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Errata 

The author would like to call attention to the following errors in the 

preprint: 

Page 7 - In Eq. (2. lo), the factor 

--, - 

should be 
I‘-- 

V 
=+2+2-g 

1+ q ‘“2 . 

PO 

Page 15 - Equations (3.17): In the first equation, the subscript i should be 1. 

Page 18 - In Eq. (3.22) : The lower limit on the first integral over s should be 

q2( I+ 7 2M2/piq2) instead of q2Q 

‘i7+U Page 20 - Equation (3.26): F1 -7+, should be F1 D 

Page 28, Line 5 - Fristsch should be Fritzsch. 

The author humbly begs everyone’s pardon. 
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ABSTRACT 

Using the correspondence principle (continuity in dynamics), we 

extend the approach of Keppel-Jones-Ward-Taha to fixed mass and 

scaling current algebraic sum rules so as to consider explicitly the 

contributions of all classes of intermediate states. A natural, 

generalized formulation of the truncation ideas of Cornwall, Corrigan, 

and Norton is introduced as a by-product of this extension. The for- 

malism is illustrated in the familiar case of the spin independent 

Schwinger term sum rule. New sum rules are derived which relate 

the Regge residue functions of the respective structure functions to 

their fixed hadronic mass limits for q2 - 00, 
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I. INTRODUCTION 
1 Keppel-Jones, Ward, 2 and Taha3 have introduced a new, systematic 

appr>ach to current algebraic sum rules, both at fixed q2 and in the lim bj ’ 
which takes as its starting point the familiar quark equal-time current algebra 

and Bjorken scaling. This approach is to be compared with that of Dicus, 

Jackiw, and Teplitz4 (DJT), which takes as its starting point the more model 

dependent quark light-cone algebra. 596 Let us remark that both of these 

approaches represent an improvement over the naive infinite momentum 

method for deriving sum rules in the sense that both consider the contributions 

of a wider class of intermediate states than does the naive method. 

Specifically, while the approach of DJT does not handle the fixed-mass 

class II states of Adler and Dashen, 7 it does, for example, handle the scaling 

Z graphs. As is well-known, the naive pO - 03 method neglects both Z graphs 

and class II states. 

On the other hand, the approach of Refs. 1,2,3 in principle permits the 

inclusion of all kinds of intermediate states. However, in the form in which 

it was introduced, a convergence presumption (Eq. (2.7) below) about the 

inclusion of states near x = -q2/2Mv = 0, -1 was made. 8 As a result of this 

assumption, certain possible contributions are not systematically considered. 

Below, we shall argue that this assumption can be relaxed somewhat by 

invoking continuity in dynamics (the correspondence principle recently dis- 

cussed by Bjorken and Kogut’) and that the resulting formalism explicitly 

considers all kinds of states. 

This extended formalism will also be seen to provide a natural, generalized 

formulation of the truncation theory of Cornwall, Corrigan, and Norton (CCN). 10 

In addition, the formalism will be seen to imply sum rules relating the residue 
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functions of the respective structure functions to their q2 -. 00 fixed hadronic 

mass limits. 

%ur ideas will be illustrated in the case of the spin independent Schwinger 

term sum rule of CCN to facilitate comparison with the work of these authors. 

However, it will be apparent from the discussion that the ideas pertain to all 

components of the quark equal-time current algebra and, hence, represent a 

complete,systematic discussion of all current algebraic sum rules, both at 

fixed q2 and in the li “aj ’ which considers all classes of intermediate states. 

