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ABSTRACT 

We present new Faddeev-type equations for the three-body problem. 

Although obtained from the rigorous Faddeev theory, they only require 

two-body bound state wavefunctions and half-off -shell transition ampli- 

tudes as input. In addition, their “effective potentials” are independent 

of the three-body energy, and can easily be made real after an angular 

momentum decomposition. The equations are formulated in terms of 

physical transition amplitudes for three-body processes, except that in 

the breakup case the partial wave amplitudes differ from the correspond- 

ing full amplitudes by a Watson fsi factor. 

(Submitted to Phys. Rev. D. ) 

*Work supported in part by the U. S. Atomic Energy Commission and in part by 
the Swedish Atomic Research Council. 

TPresent address: Institute of Theoretical Physics, Fack, S-402 20, GGteborg 5, 
Sweden. 



-2- 

1. INTRODUCTION h 

The formal simplicity and transparency of the abstract formulation of 

scattering theory is well appreciated, and on this level the theory has been 

developed in considerable detail not only in the two-body case, but also for sys- 

tems with three or more particles. 

However, a more detailed study of scattering theory requires the introduc- 

tion of a basis in the Hilbert space, in terms of which the abstract operators and 

state vectors are to be represented. 

In two-body scattering theory, the only natural basis is the eigenstates of 

the free Hamiltonian ho, i. e . , the plane wave basis {IF>). When expressing 

the outgoing wave scattering state vector I$+ > in such a basis, JI+ (z) = <Fl X/J’ >, 
IT F z 

one is naturally led to a representation in terms of a less singular amplitude, 

(1-l) 

where E2 = k2 Tip and where t(F, ?f E2 + i0) is just the plane wave matrix element of 

the transition operator t(z) (its on-shell value, i. e. , the residue at the scattering 

pole T2=E2 in (1.1) yields the physical transition amplitude). 

In three,-body scattering theory the situation is more complicated. Also in 

this case a plane wave representation (corresponding to the eigenstates ICC> 

of Ho) is natural. A detailed analysis of the singularity structure.of such a 

representation for the three-body wavefunction, <Fz I q+> , has been carried 

out by Faddeev, 
1 and leads to an expression similar to (1. l), but now in terms 

of a pair of amplitudes 38 
Pa 

and G& (described in Appendix A). Just as in 

the two-body case, these amplitudes are closely related to the physical transi- 

tion amplitudes. One can then of course consider the Faddeev equations these 
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amplitudes satisfy, i. e. , a three-body counterpart of the Lippmann-Schwinger 
CI 

equation for the two-body transition amplitude; these equations have recently 

been advocated by Osborn and Kowalski. 
2 / I 

However, in the three-body case other natural basis are also available, 

namely the complete sets of channel eigenstates 

3 i 
15 + P 

P K 
> ; IF $- 

@ qj 
> 

I 
of the 

channel Hamiltonians HP = H 4-V 
0 P 

; ,@=l, 2,3. 

In this paper we consider the expansion of the three-body Faddeev wave- 

function components in such a basis. We show that this representation is 

actually more natural than the plane wave representation mentioned before, and 

leads to a considerably simplified formulation of the three-body theory. 

This approach leads to a new pair of amplitudes 9CP, and E’o, that repre- 

sent the nonsingular parts of the three-body wavefunction in a simpler way than 

the pair JX and % 
PQ! Pff 

do. The main advantage of this formulation, however, 

lies in the fact that the integral equations for the new set of amplitudes X and 

& are significantly simpler in structure: their effective potentials are inde- 

pendent of the three-body energy, and they only require two-body half-on-shell 

transition amplitudes and bound state wavefunctions as input. Additonal con- 

venient features become apparent after an angular momentum decomposition: by 

a simple redefinition of the partial wave components of the amplitude 8, the 

effective potentials can be made real, and the breakup scattering amplitude is 

seen to exhibit explicitly a Watson final state interaction factor in each channel. 

