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ABSTRACT 

The dimensional analysis usually employed to solve the renormal- 

ization group equations for the asymptotic region is examined. It is 

argued that if this analysis is done systematically, one must in general 

add new inhomogeneous terms to the asymptotic equations even after 

invoking Weinberg’s theorem to discard the (generalized) mass inser- 

tion term. These new irihomogeneities are entirely determined by 

the physical thresholds of the theory. They are shown to provide a 

natural explanation of Bjorken scaling in interacting field theories. 
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Recently, some of the most exciting work’ in the context of renormalizable 

quan$m field theory has been done by employing the Gell-Mann-Low’ and 

Callan-Symanzik3 equations in the deep Euclidean region. These equations relate , I 
the responses of the one particle irreducible (&PI) Green’s functions of a renor- 

malizable field theory to changes in the parameters of the theory. For example, 

in a theory with one field we have 

where I’(n) 
aSY 

is the ultraviolet asymptotic part of the 1PI renormalized n-particle 

Green’s function, /3 and yare finite functions of the renormalized coupling 

constant g, and p is the mass parameter of the theory, being either the renor- 

malized mass or, for massless theories, the Euclidean renormalization point. 

Of course, in writing (1) for theories with masses, we are using Weinberg’s 

theorem. 4 

Equation (1) provides, among other things, a convenient starting point for 

the discussion of Bjorken scaling in the context of renormalizable quantum field 

theory. And, indeed, it has recently been shown’ that in non-Abelian gauge 

theories, the origin 2 = 0 of the effective coupling constant g defined by 

g i&g) = P(Z) , (2) 

is ultravioletly attractive in the sense of Wilson. 5 Thus, when g is in the 

corresponding region of attraction, these theories are viewed’ as being 

asymptotically free and exhibiting Bjorken scaling, within calculable logarithmic 

corrections,with the following form for the solution of (1) 

Fgy@P1, * * . Jp,;g;N h 7, InrZy (p,, . . . , p,;O;p) A4”(Qn 
-wl ho 

A) (3) 
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where I, is an unknown constant and a = yl/ho with yI and b. defined by 

Y = Ylg2 + W4) 
(4) 

i t - 00. 

As is apparent from (1) and (3), this formulation of the solutions of (1) has 

relied quite crucially on dimensional analysis. In this note we should like to 

question the way in which this analysis has been effected. 

To be specific, we recall the strict Callan-Symanzik equation corresponding 

to (1): 

[ 
p$+ BO$- ny(g) I r @) = ir 2) (5) 

1 

where I@) (4 is the renormalized 1PI n-particle Green’s function, and Ia is 

the renormalized 1PI n-particle Green’s function with one (generalized) mass 

insertion3 at zero momentum transfer. In passing to the deep Euclidean region 

we shall ultimately again use Weinberg’s theorem when necessary to discard 

rf) in (5). However, in solving the resulting equation we should like to note 

that r@) will in general possess step functions and other singularities 

associated with the physical thresholds of the theory. As a result, when we 

write (in a theory with only a massless boson field, for example) 

as is customarily done in solving (l), the function 4, because of these gener- 

alized thresholds, may not satisfy 

(7) 
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For example, if 

-h 
- m2) (8) 

where p respects (7), then C#I clearly does not in general. We therefore let I$ 

denote the part of $ which violates (7). We may rewrite (5) in the form 

[ 
-A ;A + P(g) &+4 -n(l+rtg)) 1 r 

04 = irf) _ p4-n ( p -it- + h & a > 14 
(9) 

Thus, on using Weinberg’s theorem we obtain for the deep Euclidean region 

r 1 

1 
-A & + P(g) f +4-n(l+y(g)) 

J 
rgk=R+) 

where we have defined 

t 10) 

(11) 

For massless non-abelian gauge theories, the solutions of (10) with RI’ 09 set 

equal to zero (the homogeneous solutions) are precisely the results of references 

1 as illustrated by (3) above. The complete solution of (10) for any l? tn) is of 
aw 

course just a constant multiple of the respective homogeneous solution plus a 

particular solution of (10) 0 In particular, in the event that the homogeneous 

solutions are absent due to boundary conditions, I’ 04 
w 

is essentially determined 

by RI?). 