A discussion in this connection of the other components of the equal-time 

algebra will appear elsewhere. 11 

This paper is organized as follows. In Section II we extend the formalism 

of Refs. 1,2,3 so that it systematically treats the intermediate states near 

x=0, -1. Section III is devoted to illustration of the resulting formalism in the 

familiar case of the spin independent Schwinger term sum rule of CCN. In this 

section, generalized truncation is explicitly demonstrated and several new 

constraints relating the Regge residue functions of the respective structure 

functions to their fixed-hadronic mass limits as q2 -, CO are obtained. Section 

IV contains some concluding remarks. 
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I 

II. CONSIDERATION OF STATES NEAR x=0, -1 

In this section we shall show how one extends the approach of Refs. 1, 2, 3 

to cu;rent algebraic sum rules so that it treats systematically the intermediate 

states near x = 0, -1. For the sake of completeness, we shall begin in the spirit 

of a review of this approach. We’define the weak hadronic tensor by 

$i =&/d4y eiqsy <p I kf@,Jb(o)] jp> V 

=, 

P 
+Eqb+ p 

4, + P,q 

M2 
M2 lJ wLb + . . . (2.1) 

where Ip > is a nucleon state of 4-momentum p (we suppress spin labels), the 

G 
are the full V-A currents, and the Wi are the by now familiar structure 

functions of q2 and v = q. p /M (M denotes the nucleon rest mass). We shall 

always ignore the possibility of time reversal violation in (2.1). Now, as is 

well known, Eq. (2.1) and standard equal-time current algebra give, for 

z.‘?; = 0, 

J 
co 

dv M Wab 
-co P() I-iv = ‘;; k,, gA) + ‘;; (q) (2.2) 

where C ab 
PV 

is a definite linear combination of the vector and axial vector couplings 

gv, gA, and Pi:(<) is the Schwinger term polynomial in z and satisfies 

P;; (0) = 0 (2.3) 

Isolating the kinematically independent portions of (2.2) we have in general 

equations of the type 
co 

I dv I@, P) = R (2.4) 
0 
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where B is a number which is known from equal-time current algebra and 

I(q,p) is a linear combination of structure functions with known functions of 

q, p 2s coefficients. Here, let us remark that in the naive p. - ~0 approach, 

one interchanges the integration over v in (2.4) with the limit p. - 00. Of 

course, it is well lmow’n that this ‘interchange is suspect -although it leads 

to Adler Is 12 sum rule for W2 when p=O=v in (2.2)) it leads to nonsense (0 = 1) 

whenp=i#j=v (i,j = 1,2,3). InRefs. 1,2,3, it is shown that, for c$O, 

00 
J 

_-2,2nM lim 4 

lim dv I(q,p) = lim dxPO-m 
PO-m 0 

lim I(q,p) - J 
PO-’ M -1 X 

+ lim 
PO-* 

where 

@- = v- I(q,, CP) , 

q; = -x T (x2 -I- e2) u2 PO ’ 

V- = (4; PO/M , 

and 

E = 141/P. . 

This result follows from the following assumptions: 

Assumption II(a); The structure functions scale in the sense of 
13 Bjorken : 

limbj( v /M)ni MWi = Fi(x) 

(2.5) 

(2.6) 

for some integer ni 2 0 , 
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Assumption II(b): In summing the contributions to the LHS of (2.5) 

of those intermediate states which correspond to the Bjorken limit 

^aspo-30, we may commute the summation operation with taking 

the limbj. 

In Refs. 1,2,3, it was further assumed8 that 

lim lim 
T-w p -00 

0 
=’ 
(2.7) 

This is the (additional) convergence assumption to which we referred above. 

It may be relaxed somewhat if we invoke the correspondence principle. 9 By 

this principle, we may identify the limits of Bjorken and Regge near x= 0. 

From.this correspondence and assumption II(b) we have (see the appendix) 

-2 
, q /277 M 

lim lim dx 4- 
2 I/2 77 -CO P-co / 

0 q 2/2~ M 
(x2+c ) 

4 2 
4 PO/‘/r 

2M2 

= lim lim 
s 

dq2 
PO I(q,p) 

(2.8) 
77-00 p-w -y2(lq 24/T2p”,) 2 0 Mqo 

42 22 
q PO/77 M 

= lim lim 
?J-mp-03 0 s 

dq2 
R 

-T;r2( 1 -n 2M2/<2p2,) 
2M Jqw 

where R is the Regge limit of poI. 