The reasons for these simplifications can be physically understood as 

follows: much of the complicated structure of the plane wave projections of the 

three-body wavefunction is not due to true three-body dynamics, but is simply 

a reflection of the “spectator71 two-body channel dynamics. By considering these 

plane wave projections, the channel dynamics are mixed with the true three-body 
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dynamics in a complicated way. If however we expand each Faddeev component 

of the fzll wavefunction into the complete set of eigenfunctions of the spectator 

Hamiltonian in its own channel, the two-body channel dynamics are automatically 

treated in a natural way by these spectator complete sets; as a consequence, the 

three-body entities one is left to consider when solving the three-body problem 

get appreciably simplified. 

In Section II we obtain the half-off-shell amplitudes LX? and 8 from the 

projections of the Faddeev components into the channel eigenstates. We also 

define the corresponding fully-off-shell amplitudes, and derive the equations 

they satisfy in Section III. In Section IV we consider the angular momentum 

decomposition of these equations in the S-wave case, and show how the E- 

amplitude can be redefined so as to produce equations with real effective 

potentials. The amplitudes for processes starting from three free particles 

are briefly considered in Section V. Finally, in Section VI we give an example 

of the kind of unitarity relations our new amplitudes satisfy; the general operator 

unitarity relation is given in Appendix B. 
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II. THE AMPLITUDES 9& AND & 
-h PQ 

In this section we restrict ourselves to scattering processes starting from 

an initial state of one free particle and a two-body bound state. For this case 

we consider the Faddeev equation for the p-component of the three-body wave- 

function: 

Go(E+iO) tp(E+iO) c l*Gta)> 
YZP 

(2-l) 

where I <Ao)@a > describes the initial state, i. e. , a bound state in channel Q! and 
K Pt)2 2 

a third free particle, and E is the total energy in the initial state, E=- - K 2Pa! 02 
. 

Here and below we consider only onebound state per channel. Defining the 

complete set of channel eigenstates in channel p by 
I 

I $ ${ >, I cp$l > 
I 

, where 

I #-- > is the incoming two-body scattering state with momentum T 
gP 

P’ 
we obtain 

gP * for the projection of (2.1) onto these states (recall that G 0 t p = “pvp’ 

where 

~pa(i;p; P, *(‘);E+iO) = ~5~4: IVp I c P+ 
YfP yta) 

> 

(2.2) 

(2.3) 

2 2 

and $ = 4 
mm 

P 
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Using (2.2)) the expansion of the plane wave projections of the Faddeev 
-h 

components of the three-body wavefunction is obtained as 

(2.4) 

Equation (2.4) constitutes a three-body generalization of Eq. (1.1) since 

the amplitudes SV and & of (2.3) are shown in Appendix A to be free from 

elastic, rearrangement and breakup poles; i. e. , they are the amplitudes in terms 

of which we will now formulate the three-body theory. 

We first note how these amplitudes are related to the physical transition 

amplitudes: recalling that the residues of the wavefunction at the elastic or 

rearrangement and breakup poles are essentially the corresponding transition 

amplitudes, we directly see from (2.4) that the elastic or rearrangement ampli- 

tude is simply given by the on-shell value of 98 Pa’ 
In addition, it can be shown 

that the residue at the breakup pole $+“gg = E in (2.4) is the on-shell value of 

so that the breakup amplitude is given by 
Gp@y 

C& 
p PQ’ 

Having established the on-shell connection between the amplitudes LX’ and B 

and the physical transition amplitudes, we look into the relationship between our 

amplitudes and the matrix elements of the more familiar three-body transition 

operators. For this purpose we recall that in the wavefunction formalism, the 

three-body operators K 
@a 

generate the Faddeev components out of the initial 

state wavefunction, 
4 i. e. , 

- GO(E+iO) K&E+iO) i P, K , 1 -(O) +a> (2.5) 
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where E = 5:‘” - ~~ . If we take projections of (2.5) onto channel eigenstates 
CI CY 

and use the relation G K 
0 PQ! 