The form of R l!@ * is under investigation. In the absence of precise know- 

ledge about its structure, let us construct an example of the form it may take 

in order to illustrate its possible effect on I’ O-4 
asy ” We take a theory described 

by a bare Lagrangian with one massive particle (a fermion, say) and a massless 

boson and let ,u2 denote the boson renormalization point. We take the relevant 
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physgal thresholds to generate only step 

functions inbrtn) (the n-boson IPI Greens 

b tn) following contribution to ?? (hp.; 
1 

will be suppressed where possible) 

function discontinuities and delta- 

function) and, hence, to make the 
i 

p ; g) (the dependences on the fermion mass 

I(#) = /pn 

ix 

Pk (h2(xP. )2//J2)e(h2(2: Pi )2 - mz) 
o? IP i cx a! 

+ \~~(h~(Zp. )2/~2) p2 6(A2(Zpi )2 - m2,) 
L5v Jg V 

V t 
(12) 

where the p1 are presumed to satisfy the analogue7 of (7). In general, the 

physical thresholds may generate more general terms in I’ 04, but, for the pur- 

pose of illustration, we shall just consider (12). The form of. R r(“) following 

from (12) is 

R$) = -2p4-n 
‘mzrtQj J2. 

x Fa1 
a’ 

( ) 

p2tzp ‘)2 m~16tA2t~, Pia,J2 - mu*) 

i a! (13) 

where p is clearly determined by { p”,) and { p”, ) D Equation (10) now reads 

J-+4 + p ag -ntl+r) 1 by(n) = -2p4-n \‘ - 
aw /, P, mi s(A2(zPi,)2 - mi) 

o! 

Let 
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We introduce 7ja! and uo! by - 
4-n 2- 

m%(zPj )2 

-P maPa ‘.( = 9 P2t ‘Pi )2 
I dQ Pa e 

ieg ’ 
, i 

o! 

m2 o! 
/ 

- f 
= 

(‘Pi )2 
dr a,(r) elrg 

cl! 

(16) 

We are assuming we can invert (15). Defining 

t= QnA2 

we have from (14) and (16) 

CJ 
dkdl \ 

/ 

drl. 0 l dr. 
J2 p 

Wl) 0 l 0 cT(rj2)(ik) 
j1+J2 

2n /1 
(~Pi )2 

ejlt+i($Iri+I)gV 

cI! 
j,! j,! 

o! jl,j2 o! 

a+ a+2- at ag ; u+yq ’ brtn) 
w 

This last equation has the general solution (see Symanzik3) 

brtn) 
w 

(17) 

~~(rl)~~= u ,trj,)O 
j,+j, 

-%Y j,! j,! 

exp jlt’ ( + i( Zri + 1) (g’ + t - t’) +/;;+,-,. dx pl+;-J)~- -2])] 

+ B br(n) n asy, homogeneous 
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where h is arbitrary, Bn is a constant and bj?(n) , asy, homogeneous is a homo- 

geneoxs solution of (10) 0 Note that in general h may not be set equal to 03 in 

(18) D We write 

h(g’ + t) = g’ f t + 2h0(g’ + t, (1% 

where ho is a function which we may constrain by the requirement that the first 

term on the RHS of (18), which we denote by b tn) I’ 
asy, P 

,agrees with the following 

formal particular integral of (14) 

brtn) 
as5 P 
formal 

= 

where $@ 
ass P 

is defined by 

b (n) 
Y rasy p = 

dkde *n) ei(JQ’+h2k) 
, I ass P 

V(r 1 )* 0 0 a(r.2)(ik) 
jl+j2,jlt+i(2ri+I)g 

j,! j,.’ ( -jl+i(I.+Zri)+2-n/2) 

(21) 

Making a change of variable t’ - t = s in (18), we see that 
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I 

lim 
g'+ho 

ds 
t-00 0 i 

exp(jl+ i-2-i!I)s+ t I 
g ’ 

dx Y (g(s))) 
g’ -s 1 

+ B brtn) 
n asy, homogeneous (22) 

where we have used (20). Of course, here, we are assuming the interchanges 

in the orders of limits and integrations which we have made are legitimate. 

