Eq. (4) we have 

< Hadron’ Ido! I Hadron > = < I. R.’ , currents I V-l@@ VI I. R. , currents >. 

(6) 

The complexity of hadronic states under the algebra of currents has been 

transferred to the effective operator V-l a @ V which may be studied as an inde- 

pendent object. Moreover, if the operator V-‘#V has definite and simple 

transformation properties under the algebra of currents, the way is open to 

systematically evaluate the matrix elements of @‘@ between any two hadronic 

states. 

The operator V can be viewed in another way. It is easy to see that if we 

define a new set of generators 

$ = V?&-‘, (7) 

then the W1 also form an SU( 6)w algebra. Furthermore, from the definition 

of V in Eq. (4), hadron states transform under the W1 as those irreducible 

representations which correspond to the naive constituent quark model of hadrons. 

We therefore call the quarkstates of this new SU(6)w constituent quarks, and 

identify this new algebra with that of the SU( 6)w of strong interactions. 
12 
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Equation (4) can therefore be rewritten as 

- I Hadron > = I I. R., constituents > = VII. R., currents > , (8) 

while Eq. (6) becomes 

< Hadron’ IQa IHadron > 

= < I. R.’ , constituents lOQ! I I, R. , constituents > 

= < I. R.’ , currents I V-‘@o V I I. R., currents > 0 (9) 

From this standpoint the operator V just takes one from one set of basis states 

to another, or alternately, from one set of generators to another. 

In the free quark model, the SU(6)w of strong interactions would be identical 

with the SU(6)w of currents if the quarks were restricted to have momentum 

purely in the z direction (p, = O), This is intuitive if we keep in mind that the 

S’3Ww of strong interactions was conceived of as a collinear .symmetry. As 

we will see shortly, it is not symmetry respected in strong interaction transitions - 

its conservation is badly violated in both pion and photon decays. In the present 

paper we are interested in current induced transitions between hadrons at q2 = 0. 

For the axial-vector current, which is not conserved, the axial-vector charge 

induces non-trivial transitions and one wants to know the algebraic properties of 

the transformed charge, V-lQi V. For the vector current, however, the corre- 

sponding charges Q”’ generate SU(3),which is taken as exact, so that V is an SU(3) 

singlet and 

V-lQ”!V = Qa! 0 

The first non-trivial operator involving the vector current is 

Dz =i/d3x [y] V;(;, t). 

(10) 

(11) 
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Matrix elements of DE between states at infinite momentum are proportional 

to vector current transition amplitudes where the q2 = 0 current carries 

-Jz = G, and we will then want to know the algebraic properties of V-‘Dz V. 

Taken between states at infinite momentum, commutators of Qt lead to Adler- 

Weisberger sum rules, 7 while commutators of DT lead to Cabibbo-Radicati 

sum rules. 13 

The algebraic properties of the untransformed operators are that 

Qr transforms as {(8, l). - (1, 8)o, 0 1 (12) 

Dz transforms as ((8, l). + (1,8)o, *li . (13) 

For guidance on what might be the algebraic properties of VSIQFV and VSIDzV, 

we turn to the free quark model. There Melosh’ has been able to construct an 

explicit form of the operator V. The transformation V bears a strong similarity 

to the Foldy-Wouthuysen transformation, only restricted to transverse directions. 

In a free quark model, both V-lQt V and V-lDz V must connect only single 

quark states to single quark states; they thus have the general form: 

V-lQiV or V-‘D,“V = jd3xq+(x) S(al ? Yi)9(x) ) (14) 

where g is some function of the transverse derivatives (a, ) and the gamma 

matrices (yi) 0 An explicit form of g was originally determined by Melosh,’ 

while Eichten et al 14 
--O argued that a large class of such functions exist. More 

recently, Melosh’ has restricted this class by imposing angular momentum 

transformation properties on the “rotated” currents. Without having a detailed 

dynamical theory we are unable to make use of an explicit form, even if it were 

given to us. What is important here is that the operator is a “single quark” 
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operator; i. e. , it depends only on the coordinates of a single quark and it 

does not create connected qc pairs. 

It% this property that we abstract from the free quark model and assume 

to hold in Nature. In general, we assume that: The operators V -l&z V and 

V-‘DZV have the transformation properties of the most general linear combina- 

tion of single quark operators consistent with SU(3) and Lorentz invariance. 

This is verified in the explicit free quark model calculations. The opera- 

tor V-lQ:V, with Jz = 0, contains two terms which transform under SU(3) x SU(3) 

as {Cfb Qo - tLf3)oj O} and {(3,?$I, -l} - { (T,3)-1, 11 and behave as com- 

ponents of 35’s of the full SU(6)w of currents. - To apply this to observed hadron 

transitions in the case of QI, as few axial-vector weak decays are measured, 

one needs to relate matrix elements of Qt between states at infinite momentum 

to matrix elements of the pion field via the Partially Conserved Axial-Vector 

Current Hypothesis l5 (PCAC) hypothesis. One then has a theory of the algebraic 

structure of pion amplitudes. 16 

As matrix elements of Dz + (l/$3) Di are directly proportional to photon 

amplitudes, no additional assumption is necessary. Furthermore, matrix 

elements of D”+ are equalpp to a sign, to those of Do via parity conservation. 

We need then only consider the properties of D”+. Algebraically, the operator 

V-lD:V, with Jz = 1, is slightly more complicated than V-lQt V. In general, as 

pointed out by Hey and Weyers, I.7 there are four possible terms: { (8, l). + (1, S),, l), 

((3,3)1’0} ,{ (3, 3)-1, 2) , and {(S, l). - (1, 8)o, 11 . It appears that all four occur 

in the operator V -1 a! D+V in the free quark model. 1,14 However, the last term, 

which corresponds to qc in a net quark spin S = 0, unnatural spin-parity state, 

has no analogue with any natural spin-parity (in particular, vector meson) state 

of the quark model. Moreover, under a generalized parity transformation, 
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Pe -inJY, which takes {(A,B)S , Lz\ - {(B,A)-S , -LZ} , the first three 
Z Z 

terms do not change sign while the last one does. For the longitudinal (Jz = 0) 

compo;;knt of the current this would eliminate the possibility of such a term. 

Therefore the {(S, l). - (1, 8)o, 11 term in D”+ has no correspondence with any 

natural spin-parity meson state and can not occur in the longitudinal component 

of the vector current. In the past we have therefore neglected such a term. 2,395 

While we will carry all four terms in the remainder of this paper, we will at 

various times indicate experimental limits on the size of the {(S, l). - (1, S),, 1) 

term’s contribution to various transitions and indicate what situation ensues if 

it is totally absent. 

For photon decays, we have directly that in the narrow resonance approxi- 

mation, 

F(Hadron’ - Hadron + y) 

e2 -!!k ;L ZZ- 
71 / Hadron’, hlD3+ 

2 
< DF I Hadron, A - 1 > I , 

2J’+l h + 

(15) 

where e is the proton charge, py the photon momentum, and the sum extends 

over all possible helicities h. Matrix elements of D have been eliminated 

from Eq. (15) by relating them to those of D+ via parity. Note that although 

the definition of D”+ in Eq. ( 11) involves only a first moment of the current, 

between states at infinite momentum all multipole amplitudes consistent with the - 

spin and parity of the states enter matrix elements of D”+. Equation (15) may 

also be obtained from consideration of the narrow resonance approximation to 

the”Hadron’ ” contribution to the Cabibbo-Hadicati sum rule 
13 on “Hadron” states . 

We have no arbitrary phase space factors. 
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‘.L 
For the present we shall use the narrow resonance approximation expres- 

sion, Eq. (15), for photon decay widths in order to make a comparison of 

the th&y with experiment. For broad resonances in the initial and/or final 

state, or for decays of resonances where the physically available phase space 

is small, such an approximation introduces non-negligible errors. However, 

we view the present comparison as being sufficiently accurate as a first test of 

the theory, particularly in view of the experimental errors on values for photon 

(as well as pion) decay widths. When the situation eventually warrants it, the 
2 

values of I < Hadron’ I Q: IHadron > I2 and I< Hadron’ 1 D”+ IHadron > I should 

be determined irrespective of any approximation in terms of contributions to 

Adler-Weisberger and Cabbibo-Radicati sum rules respectively. 

