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Abstract 

It is shown that the weighted geometrical mean is a more correct 

estimate of the mean of several quotients of two measured variables when 

the variables are normally distributed and have comparable errors. 
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The results of many experiments in physics are often presented in the 

form of derived quantities rather than in the form of the experimentally measured 
- 

quantities. Therefore, it is not generally true that the distributions of the 

derived‘quantities are represented by the standard normal distribution. How- 

ever, in many cases one wishes to find the mean of several results extracted 
from several experiments, or to obtain a fit to the derived quantities as a 

function of some other physical variable, The standard procedure that is fol- 

lowed is to weight the data by inverse of the squares of the quoted standard 

deviations when taking the mean or performing a minimum chi-squared fit to 

the data. The above procedure is in general only correct when the distribution 

of the derived quantity can be well approximated by the standard normal distri- 

bution. When the normal distribution gives a poor representation of the true 

distribution, one must go back to the directly measured quantities and perform 

a maximum likelihood analysis on the directly measured experimental data from 

the several experiments that one is trying to compare. This approach is often 

tedious because standard available computer programs cannot be used. In 

addition, the detailed information which is needed in order to perform such an 

analysis is in general not available in all the experimental papers. However, if 

~ - one can find a transformation that transforms the given, non-normal distribution 

into a distribution which is more nearly normal, then the averaging, or minimum 

chi-squared fitting, can be done on the transformed variables weighted by the in- 

verses of their errors, and a reverse transformation done at the end. Standard 

available computer programs can be used to fit the transformed variables. 

A common example is p = l/s, where s is a measured quantity which is 

normally distributed. When we wish to find the mean of several determinations 

of p, or when we wish to fit the: functional dependence of p on some other 

physical variable, it is best to find the mean of s or the functional dependence 

of s, and then take the inverse. In general, p, the arithmetic mean of p, will 

not be the inverse of s, the arithmetic mean of s; ii;! = l/s will be the correct 

mean. 

We now investigate the distribution of the quotient of two Poisson distribu- 

ted quantities. As an example, we will work with the ratio z = CD/aH, 

where aD is the cross section for the scattering of a projectile particle 

P 
+ 

, e-, v, etc. ) from a deuterium nucleus and aH is the cross section for the 



scattering of the particle from a hydrogen nucleus. Since cross sections are 

measured by counting the number of scattered particles, the measured cross 

sectios are samples from Poisson distributions. If the cross section deter- 

minations are based on a number of scattered particles greater than about 30, 

then the distributions are well approximated by normal distributions from which 

the negative tail portions ‘have been truncated. Let us define the standard 

deviation of CD, crH , and z by SD, SH, and Sz respectively (in general 

S will denote a standard deviation); the mean of oD, aH, and z by D, H, and Z 

respectively (in general capital letters will denote a mean); and the fractional 

standard deviations 

AD = ‘D/D, AH = ‘H/H, and AZ = S z/Z 

(in general A will denote a fractional standard deviation). 

Using the standard rules for the propagation of errors we obtain the 

fractional error in 2. 

A; = $ + A; 

A =AHandAD=CA 

A; = A2 (1 + C2) 

(1) 

(2) 

Before we investigate the distribution of z in detail, we write down the 
expressions for obtaining the average of two measurements of z for three 

special cases. We use common sense arguments to obtain those expressions, 

but later we will show that they follow from the actual distribution of z. 

CaseAisthecaseofC > > 1, i.e., when the error in the hydrogen cross 
section in the denominator is much smaller than the error of the deuterium cross 

section in the numerator. We then expect the ratio z to be normally distributed 
because we are effectively dividing a normally distributed variable by a constant. 
In that case the average of two determinations of z is just the weighted arith- 

metic mean of the two values. 



T= 
zp; I- z2/s; 

1/s; + 1/s; 

1 -= 32 1. 1 
s2 2 

2 s2 

(3) 

(4) 

Case B is the case of C < < 1, i.e., when the error in the deuterium 

cross section in the numerator is much smaller than the error of the hydrogen 

cross section in the denominator. This is the inverse of case A and therefore we 

expect l/z to be normally distributed. In that case we should take the harmonic 

mean of z for two z determinations. 

1 (q) / jAl/Zlf + (l/Z2) / (A2,z2)2 -= (5) 
‘z 

jAl,Zlf + (A2/z2) 

(6) 

Remember that A denotes fractional error and not absolute error. 

Case C is the case of C = 1, i.e., when the fractional error in the 

hydrogen cross section is the same as the fractional error in the deuterium 
cross section. Because of this symmetry we expect our expression for obtain- 

ing the average of two z measurements to yield the same z whether we apply 

it to 0 d aH = z or to aH/aD = l/z. The weighted geometrical mean has this 

nice quality 

In (E) = 
In Zl/A; + In Z2/Ai 

l/A; + l/A; 

l/Z2 = l/A; -!- l/A; 

(7) 

(8) 
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The above expression is a result of the assumption that ln z is normally 

distributed when C = 1. 

JVe look now at the exact distribution for z and show that it indeed becomes 

normal in z for C > > 1, normal in l/Z for C < < 1, and normal in In z for 

c = 1. 
In the case ‘when uTH and aD are normally distributed, and cH is 

assumed to be practically always positive (this condition is satisfied in our case 

since the Poisson distribution is never negative) the distribution of the quotient 
becomes 1 

HS; - DS;z 

(Sf) + 5; z2) 
3/2 

From this distribution it follows that the variable Yp is normally distributed 
1 with zero mean and unit variance . 