We may treat the other term in (2.7) as follows. Note that any delicacies 

near x= -1 should be related by crossing to delicacies near x= 1. A possible 

meaningful asymptotic limit near x= 1 is the fixed hadronic mass limit v - -03 
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with 2Mv + q2 + M2 G p2 fixed. 10 However, the function go near x= -1 is evidently 

not appropriate for discussing this limit. For this reason, we use crossing 

and Lange variables from x on qi near x=-I to p2 on qi near x= 1, where qt 

is given by (2.6). Let H denote the fixed p2 limit of I(qi, -<, p) as p. - 00. 

Then, we have for n > 0 

r 

1 
lim 

p 0 -* -1-T2/2~M y-&m= 

2~; c2/‘nM 2 
lim J2 

PO-O0 /JO 
d/J 2Mk9 

PO 

(2.9) 

where we have used correspondence (see the appendix). Here, ,ui is the 

threshold and is clearly M2. Thus, the general sum rule equation following 

from (2.4) is now 

lim 
rl-fm 

-;;i2hM 
dv lim I(q,p) - / dx lim 

v-I(qgz~P) 
X 

PO-* -1 PO-* 

-42 22 
q po/7) M 

-I- / 
dq2 &7 -;2(1-n2M2/ ;i2p; ) 

=B 

-7- 
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The integral over v in this last equation is at fixed q2 = -y2 and is the 

familiar contribution of the naive p. - M method to the LHS of (4) as p. - 00 . 

The^second term, a scaling integral, is discussed in Refs. 1,2,3; it is also 

given by the formalism of Ref. 4. Finally, the terms in curly brackets, 

which are not discussed in Refs. 1,2,3,4, represent the contributions of inter- 

mediate states at x= 0, -1 such as class II fixed mass states, u-channel fixed 

hadronic mass states, etc. Equation (2.10) represents, therefore, an approach 

to all current algebraic sum rules which systematically considers the contri- 

butions of all classes of intermediate states. Embodied in it is also a natural 

generalized formulation of the truncation theory of CCN as well as general 

constraints on Regge residues. These last two statements will now be illustrated 

by a discussion of the spin-independent Schwinger term sum rule of CCN. 
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III. ILLUSTRATION OF THE EXTENDED APPROACH 

We choose to illustrate the application of (2.10) in the particular case of 

the spin independent Schwinger term sum rule of CCN in order to facilitate 

comparison with the truncation theory of these authors. We shall first derive 

the sum rule in the fashion of references 1,2,3 (Eq. 2.6) making the conver- 

gence assumption (2.7). Then we shall present the truncated version due to 

CCN. Finally, we shall see what (2.10) (our extension of the approach of refe- 

rences 1,2,3) has to say concerning this sum rule. We turn now to the deri- 

vation based on (2.6) and (2.7). 

The sum rule under discussion obtains from the p = 0, v = i, i = 1,2,3 

aspect of (2.2) and (2.4). Considering this aspect, we find 

1 
+ 2Mx 

90 
+ M 

;+v + 
w4 

PO v+v MW5 =o 
I 

(3.1) 

-fV where the notation gi is the obvious : W. and OI is the spin 

independent Schwinger term defined in Eq. (59a) of reference 2 (for example). 

Taking the limit p o- 00 according to (2.6) and (2.7), we obtain the result of 

references 1,2,3,4 , 

FF+ ‘(x) 
x =6 (3.2) 
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where 

-h 
Fl(x) = limlj MWI (30 3) 

and we have taken the usual 14 scaling behavior for W2, W4, W5 : in the limbj 

vw2 - F2W 

V2 
(34 

M Wi - Fi(x) i =4,5 

(Of course, to derive (3.2), we only need limlj W2, vWi=O, i=4,5 . ) 

The integrals in (3.2) diverge if the respective structure functions receive 

contributions from Regge poles with intercepts Jz 0. It is obvious that the 

assumption (2.7) is precisely the statement that no such poles contribute to 

(3.2). In the event that such poles do contribute, what does one do ? 