Thus, in spite of the enormous complication of V itself, we abstract simple 

algebraic properties of V-lQtV and V-l “+ D V from the free quark model and 

postulate them to hold in the real world. Namely, we assume that in Nature 

V-lQtV transforms as 1(8,1)~- (l,8)o,0\ and {(3,3)1, -1) - ((3,3)-1, 1) 

while V-‘DZV transforms as ((8,1). + (1,8)o, 11 , {(3,3)1,0t,{(3,3)-1,2], and 

{(fL U. - (11f90,1~, all components of 35’s of the full SU(6)w of currents. - 

We are now almost in a position to apply the theory to actual decays. Re- 

calling that, for example, 

<I.R.’ , constituents ID”+ II. R., constituents > 

= < I. R.’ , currents I V-IDTV I I. R. , currents > , t 16) 

we see that with the assumed algebraic properties of V -lD:V (as abstracted 

from the free quark model), we know the transformation properties under the 

3JWw of currents of all quantities in a given matrix element of D”+ between 

quark model states. To make contact with experiment we make one physical 
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assumption. Namely, we assume that we can identify the observed (non-exotic) 

hadrons with constituent quark states. In other words, we assume that there is 

a port;n of the physical Hilbert space which is well approximated by the single 

particle states of the constituent quark model. For baryons, composed of qqq, 

we have candidates18 which fit very well into the SU(6)w x O(3) representations 

56 L = 0, 70 L = 1, and 56 L = 2. - For mesons we have correspondingly the q; 

states 35 L = 0, 1 L = 0, 35 L = 1, etc. As we assume that states with different - 

values of the quark spin as well as Lz and Sz are related as in the constituent 

quark model, i. e. , by the SU( 6) w of strong interactions, we relate different 

helicity states of a given hadron to each other. 

With this physical assumption, we know the algebraic properties (under the 

algebra of currents) of all terms of a transformed matrix element of the current 

operators taken between physically observed states. Therefore we may use the 

Wigner-Eckart theorem and tables of Clebsch-Gordan coefficients to carry out 

the calculation from this point onward. Note that SU(61w invariance of the 

transition operator under either the algebra of currents or that of strong inter- 

actions is not assumed - only the transformation properties of the various terms 

are needed in the calculation. 

More explicitly, for a given matrix element of D”+ we write the initial and 

final hadron state with Jz = h-l and A, respectively, in terms of states with 

definite quark Lz and S . 
Z 

This involves coupling internal L and S to form total 

J for each hadron. After transforming to an SU(6)w of currents basis using V, 

the matrix element of any particular term in V -1 a! D+V can then be written, using 

the Wigner-Eckart theorem applied to representations of the SU(6)w of currents, 

as a reduced matrix element times the product of quark angular momentum, 

SWw~ SU(3), and W-spin Clebsch-Gordan coefficients. 19,20 For example, 
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suppose we were calculating the matrix element of the { (3,3) 1, 0 } piece 

of V-lDTV between initial and final states with helicity h-l and A, total angular 

momenim J and J’, internal quark orbital angular momentum L and L’, quark 

spin S and S’, SU( 6)w representation R and R’ , and SU(3) representation A and 

A’ respectively. Then we have that 

<RI, A’, L’, S’, J’, h, currents I {(3,3)1,0} IR,A,L,S,J, A-l, currents > 

= c (LS LZSZIJA-l)(L’S’L’&J’h) <R’lElR> 

sz,s; quark angular momentum 
Lz’ Lk 

SU( 6)w Clebsch- 
Clebsch-Gordan coefficients Gordan coefficient 

(A’ IsI A) ( lwlwzhv’w~) <R’, L’, L; II {(3,z)l,0 \ IIR,L,LZ > . 

SU(3) Clebsch- W-spin Clebsch- 
Gordan coefficient Gordan coefficient Reduced matrix element 

t 17) 

The W-spin Clebsch-Gordan coefficient follows since the (3,5)1 operator has 

W = 1 and Wz = 1. For any state, Wz = Sz, For baryons, $ =?, while for 

mesons we have the conventional correspondence (W - S flip), 12 

IW=l, wz=l> = IS=l, sz=l> 

IW=l, Wz=-l>=-IS=l, sz=-l> 

Iw=o,wz=o> =-IS=l,Sz=O>. (18) 

The signs which result from using Eq. (18) to convert states from quark spin 

to W-spin are understood to be included in Eq. (1’7) in the SU(6)w Clebsch- 

Gordan coefficient. 
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The reduction of the other terms in V-lDTV proceeds just as above, and 

we need only recall that (8, l). + (1, 8)o; (8, l). - (1,8)o; and (3, 3)-l transform 

as W f Wz = 0; W = 1, Wz = 0; and W = 1, Wz = -1 objects respectively. Pion 

decays (matrix elements of Q$ are handled in an analogous manner, except, 

of course, the initial and final states have Jz = h. Note that since total Jz is 

conserved for either Hadron’ - Hadron + r or Hadron’ - Hadron + y decays, 

and since the net value of Wz = Sz must also be the same by the W-spin Clebsch- 

Gordan coefficient in Eq. (17) and its analogues, it follows that Lz = Jz - Sz 

must also be additively conserved between the initial and final state (including 

the pion or photon operator). 

The general structure of the results is now apparent. A matrix element of 

DT(Qt) between hadron states will be equal to the sum of four (two) terms, 

each of which is a product of Clebsch-Gordan coefficients and a reduced matrix 

element which depends on the SU( 6)w multiplet (and Lz values) of the external 

state components and the particular term in V -1 a! D+V (V-lQiV) involved. 

If L is zero, as is the case in essentially all cases of physical interest at 

the present time, then of course L z = 0 and the Lk dependence of the SU( 6)w 

reduced matrix element becomes trivial due to conservation of Lz. In such a 

case (L = 0)) all photon decays from one SU(6)w multiplet to another are related 

to the same four reduced matrix elements (dropping the trivial Lz labels): 

<R’, L’ II (8, l). + (1,8). II R, 0 > , 

<R’, L’ll (3,3)1 11 R, 0 > , 

<R’, L’ll (3,3)-, il R, 0 > , 

and <R’, L’ II (8,1). - (1,8)011 R, 0 > , 

- 15 ‘- 



some of which may be zero or have zero coefficients due to selection rules. 

All pion decays (matrix elements of Q:) similarly depend on two reduced matrix 

eleme;ts 

<RI, L’ Ii (8,1). - (l,S),ll R, 0 > 

<RI, L’ II (3,3)1 - (3,3)_1 If R, 0 > , 

for given SU(6)w multiplets R’, L’ and R, L = 0. 

This algebraic structure of photon matrix elements already leads to 

interesting and powerful selection rules. Consider the {( 8, l). + (1, 8)o, l} 

term in V-‘D:V, which has W spin zero. The W-spin Clebsch-Gordan co- 

efficient in the analogue of Eq. (17) implies, 

which is the same as 

Now, for the Hadron’ and Hadron states we have 

(1% 

(21) 

(22) 

while angular momentum conservation for the total decay demands 

G -&F+j 
Y ’ (23) 

where j 
Y 

is the net angular momentum carried by the photon and determines 

the multipole character of the decay. 
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IL - L’I 5 j < lL+L’l, 
4 Y- (24) 

and in the case L = 0, 

. =L’ 
IY (25) 

Combining Eqs. (20) - (23) results in 

Thus decays through the {(S, l). + (1, 8)o, l} term in V-lDTV to L = 0 baryons 

or mesons always have j 
Y 

= L’ of the decaying hadron. As the parity change is 

t-u L’-L = ($J’ = (-l)jY, this always corresponds to an electric 2 L’ -pole 

transition in the usual multipole notation. 

