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We present here an extension of the maximum likelihood method. 
We demonstrate that the estimation of certain parameters, which are 
important in the analysis of multibody final states in nuclear 
interactions, is equivalent in power to that of maximum likelihood. 
We indicate how this new method gives valuable guidance in improving 
the nature of the hypothesis under test and how the method can be 
interpreted as a technique for separating a body of experimental 
data into a number of resonant channels on an event-by-event basis. 
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INTRODUCTION 

In this paper we present an extension of maximum likelihood 

analysis which we believe is particularly well suited to the 

analysis of -multibody final states. We-present first, a heuristic 
development of the technique; second, a derivation of the important 
equations of the technique from the postulates of maximum likeli- 

hood analysis, a very brief discussion of some problems not covered 

in the derivation; and finally, a description of a computer program 
which applies the ideas presented here. We emphasize that the 
second part of the paper is a derivation from the accepted princi- 
ples of statistical inference, so the other discussion in the paper 
is an illustration of, rather than experimental evidence for, the 
validity of a mathematical theorem. In subsequent -papers we will 
present the results of some applications of this technique. 

HE3JRISTIC INTRODUCTION OF CHANNEL LIKELIHOOD 

In the analysis of multibody final states an important problem 

is the determination of which resonant channels are present and the 

relative contribution of each channel to the total body of data. 

(In addition to resonant channels, one would include a nonresonant 
phase space channel.) It would be desirable, if possible, to 
identify for each event the channel which was responsible for the 

production of that event. We feel that the technique described 
here comes very close to achieving this goal. This is possible 
because different channels populate different regions of.allowed 

phase space differently. In the extreme, unrealistic case where 
each channel populates a different, nonoverlapping, region of phase 

space, there is no problem in seeing that an appropriate partition 
of phase space will separate events by channel. Unfortunately it is 
not that simple in reality. There are regions of phase space which 
are populated by more than one channel and we must consider how to 

handle the events which occur in these regions. We will work in a 
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full set of phase-space variables, so that the regions of overlap 

rnwt be smaller than in any possible mass projection. In this way 

we retain the fullest possible information about each event. In a 
region of overlap, we try to apportion an event between the overlap- 

ping channels , giving some percentage of its full weight of 10% to 

each of the channels. Since, in general, all channels overlap to 

a small extent everywhere, this apportioning is really done for every 

event in the data and it is therefore crucial that it be done 

rationally. To do this we introduce some notation: 
There are N events of data. Each is described by a full set of 

variables, which we think of as a vector, or point in phase space. 
si is the phase space point of the ith event in the data. 

There are M channels in our hypothesis (including phase space). 

For each channel j we have a phase space density function denoted 

by pj(i;,. These functions usually are Breit-Wigner resonant shapes , 

but can include factors accounting for angular dependence. The 

normalization of the pj($' is 

- 

where LIPS indicates an integration over Lorentz Invariant Phase 

Space. 

The number of events which are produced via the jth channel is 

N . . There is a constraint that 
3 

CN~=N (2) 
j=l 

We attempt to find the "probability that the ith event came from 
the jth channel." This depends on the magnitude of phase space 

density p. 
J 

evaluated at the point si, which is to say pj(zi). It also 
depends on the relative sizes of the N.. 

J 
Suppose an event were 

2 



found with an gi such that pj(gi) = pk(xi) for k * j (different 

channels, but same event) and suppose we already knew from other 

inf%mation that there are nine times as many events in channel j 

as in channel k We would say event i is 9% channel j and only 

1% channel k.. We define f ji = pj(Zi) for conciseness of notation. 
We have then 

N.f.. 
J Ji 
I 

j 

is the relative probability of event i 

having come from channel j. 

We normalize this for each event 

M N.f 
S = c Ji 

i j=l I. 
J 

N.f 
= Jji 

wji sI 
i j 

(3) 

(4) 

M 
so tha.t the w ji have the property c 

j=l wJi 
= 1 for every event i. 

This w ji is the "weight" of event i in channel j. Notice that if there 
were no overlap, for each event i all of w ji would be zero except for 
one channel j such that w 

ji = 
1. A new estimate of the number of events 

in channel j is a sum of w..: 
Ji 

N 
N.' = 

J c i=l wji (5) 

and always has the property that c.M = N. 
J j 

By computing the w ji and by weighting each event by w ji we expect 
to get enriched samples of events for channel j. We sum this enriched 
sample to get a better estimate of how many events there are in the 

channel. We iterate the procedure by using N,' in the place of 
J 

Nj and repeating the coqutation of the w... The iteration converges 
Ji 
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to a set of Ej which are the solution of a. set of equations, 

h 

j=l 7 l “, M 

or 

(6) 

(6’ > 

After this solution has been found, we use the w ji to weight 
events when making invariant mass and angular distribution plots. 

These plots of weighted data should have distributions somewhat 

like the density function used in selecting them but need not 

agree exactly. If a slightly wrong mass or width is used in select- 
ing a resonant channel, the events from that channel will still be 
selected and when plotted will display the actual mass and width of 

the resonance. (At least, they will be closer to the true value than 

the initia.1 assumption was.) 