The dispersive approach of CCN allows one to proceed.as follows. One 

presumes only (fixed) Regge poles with J # 0 occur in the Wi so that in the 

Regge limit 

wi - C ‘i ,(S2) vQ! 
a>0 ’ 

w2 - ~>. 2,a(q2ba-2 cc 

w5 -cc Iy>o 5 , ,(c12) F-l 

i =1,4 

(3.5) 

In general, as we have already observed, due to these poles, Eq. (3.2) 

may not obtain, However, consider the truncated functions 10 
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wi =wi - c ci o(q2)/ 
a>0 ’ 

i =1,4 

-q= 0(1-x)F+x)-Mzf -* 
o!>o Lax 

where the fl a! are determined by correspondence 
, 

(30 6) 

These .functions obviously do not possess the “bad” asymptotic behavior indicated 

by (3.5) and CCN show dispersively that the analogue of Eq. (3.2) pertains 15 : 

- i+v 
w2 + 5 =0 (3.8) 

For comparison and illustration, we shall turn next to Eq. (2.10) for this situa- 

tion, We shall see that, in addition to the generalization of (3.8), Eq. (2.10) will 

allow us to derive new current algebra constraints on the Regge residue functions 

C i, 01’ 
In using (2.10) we may relax the restriction 01 # 0 in (3.5)) i. e 0, we allow 

poles with J = 0. Thus, when we apply (2.10) in the situation under discussion, we 

find the following corrected version of (3.2): for q2 < 0, 
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1 J 
q4p;/T2M2 

+z ds 

s2(l+q2M2/$s2) 
Rl(S’ q2, PO) 

-l 

+ + R4(m2,po) + 
R2(s A2 ,P,) + RgtS A2 YP,) z-g 

JI-;;z 
1 

where16 
(3.9) 

. - 

Y-W R1(w2,po) = lim W1 (v,s )I = 
v-00 

sfixed 

J- 
( ) 

CY c s-q2 PO 
= 

a>ocl,~ M ’ v+v (s) 

2 
R2@,q2 a,) = A-- 

S2 
c V+V(s) 
,&a! 

d-- sq2 a-l 

(-4 01 

M po ’ 

(3.10) 

R4ts a2 ,p,) = 

and 
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The LHS of (3.9) would appear to be ill-defined. However, we shall give it 

an explicit meaning momentarily. 

To proceed, we require the form of H, the limit of I (qi, -$, p) as po- ~0 

with p2 fixed. This limit was first discussed by CCN in the context of the DGS17 

representation for forward current-hadron scattering amplitudes. 18 These 

authors showed that if the imaginary part V of such an amplitude scales in the 

sense 

li%j v = Ftx) (3.11) 

then it follows from the DGS representation that V has the following form 10 

V= $ vm Gm(2Mv+q2)- $ vm-’ 
/ 

2Mv+q2 

m=‘o 
dcrh 

m=l m 
0 

(3.12) 

where the h m are spectral functions and the G,(z) decrease faster than zWm 

for large z and are not involved in the scaling (3.11). If any of the Gm are 

non-zero, then V grows like vn(n 2 1) V--L 00 with p2 fixed. The data do not 

(to quote CCN) “unequivocally rule out the possibility of small terms of this 

kind in the cross sections . I1 However, these terms were considered to be 

sufficiently implausible that they were suppressed in the discussion of CCN. 

In what follows, for the sake of generality, we shall treat the Gm explicitly 

and employ the complete representation (3.12) in describing the form of V as 

v - - 00 with p2 fixed. Obviously, the behavior of a general V in the latter 

limit determines the structure of H. 

Now it is apparent from (3.12) that the form of V in the p2 fixed, v - --M 

limit is determined by the Gm and by the behavior of ho(G) p) and hl(cr, /3) near 

Ip I = 1. For example, suppose, for V odd under crossing, hI(u, /3) behaves 
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near Ipl = 1 as 

- hl(a, P) = c hlyP) (l- MI)-’ E(P) -I- +,P) 
Y 

(3.13) 

where E(P) 3 p/l pl , and hl(a, p) is regular as I pl -+ 1. From (3.12) it follows 

that (3.13) makes the following contribution to the fixed -p2, v - - 00 limit of 

v: 

c I2Mv ?,J mda 
hly ((3 

Y p2-M2 (o -p2+M2)’ 
(3. 14) 