For the {(3,3)1, 01, {(3,3)_1’+ 2) , and { (8, l). - (1,8)o, 11 terms in 

V-lDTV, all of which have W-spin one, Eq. (20) is modified to 21 

and as a result one finds in place of Eq. (24) that 

IIL-L’I -111 jy~llL+L’l+ll. 

For L = 0 this simplifies to 

IL’ -II 2 jY 5 IL’ + II , 

(26) 

(27) 

(28) 

so that 

jy = L’ - 1 , L’, L’ + 1 (29) 

As the parity change ‘is again ( -l)L’, these correspond to magnetic 2(L’-l)-pole, 

electric 2L’-pole, and magnetic 2(L’+l) -pole transitions, respectively. 

The actual correspondence between reduced matrix elements and a set of 

multipole amplitudes can also be proven using Racah coefficients to rewrite 

Eq. (17) and its analogues, For example, baryon transitions from R, L=O to 
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R’, L’ are describable in terms of multipole amplitudes 
- 
M(jy = L’) = CR’, L’ll(8, l). + (1,8). IIR, L = 0 > . 

and 
M(jy = L’ - 1, L’, L’ + 1) = (lL’lOljyl) CR’, L’ll(3,~)111R, L = 0 > 

(304 

+ (1L’O lljyl) CR’, L’ll(8,1)o - (1,8)011 R, L = 0 > 

+ (1L’ - 1 21jyl) CR’, LflI(3,3)-111R, L=O > 

(30b) 

Note, of course, that one only has jy 2 1. Thus for L’ = 0 - L = 0, only j = 1 
Y 

is allowed. This is just the old result4 that the nucleon to 3-3 resonance transi- 

tion is magnetic dipole in character in the case of baryons. 

For pion decays a parallel analysis 2,3 leads immediately to the rule 

ii~ - ui-li 51 5 IIL+ ~‘i+ll, (31) 

where Q is the angular momentum carried by the pion. For L = 0, this reduces 

to 

IL’ - II 5 Q 5 IL’ + II , (32) 

and parity conservation forces the non-trivial result that 

Q = L’ - 1 or L’ + 1. (33) 

Note that for values of L’ 2 3, not only does the theory forbid values of jy 

or Q larger than L’ + T, but it also non-trivially forbids 22 values -of jy or Q less 

than L’ - 1 which are otherwise kinematically allowed, and even favored by 

angular momentum barrier arguments, The transition of a J P = 3/2- baryon 

resonance in a 70 L’ = 3 multiplet into a nucleon plus a photon with j = 1 is for- 
I-J 

bidden, for example, even though this is the lowest allowed multipole on spin- 

parity grounds. 
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The algebraic structure of the theory of photon transitions presented above 

is closely related to various quark model calculations, both non-relativistic 23 

and relativistic, 24 done in the past. They may be put into one to one corres- 

pondence if the (8, l). + (1,8). term in V -lDTV is identified with the photon 

interacting with the quark convection current, and the (3,!?jl term identified 

with the photon interacting with the quark magnetic moments. The (3, 3)-l and 

(8, l). - (1,8). terms in V -lDtV do not appear in these quark models. 23,24 

Therefore one can make a complete algebraic correspondence with the identifi- 

cation of certain combinations of parameters there with the reduced matrix 

elements discussed here. However, the assumption of a “potential” and the 

resulting wave functions for the bound states in the quark model calculations 

yield definite predictions for the reduced matrix elements themselves as they 

depend on masses and other parameters of the model. This is something we do 

not obtain, since we consider only the algebraic structure, 

A similar correspondence occurs for pion decays. The results of the non- 

relativistic quark model 25 (no recoil) correspond to keeping only the (8, l). - (1, S), 

term in V-lQtV while the relativistic quark model 24 yields amplitudes corres- 

ponding to the presence of both the (8, l). - (1, 8). and (3,3)1 - (3, 3)-l reduced 

matrix elements discussed here. 

Closely related to the quark model results are those following from various 

versions of SU(6)w (of strong interactions) invariance. 12 The results of assum- 

ing SU(6)w conservation for pion transitions are reproduced in the present 

theory by retaining only the {(S, l). - (1, 8)o, 0) term in VWIQtV and using 

PCAC. The assumption of SU(6)w conservation plus vector dominance is 

equivalent to keeping only the {( 3,?) 1, O} term in V-lDTV. 
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As we will soon see, this is totally contradicted by the data. As a result, 

various broken SU( 6) w schemes were developed, 26 Some of these are very 
4 

similar to the present theory in algebraic structure, particularly for decays 

to L = 0 hadrons. 

The relation of such schemes for pion decays, and in particular Q-broken 

sut 6)W’ to the present theory is discussed in detail in Ref. 27. For vector 

meson decays, and via vector dominance for photon decays, one such scheme 28 

corresponds in algebrai? structure to the one presented here if the reduced 

matrix element of the { (3, 3)-1, 21 term in V-lDTV vanishes and those of the 

{ (8, l). + (1, 8)o, l} and ((8, l). - (1, S),, I} terms are equal. 

HI. PHOTON TRANSITIONS OF MESONS 

Now that the basic properties of the theory and the manner of its application 

to actual hadrons have been spelled out, we begin the discussion of detailed pre- 

dictions with radiative meson decays. We limit our listing of amplitudes to 

those corresponding to non-strange mesons; the extension to transitions in- 

volving strange mesons is easily accomplished using SU(3). 

Let us begin with the photon transitions from L’ = 0 to L = 0 mesons, i. e, , 

among the members of the SU(6) 35 and 1, whose non-strange members are 
W- 

the p, w, c$, 7r, 7, and (presumably) x”. As LS, = Lz = 0 for the external states 

follows from L = L’ = 0, only the term with Lz = 0 and transforming as {(3,3)1, O} 

in V-‘DTV can contribute. The selection rule in Eq. (28) immediately gives 

the result that j 
Y 

= 1 only. This is already non-trivial, as j = 2 transitions are 
Y 

possible from p* to p* in general, and the theory then predicts zero electric 

quadrupole moment for the p meson. 
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Since W-spin zero octets and singlets belong to the 35 and L representations - 

of LSW)~, respectively, decays involving meson states which are mixtures of 

W = O&(3) octets and singlets may be used to fix the ratio of the 

~1 L’ = 0 11(3,%?)11135L = 0 > and <35-L’ = 011(3,3)11135 L = 0 > ., In particular, 

for this purpose we use Zweig’s rule 29 to forbid-the decay 4 - y r, where the 

C$ is assumed to be the usual ideal mixture of singlet and octet so as to be com- 

posed of purely strange quarks. All amplitudes are then multiples of a single 

magnetic dipole amplitude, or alternatively, are proportional to the single 

reduced matrix element, 

<35 L’ = 0 II (3,3)11135L = 0 > . - 

One observed transition then fixes all the other decay rates. 30 The results of 

the computation of transition matrix elements are given in Table I where the n 

and X0 are assumed to be SU(3) octet and singlet respectively while the w and 

C#J are ideal mixtures of octet and singlet: 

w = case cd(l) + sineLd8) 

c) =-sinew(i) + coseJ8) (34) 

where 

sine = +m. 