Y2 = (1 - z/Z) 
2 

P C2A I- A2(z/Z)2 
; Z = D/H 

If z is normally distributed (Case A), then it follows that the variable YA 

is normally distributed with zero mean and unit variance. 

2 (1 - z/Z) 
2 

YA = 
A2(C2 + 1) 

If l/z is normally distributed (Case B), then it follows that the variable YH 

is normally distributed with zero mean and unit variance. 

2 
‘H = 1 

jl - z/z)2 

A2(C2 + 1) 

and if ln z is normally distributed (Case C), then it follows that the variable YG 

is normally distributed with zero mean and unit variance. 

4 



2 YG = (In z/Z)2 

A2 ( C2 -!- 1) 

We now investigate the above four distributions near their means. Let z/Z = 
= 1 I- A’ . We expand Y:, Yi, Yi, 2 and YG and keep terms to order Ar2. 

Expanding we get 

y2 = 
P 

At2 [1 _ 2 A, + 4 - c2 - I A,2 
A2(C2 + 1) c2 + 1 (C2 + 1)2 

2 YA = 
Al2 

A2(C2 f 1) 

2 YH = Al2 

A2 (C2 + 1) 
l- 2A’ + 3Af2 . . . . 1 

y; = A’2 
A2 (C2 + 1) 

[L - Al + 11 At2 . . . .] 
12 

. . . 1 (Exact) 

(Arithmetic) 

(Harmonic) 

(Geometric) 

We can see from the above expansions that for c > > 1, Y - YA, for c < < 1, 
P 

Y 
P 

- YH. For c = 1, Y 
P 

- YG up to terms of order Af2/2. This means that 

when the fractional errors of the two variables in a quotient are the same, the 

resulting distribution of the ratio is well approximated by a distribution in which 

the logarithm of z is normally distributed. 

Note 

For C = 2, y-2 z 
P 

For C = l/2, Y2 F (Yt + Yi) /2 
P 

So as long as the l/2 AH < AD< 4AH, the geometric mean of several determinations 

of z will provide a better estimate of z than the arithmetic mean of z or the 

harmonic mean of z. In experiments designed to measure crD/aH, the error in 

oD /cH is minimized if the time is divided such as to make 

i.e., C4 = dk . 

*D 

5 



I 

(As long as other corrections to the cross sections are small and the beam con- 

ditions for each target and the number of nuclei in each target are the same). In 

generaLit is probably best to calculate the three different means and compare 

them. The geometrical mean will be the closest to the true mean as long as 

16 < 6j,/uH < l/16 and the measurements of aD and oH are designed such as to 

minimize the error in aD/oH. 
In order to get an idea of how different the three means can be, we con- 

ducted a monte-carlo experiment. We assumed that aD/aH = 1 and the distri- 

bution of each was normal with unit mean and 0.033 standard deviation (corres- 

ponding to 900 counts). We sampled 1000 such ratios. We compare the three 

different means to the true mean which is the arithmetic mean of the 1000 deu- 

terium cross sections divided by the arithmetic mean of the 1000 hydrogen cross 

sections. The results are shown in Table 1. The geometrical mean is indeed 

the closest to the true mean. We also show results for other running conditions. 

In general, arithmetic mean < geometrical mean < harmonic mean, and the 

various means will differ by a fraction of about 2A2 where A is representative 

of the fractional error of the input data points. 
As mentioned earlier, the above analysis can also be applied when per- 

forming minimum chi-squared fits to the data. It can also be applied to results 

which are derived from ratios. For example, the neutron to proton cross section 

ratio is approximately ( a,/~~) - 1. Therefore, one must add 1 before taking 

the mean of the logarithm and subtract 1 at the end. Further study of the ratio 

distribution and applications of this analysis to specific problems can be found 

inRef. 2. 

Our derivations were based on the assumption that H and D were normally 

distributed. Therefore, when we took the means of our 1000 “experiments” we 

weighted them equally. In the case of Poisson statistics when JN is taken as the 

error we may have the case that samples from the same distribution are not 

weighted equally. In that case it can be shown2 that for C = 1 the geometric 

mean is still correct. However, for C > > 1 and for C < < 1 we should use the 

Poisson-arithmetic and Poisson-harmonic means respectively. 2 

C > > 1 Poisson arithmetic: 

(9) 
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= z1 
2 
5 

+ z2 
2 
s2 

C < < 1 Poisson-harmonic: 

z3. + z2 

ii2 A2 2 
1 A2 

(10) 

(11) 

(12) 
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TABLE1 

Experimental Conditions 

H2 Counts D2 Counts C 

900 900 1.0 

900 90,000 0.1 

900 3600 0.5 

3600 900 2.0 

- ~ 90,000 900 10.0 

Mean of 1000 r7Experiments7' 

True 

0.9990 
rto.0015 

0.9998 
*0.0011 

0.9994 
rto.0012 

0.9990 
*0.0012 

0.9990 
-10.0011 

Arithmetic Geometric Harmonic 

0.9956 
rto.0015 

0.9965 
*0.0011 

0.9961 
*0.0012 

0.9982 
*0.0012 

0.9990 
-+O.OOll 

0.9990 
rto.0015 

0.9982 
*0.0011 

0.9982 
zto.0012 

1.0002 
*0.0012 

i.0006 
*0.0011 

1.0023 
zto.0015 

0.9998 
-lo.0011 

1.0006 
~0.0012 

1.0023 
*0.0012 

1.0023 
*oo,ooll 
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