We shall employ this form (3.14) in what follows. The generalization of our 

results to an arbitrary behavior for V in the fixed -p2 , q2 - M limit will be 

immediate. Hence, we write 

V - c l2MviY g,cz) 
Y 

(3.15) 

as v - --co with p2-fixed, g,(z) - 0 faster than z-‘as z -. CC for all Y. We 

note that the g,(z) may be non-zero even when all the Gm=O in (3.12). However, 

we suspect that both the G, and the gy are trivial. 10) 11 But, this does not 

concern us here. When we use (3.15) in conjunction with (3.3) and (3.4) we 

have: as v - - 00 with p2-fixed 

w1 - + c l2Mv I’ yy b2) 
Y 

w2 - - c (2M)’ Iv I’-’ g2 ,lu2) 
Y ’ 

wi - + c (2My IV lym2 gi,,tp2) i = 4,s 
Y 

(3.16) 
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I 

where the gi ,(z) - 0 faster than zmy as z - CO for all y, i . We may therefore 
I 

define for p. - 00 

.P 

c (2M)’ g’+’ 2 5,y(CC ) 

Y P 

(3.17) 

H is then determined by 

Ht?i2, p2, P,) 
=- 

c 
P P 

‘3 (3.18) 

P P 
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In (3.17) and (3.18)) we have used 

v+ = v,@~,~P~) ,= q; pa/M , (3.19) 

and 

qf = qf(p2,<, p,) = p2-M2-2 q;po . 

We may now turn to the interpretation of the LHS of (3.9). 

When we introduce (3.18) into (3.9) we see that the LHS of the latter 

equation still generally appears to be ill-defined. However, one may interpret 

it by using the asymptotic behavior of the Ci o1. Specifically, in analogy with 
, 

5, o!’ it follows from Eq. (3.4) and correspondence 9,lO that as s - f m we have 

C 2,-p) - +--l f2,a! 
I I 

a+2 

C4,Js) -=i= y- 
I I 

fQ 

C 5)a.(s) - ?a+, f5,0 
I I 

(3.20) 

where the fi Q! 
, 

are constants analogous to fi , Q!, If one uses this asymptotic behavior 

in Eq. (3.9) one can isolate the non-vanishing portions of this equation as 77, po- m 

with n/p, - 0. There will only be a denumerable number of independent non- 

vanishing functions of 77, p. as 77, po- 03 with n/pa- 0. In the appendix, we argue 

that Eq. (3.9) is to be interpreted as the statement that the coefficients of these 

functions are to be set equal to zero. This is nothing but a natural generaliza- 

tion of the truncation ideas of CCN. These authors only isolated the constant 

- 16 - 



and logarithmic terms in q p0 in (3.9) as 7, p0 - co with ?-/PO- 0 when Q! f 0 

in (3.10). Here, we may in principle isolate the coefficient of each independent 

non-Tanishing function of (n, p,) in the neighborhood of (CO, W) with n/p0 - 0. 

To illustrate, we presume {CZ} = {0,1/Z, 11 in Eqs. (3.10) (the value Q! = l/2 

is to be representative ‘of the P’ with (Y 2 0.54j and introduce 

- v+v 
w2 

= wp _ c (y+v 
a! = {0,&l} 

2, ,(s2) va-2 

(3.21) 

-i+v 
F1 = 6(1-x) F1 ‘+’ - 6(x,-x) M c f x-O1 v+v 

cu={O,&l} lya! 

q;; (s) = cy+; 
, 

(s) + e(s-so) (Y)@ fr; 
, 

where 

x0 > 0 and 

The usefulness of the ci and El Q is immediate: they have nice integrability 
9 

properties in the appropriate regions of their arguments so that they will 

facilitate the isolation of the various independent functions of (71, p,) in Eq. (3.9) 

in the vicinity of (KJ, m) with q/p0 - 0. Thus, we rewrite Eq. (3.9) in terms 

of the Gi and cl ac and obtain for q2 < 0 
, 
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7 
-v+v -V-b w2+w5 -dx 1 63 I 