Table II contains the corresponding predictions for all the L’ = 0 - L = 0 

radiative decay widths using I’(w - yn) = 890 KeV as input, 31 The sparse 

experimental data 31,32 are also given. Note that the predictions in the first 

column are for unmixed pseudoscalar mesons. Taking a mixing angle 33 

ep = -10.5', as suggested by a quadratic mass formula, gives the second 

column., The predicted width for $ - yn is reduced to 170 KeV, agreeing with 
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experiment within errors. 34 The corresponding prediction in this case for 

qx”- yp) is 120 KeV. Assuming that X0- yr’lr- is dominated by X0&yp, and 

‘takingthe branching ratio 31 for this mode to be 26%, we find a total X0 width 

of 460 KeV. This is also consistent with the X0 width obtained from the branch- 

ing ratio 31 for X0 - yy‘ plus SU(3)’ and the new value 35 
of rtrl -+y~n’)~ The over- 

all situation for L’ = 0 - L = 0 d ecays is thus quite satisfactory, although many 

pieces of information are absent in comparing theory and experiment, 

When we go to L’ = 1 to L = 0 decays, there is no experimental information 

available, although there are both many amplitudes and many predictions. Of 

the four terms generally present in V-lD:V, only { (3, 3)-l, 2} can not contri- 

bute (since it changes Lz by two units) D The selection rules of Section II show 

that the ((8, l). + (1,8)o, 11 term in V-l Oc D+V leads to purely electric dipole 

(jy = 1) transitions, and only jy = 1 and 2 can arise from the {(3,3)1, O} 

((8, ljo - (1, fQo, 1) terms0 In fact it is possible to express linear combinations 

of their reduced matrix elements as electric dipole and magnetic quadrupole 

amplitudes, multiples of which occur in all decays from L’ = 1 to L = 0 mesons. 

All possible radiative decay amplitudes for non-strange L’ = 1 mesons 36 to 

L = 0 mesons are given in Table III in terms of the reduced matrix elements 

<35 L’ = 111(8,1). + (l,8)ol135L = 0 >, <EL’ = lll(3,3)ll135L = 0 >, - 

and <35 L’ = lll(8,1)o - (1,8)ol135L = 0 > 0 - 

Matrix elements of SU(6)w singlet states are related to those in the 35 by - 

using Zweig’s rule, 29 as was done above for L’ = 0 to L = 0 decays. The q 

and H are assumed to be purely octet members, while the f, D, (r, and w are all 

taken to be ideal mixtures of singlets and octets, so as to be composed of only 

non-strange quarks. Note that in the decay 2+ - y l-, e, g0 , A2 -YPs an 
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electric octupole amplitude could be present in principle, as well as electric 

dipole and magnetic quadrupole amplitudes, However, the selection rule 

‘limitgg jy to 1 or 2 eliminates the octupole amplitude and results in the linear 

relation 

A~&2 - YP) = 2 h AA,ltA2 -YYP) - h AA,otA2 - YP), (35) 

among the three helicity amplitudes for 2+ - y l-. Almost any experimental 

information on these decays would be helpful in sorting out the relative impor- 

tance of the various (3) possible amplitudes,and in testing the theory. 

IV. PHOTON TRANSITIONS BETWEEN BARYONS 

The electromagnetic transitions of baryons provide a second and very rich 

area of predictions for the theory. As before, we restrict our attention primarily 

to non-strange baryons decaying into L = 0 states, this being by far the main 

area for experimental comparison. In this section v?e will enumerate the possible 

decay amplitudes, deferring an experimental comparison to the next section. 

The case of transitions from 56 L’ = 0 to 56 L = 0, i. e. , within the L = 0 - - 

baryon multiplet, is particularly simple. As for mesons, only magnetic dipole 

transitions are allowed by the theory and all amplitudes are proportional to a 

single reduced matrix element, that of the term transforming as { (3, !?)l, 0 1 in 

V-‘DYV. The results are presented in Table IV for the three possible transitions 

N - N, N - A and A - A. It can be explicitly checked that all the transitions are 

magnetic dipole in character, as demanded by the selection rule (Eq. (28)), in- 

cluding those for A - A where both electric quadrupole and magnetic octupole 

transitions are also possible in principle. 
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For decays from the next identified baryon multiplet, the 70 L’ = 1, to the 

ground state 56 L = 0 we have the three possible reduced matrix elements - 

and 

~7’0 L’ = lil(8,1)0 + (1,8)o1156L = 0 > - 

<70 L’ = lll(3,3)11156L = 0 > - - 

<70 L’ = 1il(8,1)o - (1,8)ollEL = 0 > o - 

The matrix elements of D”+ for decays into both yN and yA are enumerated 37 in 

Table V in terms of these reduced matrix elements. 

By the selection rules of Section II, the (8, l). + (1,8). term in V -‘D”,V 

acts as an electric dipole transition operator, while the two remaining terms act 

as a combination of electric dipole (j y = 1) and magnetic quadrupole (jy = 2). 

According to the discussion around Eq. (30) in Section II we can in fact write 

amplitudes, 

El’ = < 70 L’ = lIl(8, l). + (1, S),ll56, L = 0 > - 

El = m <?‘f+? = 11(3,3)11156,L = o> 

-J1/2 <E L’ = lll(8, l). - (1,8), 1156, L = 0 ’ 

M2 = m <70-L’ = 111(3,3,11&L=O > 

+ m <EL’= lll(8,1), - (l,8)o(56 L = 0 > , (36) 

which are electric dipole and magnetic quadrupole amplitudes in terms of which 

all the helicity decay amplitudes given in Table V may be alternately expressed. 

Note that N*(JP= 5/2-) - yN, for example, could in general go via jy = 2 or 3, 

but only jy = 2 (magnetic quadrupole) is allowed by the theory. Similarly, 

N*(5/2-) - y A could proceed with j = 1,2,3 or 4 in general, but only j = 1 
Y Y 

and 2 are allowed by the theory. Note also that the Moorhouse quark model 
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selection rule 38 forbidding yp - N*+, where the N* has quark spin S = 3/2, is 

reflected in Table V. 

Fo; 56 L’ = 2 decays to 5 6 L = 0 we have reached a high enough value of L’ - - 

that all four terms in V-lDTV can contribute to the decay amplitudes. In this 

case the (8,l) o + (1, S), term is electric quadrupole ( jy = 2) in character, while 

linear combinations of the other three terms act as jy = 1, 2, and 3 transitions: 

E2’ = <56 L = 2’11(8,1), f (1,8)01156L = 0 > - 

NJ.1 = ,/m < 56 L = 2’ 11(3,$11 56 L = 0 > - 

- dm <56 L = 2’ll(8,1)o - (1,8)o”56 L = 0 > - - 

+ ,/?&EL’ =2 ll(~,3)-111~L=O> 

E2 = ~<56L=2’11(3,%)lll~L=O> - 

- m <g L = 2’1K8, l). - (1, S), 11 56 L = 0 > 

- m ~56 L’ = 211 (3,3)$ 56 L = 0 > - - 

M3 = ,/m <56 L = 2’11(3,3)1ll~L = 0 > - 

+ .~~<56L=2’ll(8,1)o -(l,8)o 1156-L=O> - 

+ Jm<EL’ = 2 11(3,3)-111 EL = 0 >. (37) 

The various amplitudes for resonances in the 56 L’ = 1 to decay into yN - 

are listed37 in Table VI. The yA amplitudes are straightforward to work out, 
39 

but at present add littlei of interest. Again, the selection rules derived in Section 

II have clear and direct consequences: A(7/2+) - yN, for example, which could 

go by jy = 3 or 4 is restricted to be purely magnetic octupole (jy = 3). 

Decays from higher L’ multiplets are easily computable, but little in the way 

of experimental tests is available at present. For the 56 L’ = 0, 70 L’ = 1, and - - 
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56 L* = 2 photon transition amplitudes to 56 L = 0 which we have enumerated, - - 

however, photoproduction data permits many direct experimental comparisons. 

?;o thes we now turn. 