If a resonant channel has been left out of the hypothesis, 

the events due to that channel will be picked up by some other 

channel (probably pure phase space) and will distort the distribu- 

tions in that channel in a visible way, giving a strong indication 

that another channel should be included in the hypothesis. If a 
channel is included in the hypothesis which is not present in the 

data, the Nj for that channel will be driven to zero in the iteration. 

Since the plots of weighted or selected events approximate 
data samples from pure resona.nt channels, one is able to see directly 
in the histograms any features of the data which were not-included 

in the original Gothesis. Thus, unlike the standard maximum 
likelihood technique, the channel likelihood approach gives useful 
indication as to how the structure of the hypothesis might be improved. 



DERIVATION FROM POSTULATE OF MAXIMUM LIKELIHOOD 

The solution of equations (5) is an estimation of parameters, , i 
N 0, J 

in an hypothesis. We will show that these equations are a subset 
of the full set of equations which must be solved to find a maximum 

likelihood fit of an hypothesis to the data. The likelihood function 

cl-z is defined as a product over the data 

In this expression the adjustable parameters are the Nt and the 04. 

Tne o&are "shape parameters" within each channel. We display them 

explicitly so as to distinguish them clearly from the '?size parameters", 

N . * 
J 

The maximum of $. must be found subject to the constraint given 

in equation(2). We use a Lagrange multiplier, A, to introduce the con- 
straint into an equation for the maximum of log 013 , 

j=l 7 ' .', M (8) 

Multiply by N, and sum these equations to determine 1 

But c Nj = N 

(9) 
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and c 

f 
N. * = Si 

JI 
3 

so A=1 I i 

The set of equations ‘(8) reduces to the set (6'), thus completing 

the Proof. 
Here we have shown that, given a set of hypothetical resonances, 

the number of events attributed by this technique to each resonance is 

precisely the same number as determined by maximum likelihood. Con- 

cerning the shape parameters and histograms made using the weights w 

we can make the following comments: 
ji 

If, for example, one makes a histogram of the invariant mass of 

a pair of particles that are supposed to form a resonance and in the 

histogram weights the events by the w ji corresponding to the resonance, 

one sees a resonant shape in the plot. Keep in mind that wha.t is 

plotted is real events (but weighted). 
One might ask whether the apparent shape is a result-of an 

actual resonance or a result of the method of weighting. We have already 
shown that the N. is a best fit value, so if the resonance is not 

J 
actually there, we expect that the corresponding Nj would be quite small 

and even if the histogram shape is only a reflection of the hypothesis, 

the small Nj value allows one to reflect the hypothesis without being 

confused by the histogram. If, on the other hand, the Nj value is 

large, indicating the resonance is actually there in a best fit, then, 
for every event in the histogram, there is one less event in the histo- 
gram of some other channel. Thus we can see that if the resonant shape 
in the histogram were purely an artifact of the weighting technique, 
there would be a dipGin the histogram of some other channel. 

If the resonance is actually present in the data, but the mass value 
used in selecting it is slightly wrong, the histogram of data will be 
biased away from the true value toward the value used in making the 

selection. The maximum weight will be given to events with mass at the 

peak of the selection function, and will decline for mass values 
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beyond this peak. Thus the apparent peak can at most be pulled to 

conzrm to the hypothesis and is actually never pulled this far. 
Instead the histogram is always a plot of the selected events but 

, i 
biased somewhat toward the possibly erroneous mass hypothesis. Similar 
comments apply.for the resonant width and for angular factors. 

THE COMPUTER PROGRAM 

The elements of the simple computer program necessary to employ 
the channel likelihood technique are briefly described. 

The computer program used to analyze bubble chamber data reads 

a. tape of preselected, fitted events , solves the coupled equations (6) 
for the number of events in each cha.nnel N., and crea,tes histograms of 

J 
the real data. for any desired quantity. The input hypothesis for each 
channel includes a mass distribution for a particular group of parti- 

cles and possibly production and decay angular distributions. The 

first step generates Monte Carlo events and uses them to integrate 

the matrix elements for each channel according to equation (1). Next, 

every event is read from the tape, the matrix elements pj(zi) for 

every channel are computed at the coordinates of the event and the 

table of h 
ji = 

fji/Ij is saved. This array can be rather large, N x M, 
for N events and M channels. Starting from an initial guess for the 
values of N., values of w.. from equation (4) are computed and new 
values for ij are obtaineiifrom equation (5). When the equations (6) 
are solved, either by the iterative method or a more conventional 

minimization technique, the weight w.. of each event in each channel 
Ji 

is computed from the final values of N j using equations (4). 
The channel likelihood method has been tested on several samples 

of data from a 5 - p exposure in the 30" BNL bubble chamber. The 
iterative procedure for solving the coupled equations (6) was used to 
determine the N.. 

J 
It is an extremely simple method and converges 

quickly (less than 20 iterations) when the number of channels is small 
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(less than six). It is as efficient in time and number of iterations 

as the more general minimization procedures when used on a large 

numb& of channels. 