J- 0 X 

qL fixed 

+- ( 

+2$ ( MC 
v+v 2 v+v 2 

-q2 
2,yJ ) + c5,+ ((r 1 

1 ( 

v+v 2 
* 77 -AL c2 1 Kl 

-q2 ‘. 
) f c;;;(42) 

) 

i+v 2X()M 17 
- M fl o log-------- 

, -q2 
+2 Mf f;-(& -@) 

v+v 
2 Mfl,+ (s-q’+ (s-q2+ - 

-I- 
S3’2 

PO 

7 1 J -2p;s2hM +2M 2 4u2 
1-10 

(3.22) 
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where T = max {x0, l), H is given by (3.18)) and we are using the fact that J=O 

is a nonsense point for the amplitudes under discussion. - 
We may now easily isolate the coefficients of the various independent 

functionsof(v,po) near (M, a) in this last equation, with the restriction 

‘I/PO -0, In this way we obtain from the coefficient of log po, 

;+v 
fl,O = O , (3.23) 

from the coefficient of p:, Q! = l/2, 1, 

(s) + & CpJs,) (s-q2y2 + q-p + ciz; 

, 

(3. 24) 

from the coefficient of p;, 0 <A # l/2, 1, 

(3.25) 
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and, finally, from the constant part of (3.22), 

-/ 

7 rev I 2M f;+v 
- 

dx x 

Mf l”+r 
+ , 

q2-fixed 
0 &O 1,1/2 xo 

1 cc. 

+‘z o ds 
J [ 

McG+v (s) + 1 
s l,o E c$ (s) + 

( 
-9 c;:t; (s) + c~;cs, /@-S2) 

) 1 

ZZ 0 (3. 26) 

where we have again used the fact that J=O is a nonsense point for the amplitudes 

under discussion. 10 

The constraint (3.23) is well known to follow from the scaling behavior (3. 3). 

The results (3.24) and (3.25) are new. Equation (3.26) is to be compared 

with the result of CCN, namely, Eq. (3.8). Recall that in obtaining (3.8), CCN 

assume all Ci o = 0 = g. 
, 19-Y * 

With this assumption, Eq. (3.26) obviously becomes 

identical to (3.8) when x0 - 03 . Thus, our method is in agreement with the 

dispersive truncation approach of CCN to the extent that the two overlap. 

We should remark that the generalization of (3.23)) . . . , (3.26) to an arbitrary 

behavior of the Wi in the limit in (3.16) is immediate. In particular, if, as our 

theoretical prejudice 10 would suggest, the Wi are trivial in this limit, then the 

g* 
1YP 

in(3.24),..., (3.26) are zero. However, quite independent of the triviality 

or non-triviality of the g. 
1,p’ 

we find the sum rules (3.24) and (3.25) very 

surprising. They may be taken to follow from 

(1) Equal-time current algebra 

(2) Scaling in the form (3.3) and (3.4) 
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(3) Regge and q2 - ~0, p2-fixed behavior in the form (3.5) and (3.16)) 

respectively 

@) Continuation in the dynamics (the correspondence principle) 

(5) Interchange of limbj and x-integration in the region x < -1 

where the scaling limits vanish. 

Obviously, verification of these results will serve as evidence for the least 

substantiated of these ideas, namely, (4) and (5), lg 
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IV. DISCUSSION 

We have extended the approach of Refs. 1,2,3 to current algebraic sum 

rules-to systematically include the contributions of intermediate states at 

x= 0, -1. The extended formalism is succinctly represented by the result 

(2. 10). This equation has been shown to embody naturally a general formula- 

tion of the truncation ideas of Cornwall, Corrigan, and Norton. 10 

By applying our extended formalism to the spin independent Schwinger 

term sum rule of these authors, we have shown that the theory presented here 

agrees with their dispersive truncative theory to the extent that the theories 

overlap. At the same time, however, we have obtained several new results, 

namely, Eqs. (3.24) and (3.25). As we have remarked above, the generalization 

of these results to an arbitrary behavior in (3.16) is immediate. With this 

understanding, the results in III may be taken to follow from the scaling assump- 

tion II(a) in the form (3.3) and (3.4)) assumption II(b) in the region x < -1, the 