= -GpVpGoUpa, where Upa! is the AGS transition 

operator, 5 we find upon comparison with (2.4) that ’ ’ 

:epaG-;i+;o); E+iO) = - <F${ lVPGo(E+iO) U&E+iO) iFLo)@:> 

(2.6) 

~~cr(iyrp;F~o); E+iO) = - <Fp$L IVp GO(E+iO) Upa! (E+iO) I Fd”)$r > . 

4P 

In the on-shell limit <Ffi@f lVPGo(E+iO) = -<F,$f I, so we see that the expres- 

sion for LW 
Pa 

in (2.6) reduces to the familiar expression for the elastic and 

rearrangement transition amplitude in terms of U Pa’ 

In addition, the half-on-shell singularity-free amplitude LX that in 
Pa 

Faddeev’s treatment L2 yields the breakup amplitude component can be written 

in operator form as 

~pJPp$ P, ‘(‘);E+iO) = <i;p?$ I t&E+iO) GO(E+iO) Upo,(E+iO) I p, -P) a 
%’ (2.7) 

The breakup amplitude component is obtained by taking the function 

fully-on-shell, i. e. , for $+$ = p, a! = E. Since in that case -(O) 2 _ K2 
q3cY 

-c $$I t&E+iO) = <~p’s,lVp , we again obtain here that, on-shell, 8 
Pa 

yields 

the P-component of the breakup amplitude. 

The factors VP Go on the left in the amplitudes (2.6) are present to insure 

that the half-off-shell amplitudes 3X& and &‘,, do not contain singularities (poles) 

in the off-shell variable < 
P’ 

The off-shell extensions of the amplitudes (2.6) are defined as 

i7iipQ tp,; P, --‘); z) = <r;p( lVPGo(z) Upa(z) Go(z) Va IF;“+; > 

(2.8) 

CYpJpp 4p; P, ; z) = <pp$l - (0) ‘VP Go(z) Up,(z) Go(z) Va I~;“)+ 

qP 
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In appendix A it is shown that the amplitudes (2.8) are free from elastic, - 

rearrangement and breakup poles. In fact, 35’ 
Pa 

in (2.8) coincides with Faddeev’s 

fully-off-shell amplitude 3Lo. On the other hand, the amplitude ~3’ 
Pa 

in (2.8) 

and the Faddeev fully-off-shell amplitude 3L 
PQ! 

are different; it is this different 

choice of off-shell extensions that enables us to write remarkably simple 

Faddeev equations for 3%’ and Q, as we show in the next section. 
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III. EQUATIONS FOR z@ 
Pa 

AND & 
PQ! 

Inserting the expansion (2.4) into Faddeev’s equations (2. l), a system of 

coupled integral equations for the half-on-shell amplitudes’~~’ and & can be 

immediately obtained. However, as it will be more convenient for the discus- 

sion of their properties, we present here the corresponding equations for the 

fully-off-shell amplitudes. 

Such equations can be obtained from the Faddeev equations for the operators 

upcY’ 5 

Upa = -5 pa G,‘(z) -c 5 
Y mr 

t tz) Go(z) Uy,tz) (3.1) 

where 6 
pr 

= l-6 &. Multiplying (3.1) with the appropriate operators and taking 

the matrix elements indicated by the definitions (2.8), (again, recall that 

G t = G V and that the channel eigenstates form a completeset) we get 
OP PP 

- (0) =&-& ;P, 9 z) =xg (qy ;z) - 

(3.2) 

c $4 3- 3-,, ES’” --, 1 

- Ye 
d p;,d q,, flpr(pp qp; p+4y) -;;,2+-,2 q/at~pi~~~o);z) , 

Y vz 
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where the “effective potentials” Y are given by 
-h 

(3.3) 

G)g2)) 
K ’ 

(m$$2 + K; 

The driving term LW vanishes if (Y=@, and is otherwise obtained from 

the expression for /G(flfliG) in (3.3), takingy=a! and replacing KY” by v;“)2-z. 
.  I -  