V. EXPERIMENTAL TESTS OF BARYON AMPLITUDES 

The predictions for transitions within the 56 L = 0 multiplet are already - 

testable using the magnetic moments of the neutron and proton, for a direct 

evaluation of D”+ between nucleon states at infinite momentum gives 

<N, h=1/21DTlN, h=-l/2>, (38) 

where pA is the anomalous magnetic moment of the nucleon. However, a careful 

calculation of V-lDzV between one nucleon states at infinite momentum gives a 

result’ which has the transformation properties of the four terms discussed in 

Section II minus a term which is exactly the Dirac moment. Adding the Dirac 

to the anomalous moment, we see that the four terms in V-lD”,V discussed before 

should be interpreted as being proportional to the total moment when 

tween the same initial and final state. Thus, the matrix elements in 

are to be interpreted as predicting, 

pTtn)/ pTtP) = - 2/s , 

taken be- 

Table IV 

(39) 

the SU(6) result, 4o which is within 5% of the experimental value of -1.91/2.73 

= -0.70. 

For the transition from A to N the ratio of $3 between the h = 3/2 and 

h = I/2 matrix elements corresponds to a pure magnetic dipole transition, as 

we already know must occur from the discussion in the last section. All photo- 

production analyses 41 agree that the electric quadrupole amplitude is at most a 

few percent of the magnetic dipole amplitude for excitation of the 3-3 resonance. 
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The strength of this transition, p*, is conventionally defined so that 

4 P * = &-<A, h=l/2IDylN, h=-l/2> l (40) 

The results in Table IV then translate to 

kt*hTtP) = + (2/3)fi l (41) 

An older phenomenological analysis 42 of the data for pion photoproduction gave 

a result for ,~*/p,(p) which is 1.28 f 0.03 times the right hand side of Eq. (41) 

by finding the residue at the A pole in y N - nN. By considering the contribu- 

tion43 of the A to the Cabibbo-Radicati sum rule we find a value of p*/,~,(p) 

which is 0.9 f 0.1 times the right hand side of Eq. (41)) and in quite satisfactory 

agreement with the theory. While the sign of p*/p,(p) can not be measured, the 

product of the y N and x N couplings of the nucleon can be compared with that of 

the 3-3 resonance in pion photoproduction. As the theory 2,3 also predicts the 

relative sign of the XN couplings, it makes an unambiguous prediction of the sign 

of the resonance excitation amplitude relative to the nucleon Born terms. This 

sign is correctly given by the theory. 44 

For the transition from A to A, which is also purely magnetic in character, 

we should again interpret the results in Table IV as being for the total moment. 

The relation between matrix elements of D+ and the conventional anomalous 

magnetic moment of the A, ~2, is 

c1T;“<= -m<A,h=3/21D;lA,A=1/2>. (42) 
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From this we see that we have from Table IV, 

4 pF(A++)/pT(P) = 2 

/-‘+*,*(A+)/r*T(P) = 1 

p?jjYA’)/pT(P) = 0 

pF(A)/pT(P) = -1 . (43) 

As with Eqs. (39) and (41), all these are standard W(6) results, 40 as is to be 

expected since the { (3,%),, 0) term in V-lDTV has the same transformation 

properties as the magnetic moment operator used in SU(6). 

The transitions from the 70 L’ = 1 to the ground state 56 L = 0 provide a much - - 

richer set of amplitudes for comparison of theory and experiment. Rather than 

carry out a statistical “best fit” to all the data, in Table VII we have fixed the 

possible reduced matrix elements allowed by the theory in terms of a some 

relatively well determined amplitudes for the process y N - D13( 1520) - TN. 

The quantities in the table are the matrix elements of D: + (l/2/-3) Dt taken 

between identified resonant states 18 in the 70 with Jz = h and nucleon states with - 

Jz = h - 1. The signs are those found in the specific processes yp - N*+ - 7r’n 

and yn - N*’ - n-p. To make a theoretical prediction of these signs we need 

a theory of both the yNN* and nNN* vertices. The yNN* couplings are taken 

from Table V while for 70 L’ = 1 - - 56 L = 0 pion transitions we may express the - 

reduced matrix elements of the two terms in V-lQ:V as linear combinations of 

amplitudes S and D, corresponding to I = 0 and 2:45 

<z, L’ = l/1(8, Do - (1,8)01@, L = 0 > = f (S + 2D) 

<E, L’ = 1 l/(3,3), - (3,3)-I1156, L = 0 > = $ (S - D) a 
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Then S = +D if only the (8,l) o - (1, S), term in V-‘Q:V is present, while S = -2D 

if only (3,?jl - (3, 3)-1 is present. While an earlier phase shift solution 46 to the 

T-N - & data disagreed with the signs predicted for pion transitions, a new solu- 

tion agrees c omple tely 47 and shows that the signs of S and D are opposite, i. e., 

it appears the (3,x)1 - (3,3)_1 reduced matrix element is dominant for 

70 L* = 1 - 56 L = 0 pion decays. - - In constructing Table VII we have taken the 

nNN* couplings from Table V of Ref. 3 and have assumed that the signs of S and 

D are opposite in calculating the nNN* vertex sign. Mixing between the two Sll 

or two D l3 states in the 70 has been neglected in calculating the predicted 

amplitudes. 

The “data” is taken from a very recent analysis 48 of electromagnetic couplings 

of N* resonances from single pion photoproduction data. In terms of amplitudes 

Ah for y N - N* of that analysis, 48 matrix elements of Df + (ln) Dt are related 

by 

l/2 

<N*,hlD;+(lfi)DfIN, h-l> = MN 
27r 01 MN*Py AA ’ (45) 

where p 
Y 

is the photon momentum in the N* rest frame, and h can take the values 

l/2 and 3/2. The results of Ref. 48 generally agree well with those of another 

recent49 analysis, although the **errors’* on the amplitudes quoted in the latter 

are much larger. Judging from the differences between successive or independent 

analyses, we would opt for larger “errors ” than those of Ref. 48, which are 

reproduced in Table VII. 

As a first comparison, we set the reduced matrix element < 70 L’ = 111 (8, l). - 

-( 1,8),11~ L = 0 > equal to zero, so that we are left with only the two terms in 

V-lD:V which are present in quark model calculations. 23,24 The well-deter - 

mined amplitude for yp - D+ 13(1520) with h = 3/2 then determines 
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< 70 L’ = 1 II (8, l). + (1, 8). 1156 L = 0 > directly and fixes an overall free sign, - 

The A = l/2 transition to the same resonance then fixes < 70 L * = ill (3,3)1 1156 L=O >. - 

In fact;” the smallness of the h = l/2 amplitude means that 

< 70 L’ = - 111(8,1). +(l,8)o11z L= 0 > 

= 2 <70 L’ = 11[(3,3)11156L= 0 > o - (46) 

The signs of the resulting amplitudes are exactly those discussed by us 

previously. ’ All the well determined ones agree in sign with experiment (nine - 

in addition to the input). However, the magnitudes of a number of the predicted 

amplitudes are not in such great agreement with experiment. The A = 3/2 ampli- 

tude for yn - Dy3(1520) is too large. Mixing, at least with the small mixing 

angles otherwise suggested, 50 will not cure this, although it could well help 

improve the situation with regard to the poorly-known D13(1700) amplitudes. 

For the two Sll states, a fairly large mixing angle is known to be necessary 

from other considerations, 50 and would give S11(1700) amplitudes which agree 

with experiment in sign. The predicted S11(1535) amplitudes would still be much 

too large, however. The amplitudes predicted for the SQ1 and D33 also are all 

too large, and no mixing (within the 70) is possible in these cases. A fit to all 

the data would of course scale down the reduced matrix elements, making the 

agreement better for the magnitudes of the SQ1, D33, and Sll amplitudes, at some 

cost to those of the D13( 1520). 

A second comparison of the theory with experiment is also found in Table VII 

where all three possible reduced matrix elements are allowed to be non-zero, 

and fixed by the transitions yp - D+ 13( 1520) with A = l/2 and 3/2, and yn - Dy3( 1520) 

with A = 3/2. Again, all the well determined signs agree with experiment, although 

the predicted (and poorly determined experimentally) signs for the D13(1700) and 

%( 1700) are opposite to those discussed above. 
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There is still trouble in this case with the magnitudes of various amplitudes. 

