
SLAC -PUB-138 1 
(T/E) 
January 19 74 

ENERGY CONSERVATION AND FRAGMENTATION 

IN THE EIKONAL MODEL* 

Shau-Jin Changt 

Department of Physics 
University of Illinois, Urbana, Illinois 61801 

and 

Tung-Mow Yant-/- 

Stanford Linear Accelerator Center 
Stanford University, Stanford, Calif. 94305 

ABSTRACT 

A thermodynamic approach is proposed to enforce the energy 

conservation in the eikonal model. A generalized eikonal repre- 

sentation is given for. the elastic and inelastic amplitudes when 

fragmentation takes place. Experimental consequences are 

discussed. 
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Recent ISR and NAL data [ l] indicate that the proton-proton total cross 

section r,ises significantly with energy and suggest that the average multiplicity 

may in&ease with energy faster than logarithmic. These two features emerge 

rather naturally from an eikonal model provided the eikonal function is associated 

with a connected piece with Regge intercept o!(O) greater than unity. [ 21 Assum- 

ing the possibility that the eikonal model may become a useful alternative to 

organize the data, we reexamine and explore further certain aspects in an eikonal 

model with rising total cross sections. This work is partly motivated by our 

earlier calculation [ 3,4] in which it was noted that when the coupling is suffi- 

ciently strong energy conservation is not automatically satisfied in the eikonal 

approximation. 

In this paper a thermodynamic approach is proposed to enforce the energy 

-conservation constraints. We also extend the eikonal model to include the frag- 

mentation effects. A generalized eikonal representation is give-n for the elastic 

and inelastic amplitudes, This improved discussion of energy conservation not 

only confirms essentially all the results obtained previously by a more crude 

method, [ 3,4] it also offers further insight and more detailed information. 

Our calculations are based on studies of a certain class of Feynman graphs 

in specified kinematic regions in a +3 theory. To be definite, we will restrict 

ourselves to the graphs depicted in Fig. 1 and 2 for the elastic and inelastic 

amplitudes, respectively. The exchanged connected piece will be limited to the 

t-channel ladder. We will always consider the collision in the center of mass 

system. The lines labeled al, 0 0 0, an (bl, 0 O., bm) are the fragments of particle 

a (particle b) which share the large momentum pa (pb). The exchanged objects 

denoted by blobs in Fig. 1 contain only particles in the pionization region. A 
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fragment has a longitudinal momentum in the range 

77 b,l = 77 b,$ 2 p3 2 IPal = bbl (0 <q << 1) 

Part&s with momenta outside this region are pionization particles. 

(1) 

The main results are: 

(a) The inclusion of the fragmentation does not modify the characteristics 

of the inclusive one-particle distribution in the central region. It is given by 
2a! -2 

do(‘)(k) = const. f(c ) I + (pq’” @&+3 

1 x- 
7 (O)E 

whereol=a(t=O), E= $s and 

pT(O) = const. 

(2) 

(3) 

and f($) is the standard inclusive one-particle distribution in the q3 multi- 

peripheral model. The overall normalization in (2) depends on the details of 

the fragmentation effects. But apart from the factor -$ (1 - e- ‘e) which re- 

duces to 1 when ~6 << 1, Eq. (2) has the same structure as Eq. (4) in Ref. 3. 

Equation (2) explicitly displays how the inclusive cross section approaches zero 

as e reaches beyond its kinematic limit E > - - T(0) a Thus the inclusive one- 

particle distribution (2) is flat over a region in rapidity of width 

D=2Jp2m=m-- 5 
P’-f- (0) 2a+3 yO (4) 

where Y. = 2Qn f is the total rapidity available. The height of the central region 

grows with Y. (or E), 

2o! -2 2o! -2 

H m 
( 
y. ,w y0)2a+3 = (2 z b E)2a+3 

P P (5) 
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In our model the central region does not cover the whole range of available 

rapidity Y. (D < Yo) O -1) qcY There is a rapidity gap 2a+3 Y. between the pionization 

and fr;mentation regions. This gap has not been observed experimentally, but 

it may be very difficult to detect in practice if 01 is only slightly greater than 

unity. The existence of this rapidity gap is required by energy conservation, 

since according to (2) the average multiplicity grows as a power of energy 

2cY -2 - 
0 E 2ar+3 

<n> cc 
P (6) 

within logarithmic corrections, This result also agrees with what we obtained 

in Ref. 3 and 4. 

(b) The one-particle inclusive cross section in the fragmentation region 

UUT e d3r/d3k satisfies the Feynman scaling [ 5] or Benecke, Chou, Yang 

and Yen’s limiting distribution [ 61 O 

(c) The ratio of elastic to total cross section lies between one-half and 

zero. In the previous models without fragmentation, [ 3,4,7] the total cross 

section (rV saturates the Froissart bound and is twice the elastic cross section 

gE. When fragmentation or diffraction channels 

is [8] 

1 
aE + oD = ?? crT 

are included the general result 

(7) 

where u D is the partial cross section in which all the additional particles pro- 

duced are in the fragmentation region. In principle, gD/flT need-not vanish. 

This is welcome since the ratio gE /aT stays practically unchanged in the ISR 

data and is significantly less than l/2. 