In (3.3), qp d(l)=(m,/ mQ+m )p +;I y -i y, zf!‘) = -cp- Qlp/ma+mP)F$ , and @E 

is the two-body bound state vertex function, defined as f t$ = -t$+ K;) (#‘fi(+ 

As was mentioned before, we can see in (3.2) and (3.3) how the formulation of 

the three-body theory gets simplified when it is expressed in terms of the new pair 

of amplitudes LX’ and 8’. In fact, Eqs. (3.2) have the following features: 

(i) The effective potentials are all independent of the energy parameter z. 

This fact simplifies the structure of the equations and has obvious computational 

advantages. 

(ii) The input consists solely of two-body bound state wavefunctions and 

half-off-shell transition amplitudes. The completely off-shell amplitudes - in 

particular for arbitrarily large negative energies - occurring in the usual treat- 

ments of the Faddeev equations, are therefore completely eliminated. 

Additional convenient features become evident after an angular momentum 

decomposition of Eqs. (3.2) is carried out. This is discussed in detail in the 

next section. 
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I 

IV. ANGULAR MOMENTUM DECOMPOSITION 
CI 

In this section we consider the angular momentum decomposition of 
. 

Eqs. (3.2). Since the properties we want to discuss are present in all terms of 

such a decomposition, we only consider the simplest situation, i.e., the S-wave 

case: We assume that the total angular momentum J is zero, and that only S- 

wave two-body interactions are present. 

It will be remembered from Eqs. (2.8) that the breakup amplitude compo- 

nent & 
Pa 

is obtained by projecting to the left onto scattering channel eigenstates 

<z/l- I. As is well-known from two-body scattering theory, 6 
P 

the coordinate space 

representation of this solution can be expressed in the s-wave case as 

(4.1) 

where $ 
qP 

(r) is the s-wave regular solution to the partial wave Schrcedinger 

equation (satisfying boundary conditions at the origin + 
gP 

(0) = 0, Cp’ 
qP 

(0) = 1)) and 

9 (q 
- P 

) is the two-body Jost function. A similar relation holds of course in 

every partial wave. 

In this way, we see from (4.1) that a Jost function factor l/9 
P-+ 

can natur- 

ally be extracted from each partial wave component of 8 
W’ 

Redefining these 

amplitudes accordingly, 

(4.2) 

the new amplitudes i 
Pa 

are obtained in each partial wave by projecting onto the 

regular solutions rather than onto the scattering solutions. The resulting 
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equations for the amplitudes ~‘6’ 
Pa 

and G^ 
Pa 

in the S-wave case are: 4 

zpa (Pp;P, (0) ;z) = $f(O) @ .p (0) ;z) 
PQ! P’ Q! i 

72 
P,, dp; ~;;(P/+P? -,2 ’ 2 

Py -KY-Z 

1 

I ~+‘q+’ I 2 

-t 2 -12 Py +qy TZ 
li”r JP;, f q;pdO);z) 

i@$Pp qp;p, (O);z) = 2$pB,q~;p~);z) 

- Yf r#P 0 
* P;~ dp;, +; (Pp, q/+p;,) ru, 2 

1 
2 

Pr -“r-Z 

coca 
- w I2 dp’ 

YZP 0 0 pY 
y q2 dq’r +rY bp, qp;P;/, 9;’ 

I g+iq 1 1 2 h 
(0) 

“,2 + 72 _ z ~yo!tp;4;;po! ;z) 

pY g, 

(4.3) 

The partial wave components of the effective potentials of the’original equa- 

tions are redefined accordingly, and the resulting potentials in (4? 3) are: 
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(1) -2 . 
d(cos ap.,) tptqpv qp ;spflO) 

where 

(4.5) 

This redefinition of the &-amplitudes has the following advantages: first, 

the phase of the Jost function is precisely the two-body phase-shift, i.e., 

~+cS,) = I 9,(qp) le 
T Wsp) 

. (4.6) 

Since the same phase is carried by the two-body half-on-shell t-matrix and two-body 

scattered wave function, we see that all these phases cancel out in the ‘expression 

for the potentials. That is to say, the potentials (4.4) in the equations for 8 and 

$5 are not only z-independent, but also real. In addition to the computational 

simplifications entailed by such a situation, problems related to unitarity (such 

as the construction of unitary approximation schemes) become easier to handle. 