The h = l/2, yn- DT3 amplitude is too small, as is the amplitude for yp- Sil( 1535). 

Mixing &ly hurts here, as the yp transition to the other Sll is forbidden, resulting 

in an even smaller prediction for y p - S;l(1535) and too small a result as well for 
f 

YP - Sll( 1700). Although the D33 amplitude predictions now agree well with 

experiment, that for the S 31 is still much too large. 

It is interesting to note that for this second fit we have 

<70L’=111(8,1)o+(1,8)ol156L=O> - 

= ~70 L’ = 111(8,1). - (1,8)ol156L= 0 > , - 

<70 L’ = 111(3,3)ll156L = 0 > -0 . - (47) 

Equality of the first two reduced matrix elements is exactly what is forced by 

vector dominance plus the scheme of Petersen and Rosner 28 for vector meson 

decays. The reason why < 70 L = ill (3,3)11156 L = 0 > should be so small, - 

which in the fit is forced by the smallness of the amplitude for yp - Di,(l520) 

with h = l/2, is possibly an interesting theoretical problem. 

At the present time, given the uncertainties we feel exist in the electro- * 

magnetic couplings of the N*‘s, either set of predictions should be regarded as 

in fair agreement with experiment as far as magnitudes are concerned. The 

signs in either case are a triumph of the theory for both photon and pion transi- 

tions and verify that the S and D amplitudes have opposite sign. 

For transitions from the 56 L’ = 2 to the ground state 56 L = 0 we also have - - 

in principle a large set of amplitudes for comparison with experiment. In practice 

the amplitudes are less well known, as seen in Table VIII. The quantities in the 

Table, as in the previous one, are matrix elements of Df + (l/ 6) Df with signs 

appropriate to y p - N*+ 
+ 

--snand yn-N* 0 - n-p. For the nNN* vertex we 
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express the two reduced matrix elements for 56 L’ = 2 - 56 L = 0 pion decays - - 

as45 

~56 L’ = 2 ll(8,1)o - (1,8)01156L = 0 > = - 5 (2P + 3F) 

< 56 L’ = 211(3,$ - (3, 3)-11156 L = 0 > = - 9 (P -F) , (48) 

where the amplitudes P and F correspond to I = 1 and 3 pion orbital angular 

momenta, respectively. The relative signs of P and F are the same (opposite) 

if the (8, l). - (1, S), ((3,z)i - (3, 3)-1) matrix term dominates. The reaction46’ 47 

nN - nA indicates that P and F have the same sign, and we use this together with 

Table VI of Ref. 3 in constructing Table VIII. The **data” is again from Ref. 48. 

To compare theory and experiment, we simplify the situation for the photon 

vertex by setting both the ~56 L’ = ZU(8, l). - (l,8)ol156L = 0 > and - 

< 56 L’ = 2 II (3,3) -1 II 56 L = 0 > reduced matrix elements to zero. This leaves - 

only<E, L’ =211(8,1)o+(1,8)011~L=O> and<EL’ =211(3,~)11156L=O~, 

as would be the case in most quark model calculations. 23,24 Rather than making 

a fit to all the amplitudes, we use the well measured yp - F15 amplitudes to fix 

the two reduced matrix elements, and then calculate the remaining amplitudes. 

All the predicted signs agree with our previous results, 5 and, with the 

possible exception of the F35 amplitude with h = 3/2, the experimentally well- 

determined signs agree with the theory. In a previous analysis, 51 both the F35 

amplitudes also agreed. The signs of the P33(2000) amplitudes, among the p- 

wave TN resonances, provide some (marginal) support for the P and F amplitudes 

at the pion vertex having the same sign, as the TN- KA analysis 41’ 47 shows much 

more definitely. 

- 32 - 



The magnitudes of the predicted amplitudes are in fair agreement with what 

is observed. There is no need to allow ~56 L’ = Zll(8, l). - (l,8)oll~L = 0 > - 

and < 5FL* = 2 II (3,3) II 56 L = 0 > to be non-zero. - -1 - In fact, fitting all four 

reduced matrix elements to yp - F15 with h = l/2 and 3/2, yn - Fy5 with 

A = 3/2, and yp- P+ 33 with A = l/2 results in essentially the same predictions; 

the two additional reduced matrix elements have values more than an order of 

magnitude smaller than either < 56 L’ = 2 II (8, l). + (1, S), II 56 L = 0 > or - 

<56 L’ = 211(3,?i)111~ L = 0 >. - The smallness of the h = 3/2 amplitude for 

yn - Fy5 by itself assures the strong constraint on the two additional reduced 

matrix elements 

46 - & <EL’ = 211(~,3)-l~i~L= 0 > = + 45 <56 L’ = 211(8,1). _ -(1,8)od~L=0 > . 

(49) 

There is thus fairly good evidence in this case that only the two reduced matrix 

elements found in the quark model are present at a significant strength, and, in 

particular, that equality of < 56 L ' - =211(8,1). +(l,8)olf56 L= 0 > and - 

<56 L’ = 211(8, l). - - (1, S), II 56 L = 0 > is ruled out. 

Finally, we examine the transitions from a “radially excited” 56 L’ = 0 back - 

to the ground state 56 L = 0. - The 56 L’ = 0 includes the Roper resonance, - 

PII( 1470), and the P33( 1718). We fit the one possible reduced matrix element, 

~56 L’ = 011(3,~)111~ L = 0 >, to the amplitude for yp - P;I(1474), and predict - 

the other amplitudes in Table M using the 56 L’ = 0 - 56 L = 0 matrix elements - - 

from Table IV. Again the signs are those in yp -n+n and yn - n-p. The experi- 

mental results of both the Berkeley 48 and Lancaster49 analyses are shown, there 

being some discrepancy between the two. It appears, at least from the latter 
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analysis, that both the signs and magnitudes of the experimental and theoretical 

amplitudes are in agreement. Note that this is a case where the explicit quark 

modelJesults of Feynman et al. 24 
-- fail by predicting the wrong sign 48’ 51 for the 

. . P11(1470) excitation. 

V, SUMMARY AND CONCLUSION 

The operator V, which by definition takes us from a current to constituent 

quark basis, contains in principle all the information about matrix elements of 

the weak and electromagnetic currents when taken between hadron states, assum- 

ing that the hadrons can be treated as if constructed out of (constituent) quarks. 

Lacking a complete knowledge of V, we have abstracted only certain of its alge- 

braic properties from the free quark model and assumed them to hold in the real 

world. In particular, in this paper we have abstracted properties of the opera- 

tors V-lD:V, which correspond to those which induce real photon transitions 

between hadrons. 

In our case, abstraction from the free quark model leads to V-lDTV being 

assumed to be the sum of four terms which transform as: { (8, l). + (1, 8)o, l), 

{(3,5)1, O}, {(8,1). -(l,8)o, 11, and ((3,3)-I, 2\, allofwhichbelongto35’s 

of the full SU( 6)w of currents. In Section II we have shown how matrix elements 

of Dz + (l/fi)Df are related to real photon amplitudes and how they may be 

related to a sum of (SU(6)w) Clebsch-Gordan coefficients times at most four 

reduced matrix elements for photon transitions from one hadronic SU(6)w multi- 

plet to another. We have also shown that the theory leads to multipole selection 

rules, a particular example of which is the old SU( 6) result4 that the transition 

from the nucleon to 3-3 resonance should be magnetic dipole in character. In 

fact, we may generally express the four reduced matrix elements for transitions 

between two given multiplets in terms of four multipole amplitudes, two electric 

(of the same multipolarity) and two magnetic. These selection rules yield very 
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interesting predictions, which may be subject to a qualitative experimental test 

in that low values of j y(or I for pions) are forbidden for L’ 2 3 - L = 0 transitions, 

even though they are otherwise allowed by spin-parity considerations and favored 

by angular momentum barrier arguments, 

When applied to mesons there are many amplitudes which are related, but 

little to compare with experiment besides the transitions between the vector and 

pseudoscalar mesons, both of which lie in the 35 and 1 with L = 0, The available - 

data is consistent with the theory, but little else can be said at the moment. 