Clearly, if the boundary conditions which determine Bn are such that Bn = 0, 

b 0-d then it is possible that I? (hpj) behaves like 

l/A2 
in the deep Euclidean region, for n > 4. - 

One of the most pleasing features of this development is the possibility of 

a natural explanation of Bjorken scaling. Indeed, consider the familiar Wilson’ 

expansion for the product of two electromagnetic or weak currents at light-like 

distances: 

J(y/2) J(-y/2) = c Cn(y2; g) O@) (0) y 000 ypn % 
Pf O O Pn (23) 

where we suppress all tensor and quantum number labels. The Fourier trans- 

forms of the functions Cn satisfy an equation analogous to (10) in the deep 

Euclidean region: 

t -A & ‘P & -2- YJ Cn,asyth2q2, pig) = RCn (24) 
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i 

where y, is the anomalous dimension of On and RCn represents the physical 

threskolds. Assuming step function discontmuities and delta functions in Cn 

due to thresholds { rni ] we have 
i 

RCn = - 2~-~ (25) 

where we take z;“, to respect the analogue of (7). From (22) it is clear that, for 

tn) 
C n, asy P2s2) - 

Const t&p) + E 

h-m ?L2q2 
c 

n n, asy, homogeneous 

+ 0 1 

0 h4 

where 

(n) 
Const(g’ ,p) = & ds 

exp 1 (j,+ 1 g’ 
1-S) s + 2 

g’-s 
dx Y, (g(x)) 1 

(26) 

(27) 

In (26)) En is a constant and C n, asy, homogeneous is a homogeneous solution of 

(24). The homogeneous solutions Cn asy homogeneous have been discussed* 
, , 

in references 1, for example, and are known to give at least logarithmic devia- 

tions from Bjorken scaling in the absence of RC,. Thus, in view of the deep 
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inelastic data we take such solutions to be absent from (27). Then as h - 03 

-h (n) 
C n, asytx2q2) - Cons; ‘f ’ I4 

hq 

which is clearly the desired naive free field theory scaling result (Bjorken 

+o 1 

0 3 (2% 

(4 scaling). We emphasize that Const. is essentially determined by the physical 

thresholds. Note that our argument need not depend on the sign of ,8(g)! 

We should also mention that in the asymptotic time -like q2 region, the 

contribution of RC(@ will also be given by (29). However, in this region, for 

theories with a massive Lagrangian, one may not in general neglect the mass 

insertion inhomogeneous term in (5) above. This insertion may in general 

generate deviations from the scale invariant result (29). We conjecture that 

this is the reason for the fast onset of scaling in the deep inelastic scattering 

region compared with the annihilation region. Of course, this is well-known. 

To conclude, we have argued that, contrary to the approach of reference 

(l), it is possible that it is the physical thresholds, serving as sources, that 

generate naive Bjorken scaling in interacting field theories, the boundary 

conditions being such as to disallow scale violating homogeneous solutions to 

contribute to the appropriate asymptotic physical solutions of the Callan-Symanzik 

equations in the deep Euclidean region. Specifically, the step function discon- 

tinuities and delta functions which are familiar characteristics of these thresholds 

can naturally generate Bjorken scaling behavior in the deep inelastic scattering 

region. This latter statement is independent of the sign of /3(g) in the renormaliza- 

tion group equation. 
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7. By “analogue of (7)” we mean the obvious: 

E a +- 112. - 1 am. 
1 z a a 

i j 
5 3~j + hEi ) 

@=O 

where mi are the fundamental masses of the theory and the pj represent 

the possible (Euclidean) renormalization points. 

8. For further references to the discussion of Cn in this connection, see the 

references in Ref. 1. 

- 11 - 