Obviously, to obtain real potentials it is only necessary to factor out the 

phase of the Jost function from the original Q amplitude . However, we believe 

it is useful to factor out also the modulus of the Jost function, as we have done 

above. The reason is that the regular solution Cp 
qP 

(r) of (4.1) is analytic every- 

where in the complex q 
P 

plane, i. e. , it has no bound state or resonance poles, 

nor any branch points. Instead, this structure of the two-body scattering 
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wave function is carried by the Jost function denominator. Thus, the amplitudes 
A 

qb! are more smoothly-varying functions of q 
P 

than the corresponding B . - 
, Pa 

amplitudes . I I 

The same two-body structure is also absent from the potentials in (4.4)) 

since they carry factors LZ+t and +-LZ’ . In this manner, the two-body bound 

state and resonance singularities are predominantly carried by the factor - 
1812 

in Eq. (4.3). 

We conclude by writing the expression for the breakup amplitude in terms 

of the new amplitudes 6’ 
Pa 

in the S-wave case: 

(4.7) 

We see in (4.7) that C@ pa! differs from the corresponding breakup amplitude 

component by a Watson final state interaction factor. 
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V. THE 3-3 AND 3-2 AMPLITUDES 
c, 

For the sake of completeness, we consider in this section the amplitudes 

for processes starting from three free particles. For &is purpose we recall 

expression (2.8) for the amplitudes corresponding to processes starting from a 

bound state and a third free particle, i. e. , 

(5 * 1) 

The remaining amplitudes are now defined as 

(5.2) 

3 -w + - 3: Y = <F $- IVpGoUpaGOVa I p, 
Pa P- 

zl, 

qP 
q (0)’ 

a! 

That the 3-3 amplitude of (5.2) directly yields the connected part of the 3-3 

transition amplitude can be seen as follows: in Faddeev’s treatment, this 3-3 

amplitude is obtained by taking the fully-on-shell plane-wave matrix elements 

of the operator M 
Pa’ 

i. e. , 

(5.3) 

4012 422 where $+$= p, ,fqa . 

Since M 
Pa 

= 6pcrtP+Wpa!, where Wpa! is the connected three-body Faddeev 

operator, related to U 
Pa 

through W pQ! = tpGo Upcr Gota!, we see that 

T = c ‘i$Qpltpl P, - (0) z (0) - (O)T (0). 

P 
a! ‘+ c <FzItG U > (5.4) 

Pa 
p p p 0 /3czGOto!I Pa! Q! 
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However, since (5.4) is fully-on-shell, we can write the second term as 

so that the 3-3 amplitude is simply given by 

(5.5) 

(5.6) 

Off-shell, of course, again Z 
PQ 

and the plane wave matrix elements of W 
PQ! 

differ. 

The Faddeev equations for g 
Pa 

and g pa! can be obtained from (3.2) by 

replacing 38 
PQ 

by ~?~o and &pa by F 
Pa’ 

In addition, the driving terms must 

also be replaced: for example, the driving term in the X -equations is given 
Pa 

bY 

y(O) - - . 
pa! (ppqp9po! a! 

* tO)<(O);z) = _ 5 t (< $1)-c2+iO). 
P@P P’ P’P -2+&2 

Pp qp -z 

x t (yC2), ~(“);~(o)2+i()) 
Q 02 o! o! (5 9 7) 

We that pp+qp a! (y ). -2 -UP = p2+qw 

Similarly, it can be shown that the amplitude g 
Pa 

of (5.2)) when taken on- 

shell, is a component of the 3-2 transition amplitude. 