For baryons on the other hand, we have years of experimental effort that has 

been devoted to pion photoproduction in the resonance region, from which baryon 

electromagnetic couplings may be extracted by phase shift analysis. For the 70 - 

L = 1 baryon states, not only do we find agreement of all the experimentally well 

determined signs with the theory, but the photopion matrix elements, which con- 

tain information on both the yNN* and nNN* vertices, indicate .that the S and D 

wave amplitudes at the pion vertex have opposite sign. This is in agreement with 

the results46’ 47 from the reaction nN - nA. For the 56 L = 2 baryon resonances, - 

again all signs agree with the theory, except for possibly one of the yN - Ff35 

amplitudes. There is also an indication from yN - TN that the P and F amplitudes 

at the nNN* vertex have the same sign, in agreement with results 46’ 47 from 

nN --f TA. While the signs are in good shape, the magnitudes, particularly for 

7OL=l- 56 L = 0 transitions, leave something to be desired. Given the un- - - 

certainties in the experimental analyses, however, we feel the present situation 

is fairly satisfactory. 

The general outlook then is extremely good. Between the phase shift analyses 

of zrN --Aand yN - TN, more than 25 signs predicted by the theory agree with 

experiment. For the first time we have some good evidence that not only is the 
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multiplet structure of the quark model found in Nature, but further that the wave 

functions of the states resemble those of the constituent quark model, in that the 

relativ?? signs (and more roughly, magnitudes) of amplitudes are correctly pre- 

dicted. However, neither the results at the nNN* nor yNN* vertices corresponds 

to the hypothesis of SU(6)W conservation, the most direct and powerful evidence 

being the signs and magnitudes of amplitudes for 70 L’ = 1 baryon resonances to - 

decay into nN, nA and yN. The predictions resulting from the quark model, 23,24 

where the reduced matrix elements are explicitly calculable, are wrong in places 

also - in particular in the signs of pion transition amplitudes for 56 L’ = 2 to - 

56 L = 0 baryons and in the signs of photoproduction amplitudes for yN - P,,(1470) - 

- EN. 

With the success of the theory, it may now be used as a tool to help in 

classifying new resonances into multiplets by using information on their signs 

in nN - 7rAand yN-TN. What is still needed is a dynamics, .or possibly an 

even higher symmetry, which will correctly give the magnitude and sign of the 

reduced matrix elements 0 This, and the extension to q2 # 0, remain as important 

problems for the future. 
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TABLE I 

- Matrix elements for photon transitions among 35 and I; L = 0 states. 

The w and $ are assumed to be ideally mixed, while the 77 and X0 are 

taken as the SU(3) octet and singlet pseudo&alar mesons (see text). 

Transition 

w -yn 

P -w 

4) - Y* 

P “Yrl 

w -+YT 

cp “Y77 

XO-+YyP 

x0- yw 

+ -rx” 

Coefficie$ of 
<35 L’ = ol~(3,3)ll135L = 0 > - 

476 

4-5’18 

0 

l/6 

l/18 

- mg 

~6’6 

0718 

l/9 
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TABLE II 

PTedicted and experimental widths for radiative transitions among 

35 and 1 L = 0 mesons. - 

Decay 
Predicted Width (KeV) Predicted Width (KeV) Experimental 

(no mixing) (e, = -10.50) Width (KeV)31’ 32 

w - yn 

P - YX 

sb - YT 

P - Y77 

w - Y77 

#I - Y77 

x0- YP 160 120 

x0 - yw 15 11 

$J - yx” 0.5 006 

890 (input) 890 (input) 890 rf: 90 

94 94 -c 730 

0 0 < 14 

37 57 < 160 

5 7 < 49 

230 170 126 k 46 

0.26 I’(X’- all) 
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TABLE III 

Photon transition amplitudes from non-strange mesons 36 with L’ = 1 and 
4 

J, = A to those with L = 0 and Jz = h - 1, The w, f , D, and (r are assumed to 

be ideal mixtures of singlets and octets, so as to be composed purely of non- 

strange quarks; the 71 aud H are purely octet, and the X0 a pure singlet. 

Zweig’ s rule 2g is used to relate SU(6) w 35 and & reduced matrix elements (see 

text), and forbids decays like A2, Al, 6, f, D, cr - yc$ and f’ -yp or ywO 

a b C d 

-I- 
A2- YT, + A=1 

+ 
Al- YT, + A=1 

B - yn, h=l 

B - yq, A=1 

B - yx”, A=1 

H - yn, A=1 

H - yq, A=1 

H - yx”, A= 1 

A2 - YPY A=0 

h=l 

h=2 

Al-+ yp, A=0 

A=1 

6 - yp, A=0 

B - yp, A=0 

A=1 

0 

0 

~b-,‘24 

4%3 

l/4 

fib3 

6h4 

o/12 

l/24 

t6’24 

m24 

fih4 

6-b 

m24 

0 

0 

xi-28 

- d-38 

0 

0 

0 

0 

0 

0 

-l/12 

-s/24 

0 

0 

G/24 

d%‘24 

-G/24 

0 

0 

0 

0 

0 

0 

0 

-,&-/36 

0 

43’18 

- ,/?$I36 

0 

-l/18 

0 

~‘796 
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TABLE III (cont’d) 

AA [A2 - Y ~1 = 3AAM2- yp] 

Ah Ef -*YPI = =JA2 -ypJ 

AA If --ml = AAM - yp] 

AA Cf’ --$I = -2A-JA2 - YPI 

AA [A1 --) ywl = 3A-JA1 - ypl 

AA ID - YP] = 3Ah[Al - yp] 

AA [D -YYWI = AAlA, - YPI 

AA [a - rol = 3Ah[6 - yp] 

AA Ea -YPI = 3AA16 - yp] 

AA [w --YwI = A-J6 - yp] 

(a)- Transition 

03 - Coefficient of ~35 L’ = 1 h(8,1)o + (1,8)oU35L = 0 > - 

(c). Coefficient of <35 L’ = 111(3,3)111~ L = 0 > - 

(d). Coefficient of ~35 L’ = 111(8,1). - (1,8)01135L = 0 > - 
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TABLE IV 

P2oton amplitudes for transitions from 56 L’ = 0 states with J = h 
Z 

to 56 L = 0 states with J = h-l. - 
Z 

Transition 
_ Coefficient of 

<56 L’ = 0 11(3,3),uz L = 0 > - 

N+( l/2+) - y N+, A = l/2 t-2/15) d-5 

N”(1/2+) -ye, A = l/2 (4/45) 6 

A+(3/2+) - yN+, A = l/2 (-2/45) fi 

h = 3/2 (-2/45) fi 

A,[A+- yN+l = AkAoc yN”l 

A++(3,‘2+)- y A++, h = --l/2 (-4/45) fi 

h = l/2 (-8/45) a/-ii- 

A = 3/2 (-4/45) $15 

Ah&-+ yA+l = (l/2) A,[a++- yA*l 

Ahi A0 - yA”l= 0 

Ah CA- - yA-1 = - (l/2) A,I$+- yA++I 
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TABLE V 

Photon amplitudes for transitions from 70 L’ = 1 states with - 
- 

Jz = A to nucleon and delta states in the 56 L = 0, States are 

labelled by Jp and [ SU(3) multiplet] 2s’l where s is the 

quark spin. 