Regge behavior (3.5)) the correspondence principle, and the O-i component of 

equal-time current algebra. A discussion of the other components of the 

equal-time current algebra in this connection will appear elsewhere. 11 

Let us conclude by emphasizing that the most pleasing feature of the approach 

to sum rules represented by Eq. (2.10) above is that this approach allows a 

complete, systematic discussion of these current algebraic relations, both at 

fixed q2 and in the lim bj’ which considers the contributions of all classes of 

intermediate states and which, as its algebraic starting point, needs only the 

familiar , well-founded, quark equal-time current algebra. 
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Appendix 

In this appendix we shall discuss the validity of the isolation in (3.9) of 

non-vanishing independent functions of (77 ,p,) near (m, a) with T,J /po- 0 as 

described in Eaction III. We shall start this discussion with the origin of Eq. (3.9), 

namely, Eq. (2.4): 

co 

/ 
dv I(q,p) =B 

0 

where in Section III, B = - ol and 

M2q - 
I(q,p) = -$w;+v + 

(I)() + q(p) 3-V qO Y+v 2-V 
w2 +pgW4 +w5 (A. 1) 

POq 2qO 

What we shall argue is that if we presume that we can interchange the Bjorken 

limit with integration over x in the region x < -1 where the scaling limits Fi(x) 

in (3.3) and (3.4) vanish, then, for the asymptotic behavior (3.5) and (3,16), 

Eq. (2.4) implies that the LHS of (3.9) is indeed equal to - ul, thereby supporting 

our prescription in III for isolating in this latter equation the non-vanishing 

independent functions of (n , po) near (~0, ~0) with n /p, - 0, To this 

end, we notice from (A. 1) that I(q ,p) converges pointwise in v to a function of 

v ,-T2 in the limitpo - w with v = fixed. This will also be the case for the 

I(q,p) which occur in (2.4) for the other components of the equal-time current 

algebra. As a result, for a3 > n > 0, we have 
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m 

B= lim 
/ 

dv I = lim - 
p-00 0 0 

pTirdv I +pv I) =-s"d"d'_"~ + pl~w~v I 
0 0 

where the last step follows by the pointwise convergence of I in the limit 

p. - 03, v-fixed. Obviously, most of the delicacies are in the term on the 

RHS of (A. 2) involving integration from r] to 03 and we shall now discuss 

this term in some detail. 

The integral over v from r] to 00 in (A. 2) may be rewritten as the sum of 

two integrals, one over q2, involving the Regge region, and one over x, about 

which we shall have more to say momentarily. We find 

42 22 
q PO/17 M 

I 

03 
lim dv I = lim + 

/ 
dq2 

p Iq&zqPj 0 

P 0 -* 17 P-03 0 -c2(1 2M2/p;c2) -77 M .\jq2+y2 

1 (A, 3) . 
-q2/277 M 

-I dx 
v- I(q$Lp) 

-CO 

where e , V-, and go are defined in (2.6). From (A, 1), (3.3), and (3.4) it 

follows that as po- 03, the function v - I(qi, z,p) converges pointwise to a 

function only of x for x I -z2/27 M. This will also be the case for the I(q ,p) 

which occur in (2,4) for other components of the equal-time current algebra 

if we assume Bjorken scaling. As we stated above, in region x < - 1, where the 

scaling limits of the structure functions vanish, we assume we can interchange 
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limbi and x integration. But, then, by the pointwise convergence of v-I(q,, <,p) 

for -1 < x < -q2/277M we have, for 0 < X<<l, - - 

lim 

lim Jmdvx=-j- 
-q2/277M 

dx 
p o-r * 

fI(qo Z, P) 

+ lim 
X 

p()- O” 7 -1 P-co 0 
I 

-1 

s 
v-wlg,c P) 

-1-F (x2+ 

42 22 

1 
cl po/7) M 

+-z 
/ 

dq2 
PoIdsz+~2, ZP) 

dFz- 
(A. 4) 