Returning to Eqs. (5.1) and (5.2)) we observe that the amplitudes for all 

possible three-body processes are obtained by taking matrix elements of the 

operator V G U p 0 G V pa! 0,a between channel eigenstates appropriate-to the initial 

and final states. Since we have at our disposal both incoming and outgoing scat- 

tering states, it should be noted that it is also possible to define amplitudes with 

a choice of +- and $+ states that is different from the choice used in (5.1) and 

(5.2). However, such amplitudes are not as simply related to the physical 

transition amplitudes. The physical reason for this is that the three-body 
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S-matrix involves inner products of incoming and outgoing three-body scattering 
i 

state; in the same order as they are expanded in (5.1) and& (5.2). 

VI. UNITARITY RELATIONS 

As we have seen in the previous section, the amplitudes that describe all 

physical three-body processes can be obtained by taking appropriate matrix 

elements of the operator V G U G V p 0 per! 0 oz. It is thus possible to obtain general 

unitarity relations in operator form; they are given in Appendix B. From these 

operator relations one can of course obtain fully-off-shell unitarity relations 

for all the amplitudes 38, e, 8 and r. 

As an example, we give in this section the form the unitarity relations for 

&pa take when going fully-on-shell: 

- (0) &pa! G--9 zp; P, - - (0) St-W - di&(~P,qp;pa ;E-i0) = 

ZZ -2ti c [d3g 8 (‘i;* c *$ *E+iO) ~(~2-K2-E)~e~y(~~‘;~~;E+iO) 
Y Y P-Y P’ P’ Y’ Y Y 

X &($2+$2 -E) c $* ,(‘$(‘);p$;E+iO) 
Y QY o! 

J 
(6. 1) 

As the on-shell amplitudes 8 
Pa 

directly yield the breakup scattering ampli- 

tudes, Eq. (6.1) , when summed over p, has the form one would physically expect 

for the breakup case. 7 ’ 
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VII. CONCLUSIONS A 

We have seen in the preceding sections how the use of the complete sets of 

eigenstates of the channel Hamiltonians significantly simplifies the formulation 

of three-body scattering theory. By using this representation we have obtained 

a new set of amplitudes for all three-body processes that coincide on-shell with 

the physical transition amplitudes. We have further shown how these amplitudes 

satisfy integral equations that are simpler that the usual Faddeev equations: 

(i) The effective potentials are all independent of the three-body 

energy; 

(ii) The input consists solely of two-body bound state wavefunctions 

and half-off-shell transition amplitudes; 

(iii) Our choice of partial wave components of the three-body amplitudes 

satisfy equations with real effective potentials. In addition, the 

breakup amplitudes explicitly exhibit a Watson fsi factor. 

Finally, we expect that by the nature of the input to these equations, they 

will be particularly useful in understanding the dependence of three-body observ- 

ables on the off-shell two-body input. In addition, the simplified structure of our 

equations suggests that the problem of constructing approximation schemes 

should now be reconsidered. 

Acknowledgment 

We are indebted to Prof. H. P. Noyes for many helpful discussions on his 

approach to the three-body problem. 



- 19 - 

APPENDIX A c, 

Here we give an outline of the proof of the fact that the new amplitudes 8 
Pa 

are free from pri.mary singularities. 8 Similar proofs can be obtained for the 

remaining new amplitudes 8 
Pa 

and $ 
Pa’ 

We start by noting that the amplitudes $6 and YJ in terms of which Faddeev 

carries out the singularity analysis of the three-body wavefunction are defined 

by the first of Eq. (2.8) and 

%p$qip; P, - (‘);z) = - <$$ t,(z) Go(z) UBa(z) Got@ Va! l<$%t> (A. 1) 

A 

where t is obtained by splitting the two-body transition operator t into a term 
P P 

tp containing the bound state pole and a remainder t^ 
P P’ 