a b C d 

N*(3/2-) - y N+, 

iSI2 

--YN’, 

--YA++, 

N*( l/2-) - y N+, 

PJ2 -YN’, 

-+~a+, 

A*(1/2-) - y N+, 

[lOI2 -rA+, 

A = l/2 

h = 3/2 

A = l/2 

h = 312 

h = -l/2 

h = l/2 

h = 3/2 

h = l/2 

A = l/2 

h = -l/2 

h = l/2 

A = l/2 -l/6 

h = -l/2 0 

h = l/2 0 

-Y/?/12 

-ml2 

ml2 

d-$12 

-l/6 

l/6 

0 

0 

d-545 fi/12 

0 - 4-Ql2 

-4-5’18 - n//36 

0 d-%‘= 

439 0 

1/g -l/9 

0 - J-99 

-l/6 +1/6 

+1/18 -l/18 

xi-%‘18 0 

-ml8 - J-99 

+1/18 -l/18 

- ml8 0 

G/18 4-D 
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Table V(cont'd) 

a b C d 

A*(3;-) -rN+, 

[lOI - 

-rA+, 

N*(5/2-) -yN+, 

PI4 

--YN', 

-rA+, 

N*(3/2-) - yN+, 

Ml4 

-yN" 

-yA+ 

h = l/2 -m12 

h = 3/2 -J-$12 

h =. -l/2 0 

h = l/2 0 

A = 3/2 0 

h = l/2 

h = 3/2 

h = l/2 

h = 3/2 

h = -l/2 

h = l/2 

h = 3/2 

h=5/2 

0 

0 

0 

0 

-m/60 

-m/20 

-ml0 

-m6 

A = l/2 

h = 3/2 

h = l/2 

h = 3/2 

h = -l/2 

h: = l/2 

h = 3/2 

0 

0 

0 

0 

-Jsi/30 

-fi/l5 

-m/30 

-ml8 

0 

-4-m 

-l/9 

0 

0 

0 

m30 

m/30 

m/30 

JiQ15 

G/15. 

0 

0 

0 

-yrq90 

-m-./30 

k&/90 

-m/45 

-J-%/30 

-G/36 

6’36 

0 

1/g 

J-m 

0 

0 

h--/30 

J-z/30 

m/60 

m/60 

-G/30 

-436 

0 

0 

20/45 

i-J=%/45 

JG-,,30 

%I-$45 

- v5/90 
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Table V (cont’d) 

a b C d 4 

N*(1/2-) - y N+, h = l/2 0 0 0 

i8 I4 -+yN’, A =, l/2 0 - -l/l8 +1/18 

-rA+, A = -l/2 -J-m2 4918 J-Q12 

A = l/2 -4-Y/12 - J-39 d-$36 

AA( A*+- y N+) = Ah{ A*’ - y No) 

A-J N*+ - y A+) = Ah(N*’ - r.4’) 

Ah( A*++-+ y a’“) = 2 A,(A*+- y A+) 

Ah( A*‘- yA”) = 0 

A&A*; y A-) = -A,(A*++ y A+) 

(a) Transition 

03 Coefficient of ~70 L’ = lh(8,1),+ (1,8)01156L= 0 > - 

(c) Coefficient of ~70 L' = llf(3,3)11156 L = 0 > - 

(4 Coefficient of ~70 L’= 111(8,1). - (l,8)o1156L = 0 > - 
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TABLE VI 

Photon amplitudes for transitions from 56 L’ = 2 states with Jz = h to - 

nu%eon states in the 56 L = 0 with Jz = h - 1. States in the 56 L’ = 2 - - 

are labelled by Jp and [ SU(3) multiplet] 2 s+1 where S is the quark spin. 

a b C d e 

N*(5/2+) - y N+, 

b3 I2 

-rNO, 

N*(3/2+) - y N+, 

Ml2 

-rN”, 

h = l/2 

h = 312 

A = l/2 

h = 3/2 

h = l/2 

h = 3/2 

h = l/2 

A = 3/2 

A *( 7/2+) - y N+, h = l/2 0 

[lOI A = 3/2 0 

A*(5,‘2+) - y N+, h = l/2 

i10 I4 h = 3/2 

A*(3/2+) - y N+, h = l/2 0 

El0 I4 h = 3/2 0 

0 4 
-45 

0 4 
15- 

4J3 0 -45 

0 8 
-45 

4fi 2fi2 -- -- 
105 315 

4m5 260 
-315 

-- 
315 

2fi2 4J? -- 
315 105 

4~1 8a -- 
105 315 

a 46 -- 
45 45 

20 4 -- 
45 -45 

2 
-15 

$fi 

4 
45 

4n -- 
45 

43 -- 

: 
15 

2d-E 
45 

24 2 
45 

8a -- 
315 

Sfi -- 
315 

2,a 
-63 

4fi 
-315 

0 

4fi 
45 
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I 

Table VI (cont’d) 

- a b C d e 

A*(l/2+) - Y N+, h = l/2 0 

110 I4 

Ah[ A*+- y N+l = A$ A;‘- y No1 

d-5 46 20 -- -- - 
45 45 45 

a - Transition 

b -Coefficient of <56L’ =211(8,1)o+(1,8)oll~L=O~ - 

C - Coefficient of <56 L’ = 2 1(3,!?)11156 L = 0 > - 

d - Coefficient of ~56 L’ = 2Il(~,3)-lII~L = 0 > - 

e - Coefficient of ~56 L’ = 211(8, l). - (l,8)01156L = 0 > - 

, 
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TABLE VIII 

Comparison of matrix elements of Df + (l/fi) Dt for 56 L’ = 2 - 56 L = 0 

photon transitions with experiment. 48 Nucleon resonances are identified as in 

Ref. 18 with the quark model states, which are labelled by their quantum numbers 

J? andkSU(3) multiplet]2S+1, where S is the quark spin. The signs of amplitudes 

are those in yp- r+n and yn - n-p, with the P and F amplitudes at the QTNN* 

vertex taken to have the same sign (see text) 0 

Transition 

<N*,hlD+]N, A-l > 
<N*, AID+IN, X-l> 

Experiment48 
Predicted with 

<56]](;5,3)-l@> and - 
(l&V) <5611(8, l). - - (l,8)ol156> = 0 

Fl5(1688) -Y P, 

5/2+, ~81~ 

-2% 

Pl3(1770) -Y P, 

3/2+, [812 

-93 

F37t1920) -Y P, 

7/2+, [ 10 I4 

F35(1860) -Y P, 

5/2+, [ lOI 

p33woo) -Y P? 

3/Z+, [lOI 

A = l/2 -007 -+ .06 

A = 3/2 +.44 f 003 

A = l/2 -.ll f .02 

h = 312 Of .08 

h = l/2 

h = 3/2 

h = l/2 

h = 3/2 

A = l/2 

h = 3/2 

A = l/2 

h = 3/2 

A = l/2 

h = 3/2 

-, 02 * 0 14 

-. 03 f .13 

-. 06 zt .06 

+. 03 f . 11 

-. 27 f .05 

-.30 i .04 

+.17 f .06 

-.09 f .08 

-.12-+ .07 

+.05 f .03 +.18 

-0 07 (input) 

f. 44 (input) 

-. 26 

0 

-;70 

+. 22 

-. 21 

0 

-. 17 

-0 22 

-. 07 

-. 30 

-. 11 

~31(1860) - Y Ps 

l/2+, [ 10 I4 

A = l/2 +.04-1 .05 -0 11 
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TABLE IX 

Comparison with experiment of matrix elements of Dz + (l/J3) Dt for 

photon transitions from resonances in a radially excited 56 L’ = 0 multiplet to - 

the nucleon in 56 L = 0. -I- 
- Amplitude signs are those in y p - ‘IT n and yn - n-p. 

Transition 
Predicted 
Matrix 

Element 

Experimental Matrix Element 

Ref. 48 Ref. 49 

Pll(1470) - YP, h = l/2 -0.37 (input) -0,37 * 0.04 -0.55 Et 0.13 

- yn, h = l/2 -0.25 0 -I 0.07 -0.51 -I 0.32 

P33(1713) - YP, A = l/2 +o. 18 +0.01 f 0.07. +0.07 rt 0.25 

A = 3/2 +o. 31 -0.15 A 0.10 +0.33 zt 0.29 
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