-c2 (l-~~M~,‘p; T2) M q+q 

Thus, all delicacies in (3.9) reside near the regions x=0, -1. Before discussing 

them, let us summarize what we have accomplished by changing variables: 

For0 ~77~00, O<X<<l, 

co 

B = lim I dv1 
PO-W 0 

rl 
= 

/ dv lim I - 
0 PO-W 

lim v -I(qj’ ?L P) 
dx Po-m 

X 

I 42 22 

/ 

-1 v-WI;, c9 P) 1 

/ 

q poh M 2 PoI( 
px- 

q +q , q,p) 
+ lim dx ds 

PO-W -1-h 2 2 l/2 
(x+f) 

+2 
-c2( 1-q2M2/y2p;) 

pi7 
M q+q 

We first turn to the q2 integral in this last equation. 
(A, 5) 

It is only necessary to consider the case q, pod co with q/p0 - 0, since 

this is what is involved in (3.9). Evidently, the asymptotic behavior of poI 

will be central to our purposes. In this connection, let us note that from (3.5)) 

(A. 1), and the correspondence principle it follows that as 17, po- 00 with 

V/PO - 0, poI approaches its Regge asymptotic form in the entire region of 
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of integration over q2 in (A. 5). This will also be the case for the I(q,p) which 

occur in (2.4) for the other components of the equal-time current algebra. As 

- in th”e text above, we let R denote the Regge asymptotic form of poI. Then, 

the convergence of poI to R in the limit p. - co, T- M, rl/po - 0 in the region 

of the q2 integration implies that. 

+q2/277 M 
lim lim / dxD=O (A- f-3) 

r]-wco p -co 
0 -q2/277M 

2 l/2 where D = v-(1 - R/po)/(x2 + e ) o Hence we have 

lim lim 
7p+cc p --cc0 

0 

0 = 

dq2 M& 2 -2 

42 2 2 

/ 

q pOh M 
= lim lim 

rl-m PO-Q -;2(1-~2M2/p;<2) 
(A- 7) 

We consider next the region near x=-l in (A. 5). 

We note that a possible physical limit near x= 1, is the fixed hadronic 

mass limit, v - --oo with p2 fixed. Thus, we change variables from x on qi 

near x=-l to p2 on q: near x=1 +: wefindasp --co, 0 

J 
-1 

dx 
-1-h , 

V-WQLP) 

(x2+ E 2, 1'2 
= 

4h2pi 

I 2 

2M II l+ l 2+ ‘2-M2 2 
PO 

(A. 8) 

- 26 - 



Here, qi are the functions defined in (2.6) above. As P~-+~, the upper limit 

4A2pi in (A. 8) corresponds to the limb. 
J 

with x=-l-X, a value of x at which 
- 

lim v-1= 0 
PO-CO 

. - 

If we define H by 

I(cl~~ -z, P) - Hdu2, T2, PO) 

(A* 9) 

(A. 10) 

as p 0 --cm with p2-fixed, then, by correspondence I(q,p) converges to H in the 

entire region of integration in (A. 8). Thus, presuming H to have the form (3.18) 

and reasoning analogously to the argument leading to (A. 6)) we evidently have 

lim 
J 

4x2p; WI;, -z P) 
a2 - ZZ lim 

PO-03 0 1+e2+~2-M2 
J 

4h2pi 
Q2 

pO--+to ’ 
2 

pO 

Introducing (A. 6) and (A. 11) into (A. 5) yields the desired result (3.9) and, 

thereby, the isolation prescription given in III. This completes our argument. 

PO 

(A. 11) 

Our discussion is seen to depend crucially on the physical notions of 

correspondence, scaling, and the asymptotic behaviors (3.5) and (3.16). This 

is as it should be, since, in general, without physical notions there should be 

no way a priori to argue in favor of the calculations in III. We conclude by 

remarking that, as we have attempted to indicate throughout our -discussion, 

the arguments in this appendix will pertain to all components of the equal-time 

current algebra in connection with (2.4). 
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