The representation of the 

three-body wavefunction component in terms of 3Z’ and ?? can be obtained from 

(2.5) and the relations G K 
0 Pa 

t = tp+t^ with.the result = -Go $Go QY p p 6’ 

1 
+ -2 -2 

pP+qP - EQ-io 

(A. 2) 

By comparing (A. 2) with (2.4), it can be seen how the choice of the new set 

C”fl and & instead of;the set X and 9 simplifies the singularity structure of 

the expansion. 
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NOW, recalling Eqs. (2.8), (3.1) and (A.l), we find that 

(A. 3) 

Consider the first term in (A. 3). Since neither the vertex function +z nor 

the half-off-shell tP have any real singularities as functions of the momenta, only 

secondary singularities occur in this term. Turning to the second term in (A. 3), 

we note that it is identical to the expression (6.26) of Ref. 1, with the half-off- 

shell tP instead of the off-shell t^ 
P’ 

and the functions gt3), g-(21 and g(2) 

replaced by the functions E, 9 and z+‘, respectively. These changes do not 

affect the character of the estimates used in the subsequent discussion of (6.26); 

therefore, arguments similar to those of Faddeev enable us to conclude that the 

singularity structure of & is similar to that of the Faddeev amplitudes $Z’ and 

?J . In particular, &Y is free from primary singularities. 
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APPENDIX B 

Here we give the general unitarity relations for our ampliydes in operator 

form. In order to do so we define an operator , i 

Tpa tz) = Vp Go G-3 Uprw (2) Go(z) Va 

It can be shown after some algebra that T 
Pa 

satisfies the relation’ 

TpQ (E+iO) - TPo (E-i0) = 

(B-1) 

c T (E+iO) A!)(E) Tya(E-i0) 
Y m 

+ q Tpv(E+iO) (l- GO(E+iO) $,(E+i&) Ao(E) 

X 1- t?(E-i0) GO(E-i0) 
> 

Tyccy(E-i0) 

+ 6pa Vpn,(E) va 

+ VpAo(E) c sfl,(l -t,,(E-i0) Go(E-i0)) Tytcr(E-i0) 
Y’ 

+ x 8 T 
,)/ YQJ PY 

(E+iO) (l- GO(E+iO) tY(E+iO)) Ao(E) Vo 
(B. 2) 

where 



- 22 - 

REFERENCES AND FOOTNOTES c, 

1. L. D. Faddeev, Mathematical Aspects of the Three-Body Problem in 

Quantum Scattering Theory (Davey, New York, 1965)‘. 

2. T. A. Osborn and K. L. Kowalski, Ann. Phys. (N. Y. ) 68 361 (1971). -’ 

3. Projections of wavefunction components onto channel eigenfunctions have 

previously been considered by H. P. Noyes: Phys. Rev. Letters 23, 1201 

(1969) (Erratum 24, 493 (1970)). 

4. B. R. Karlsson and E. M. Zeiger, in Few Particle Problems in the Nuclear 

Interaction, I. Slaus et al. , -- eds. (North-Holland, Amsterdam, 1972), p. 330, 

and Report No. SLAC-PUB-1139, Stanford Linear Accelerator Center (1972). 

5. E. 0. Alt, P. Grassberger, and W. Sandhas, Nucl. Phys. g, 167 (1967). 

6. See for example, R. G. Newton, Scattering Theory of Waves and Particles 

(McGraw-Hill, New York, 1966), Chapter 12. 

7. T. A. Osborn and D. Bolle, Phys. Rev. C S, 1198 (1973). 

8. See Ref. 1. Primary singularities (i. e. , elastic, rearrangement or breakup 

poles) can be distinguished from secondary singularities by the fact that the 

former are present in all terms of an iterative series of the amplitudes, 

while the latter get progressively weaker and disappear after a few iterations. 

9. We are grateful to Prof. W. Sandhas for communicating to us the approach 

used by Alt, Grassberger and Sandhas for obtaining three-body unitarity 

relations (unpublished). 

, 