The investigation leading to the above conclusions will now be briefly de- 

scribed. The details will be published elsewhere. 
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To study the constraint of energy conservation in the eikonal approximation, 

we first neglect completely the fragmentation events. Our model then reduces 

to the godel proposed in Ref. 3 and 4. We shall refer the reader to these ref- 

erences for detail. In particular, the inelastic cross section due to the opening 

of N-ladders can be written as (see Eq. (3.11)) Ref. 4) 0 

daN = d2b e-24s,b) ; 
i=l 

& &s,b; {k(i)\ ) 2 

3 

x II d 
all j (2?932 E 

j 
(8) 

where @s, b; {k(i)\ ) is the Fourier transform of the multiperipheral amplitude 

and A( s, b) is the appropriate eikonal function. All the momenta kfi) belong to 

particles in the pionization region, 

We propose to make the energy conservation constraint explicit by rewriting 

1 
aN = N! . 

where (E = <s) 

nNts,W = 
d3ki N 

n 
i (27Q32 Ei i=l 

I$- G(s,b;{k(‘)})12 

and 

Ws,b) = z ’ II (s,b) , NE0 N’. N II0 = 1 

(9) 

(10) 

(11) 

The step function in (10) destroys the factorizability of the individual ladder 

amplitudes. However, the factorizability is regained by making a Laplace 
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transform: 

4\ 

/ 

Co 

??,(T,b) = 
0 

dE ebTE If,(s,b) 

and 

1 2$r,b) E(T,b) = 7 e 

The function 2x is given by, in q3 ladders, 

2&-,b) = 1 
S2 

t 12) 

(13) 

(14) 

where p and c are independent of T and b. From (9) - (11) we can calculate the 

inclusive particle distributions, multiplicity and its higher moments, etc. The 

one-particle inclusive distribution will be worked out to illustrate the technique 

of Laplace transform and to exhibit its thermodynamic interpretation, The 

inclusive single particle distribution is given by 

da(‘)(k) = d2b 
I? [ii(r,b) gl(T,b,k&e d3k 

L-l @r,b) E 1. 1 E 
where 

+,b,k) = 2&r,b) f(k?) (16) 

(15) 

The symbol L-l signifies the inversion of the Laplace transform. The subscripts 

denote the arguments of the inverse Laplace transforms. The ratio of the inverse 

Laplace transforms can be easily determined noting that at high energies, method 
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of steepest descent is applicable to integrals such as (15) D Thus 

I d&‘)(k) = 
/ 

d2b 
3 

‘lE -E’b) ii T(E,b), b, k y 
JW,b) 

with T (E, b) determined by the standard relation 

(17) 

E = - $2&,b) = -$ni1(r,b) (18) 

and 

II(E - e,b) = e-r(E,b) E 
WE,@ (1% 

Equation (18) is recognized to be the familiar connection between the energy E 

and the partition function e( T , b). Equation (19) is the well-known Boltzmann 

factor found in statistical mechanics. The Laplace transform variable T appears 

as the inverse temperature and II the partition function. Many physical questions 

can be answered from thermodynamics considerations. Equation (2) follows from 

(17)419). c 91 
Now, we study the effect of the fragmentations. To simplify the discussion, 

we assume that only particle 5 fragments into particles 1 and 2. The elastic 

amplitude Tg) (2) and the diffractive amplitude TB due to these fragments are 

T(2)(p’ ) = 2 is 
E a 

d2b d2b e-i(’ 
1 2 

II X e 
-A( x 9 s ,bl,b2) 1 -1 (20) 

and 

Tt2) D (p;,pb) = 2 i s 
/ 

d2bld2b2 e 
-i( pI - xra) 0 Cl - i(g2 - (1-x)Fa) a K2 

x W,b12) II e 
-4x, %bl, b2) 1 -1 (21) 
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respectively, where x is the fractional longitudinal momentum of pl (p, = xpa), 

r- xgl + (1 - x)r2, r12 - FI - c2, $~(x,rI,) +Ko( 7 I - x + x pb12) is the 

infinite%omentum frame wave function obtained by the Fourier transform of 

the energy denominator, (r12 = (1 - x) FI - xr2), 

i(P,,) = g x( l-x)g 

2 Ea[E,(p,) + E2(b2) - Eal = pi”z + p2(I - x + x2) 
(22) 

and A(x , s ; bl, b2) is the appropriate (3-body) eikonal function. Equations (20) 

and (21) can be generalized when more complicated fragments are introduced. 

The inelastic amplitudes can be computed in a similar way. 

From amplitudes (20) and (21) we can compute various cross sections, 

gy) = /d2bld2b2/4n;;-x) ,+9(x, b12)‘l 2 (I - e-2A(b1’ b2)) 

and 

$) = /d2bId2b2/4$ISx) k/(x, b12)[ 2(1 - e-A(b1yb2))2 

(2) 
cD 

+ $2) = - 
I iImTE a-a t2) (p7 ; = 0) 

(23) 

(24) 

(25) 

In the strong coupling case, the range of bl and b2 in A(b,, b2) increases like 

!ks while the range of b12(= bl - b2), controlled by $(b12) is finite. Thus, in 

this limit, we have bI= b2: b, A(bI, b2) z A(b, b), and 

o1 
(2) = ($2) = + ,*(T2) 

D (26) 

When all possible diffractive channels are considered, we get the result (7). As 

mentioned earlier, the inclusion of fragmentation events alters only the overall 

normalization of Eq. (2), but not its structure. 
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Feynman’s scaling of the one-particle inclusive distribution l/gT E: d cr(‘)/d3k 

in the fragmentation region follows from Eq. (21) and its generalizations to other 

diffracgve channels combined with the approximation of using the single impact 

parameter representations. 
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FIGURE CAPTION 

1. (a) Elastic amplitudes considered in our model. 

(b) -Inelastic amplitudes considered in our model. 
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Fig. 1 
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