The simplest task for this procedure to accomplish is separating 

the events by channel under the assumption that the matrix elements are 

completely known. This is illustrated using a sample of two-prong 

events with a vee which fit the hypothesis K&c&K . Five possible 
channels were considered. 

+-s: 
The events with K fi were not distinguished 

from those having K-fir+ and were considered together as part of a K*' 
channel. Similarly, the Kslr' and KS"- events were considered together 

*+ - in a channel defined for K production. Both of these were analyzed 
for K)c(890) and K*(l420). The final channel was simple phase space, 
No evidence for K*(1420) was found. 

A channel is defined by the matrix element computed at the event 

coordinates. In this case, the matrix elements used were the simplest 
form for the Breit-Wigner shape with values from the 'Review of 
Particle Properties" data book: 

b(M,Mo,?) = 1 + 
[ ("J'i' 

with MO = 0.8917 GeV and r= 0.0501 GeV. The matrix element for phase 
space is just 1. The angular distribution included was flat. 

After the fit had been made to find the best values of N., the 

number of events in the jth channel, 
J 

the weight or probability that the 
ith event is in that channel is found from equation (4). To find 
the distribution of events in the jth channel, the kinematic quantities 

are plotted for all of the given events, but weighted by w... 

The mass distributions in Fig. 1 and Fig. 2 obtained $Gorn events 
at two different energies show the characteristic shape of the Breit- 

Wigner amplitude. The plots contain exactly as many events as 
occurred in the channel. No cuts were necessary to obtain these pure 
and complete samples of K* events. 
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No attempt to adjust the shape parameters was made in this example. 

From the plots shown, the agreement between the hypothesis and the 

" aat?? can be evaluated. The plots made using weighted data are not 

necessarily identical to the initial hypothesis. Note that the widths 
of the matrix elements in Fig. 1 and Fig..2 are somewhat too small to 

accurately describe the data. Either the resonances are somewhat wider 

than the published values or a measurement error should be taken into 

account. 

The phase space plot in Fig. 3 contains both S-K mass combinations 
of the real events weighted by their weight for pure phase space and, 

for comparison, the same quantity plotted for Monte Carlo events. 

Notice that the resonance has been removed by this weighting. 

A second example used a sample of four charged R events. 13y extend- 
ing the method further, parameters in the matrix element can be deter- 
mined from the data with corresponding distributions created from 

Monte Carlo events. An extremely simple method for improving the mass 
and width parameters of the matrix element was found to work well. A 

parabola was fit to both the data and Monte Carlo mass distribution 

near the resonant mass. The difference in the values of the parameters 
was used to estimate a better mass and width for the ma-trix element. 

It is not guaranteed that the parameters calculated each way 
are identical to each other, and in general they will not be. The 

data "pulls" the distributions determined by the input ma~trix element 

toward more correct values, that is, away from the parameters put into 
the matrix element. After a few tries, using the fits to parabolas to 
quantify the disagreement and make a reasonable correction, the 
distributions did converge to a stable limit, which presumably 
corresponds to the best values. The general agreement of the actual 
distributions with the input matrix element can be compared if it is 

felt that some confirmation of the form of the matrix element is 

needed. For example, the various forms for a mass- or momentum-depend- 

ent width produce markedly different agreement. Angular distributions 

can also be determined by starting with a flat angular distribution and 
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fitting the resulting angular distribution to Legendre polynomials, 

for instance. Putting this hypothesis into the next iteration will 

I cause‘ the angular distribution to change further until it converges to 

a stable limit after several steps. I i 

DISCUSSION 

We set out to find a way of identifying which channel was responsible 

for each event in a body of data. In our examples we did find that 

usually for each event, i, there was one channel, j, for which the 

weight w., 
J1 

was much larger than the weight for any other channel. 
We identify event i as having been produced,by channel j. 

Our claim that this most probable channel is the channel causing 

the event is in our opinion no different in principle from the claim 
that the values of parameters found by maximum likelihood are the 

values which should be used in describing nature. 

Unlike the usual way of presenting mass plots, this technique aoes 

not cut the data and throw away what fails the cut. All data must be 
compared to some part of the hypothesis and one is not finished until 

all comparisons show consistency. Our feeling is that the technique 
offers valuable guidance to the experimentalist in improving the form 

of the total hypothesis under test. In addition we have proved that 
given an mothetical form, the fit is the best (i.e., maximum likeli- 

hood). 

The present work was inspired by the paper of Brau et al.1 on 

"Frism Plots". However, we do not use "Prism Plot" variables; nor, 

in fact, do we use any special set of variables. When doing -channel 
likelihood analysis, we use a variety of variables, mostly invariants 
masses, choosing at each stage the variables most convenient for that 
part of the computation. Our method of computing a channel likelihood 
for each event seems to be heuristically similar to the event tagging 

mentioned in their paper. There are four significant differences. We 
are able to connect our method with the established method of maximum 
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likelihood; we use Monte Ca.rlo techniques solely for the purpose of 

integrating over phase space; there is no underlying hypothesis about 
the 2ature of the interactions taking place (such as the supposition 
that they are highly peripheral); it is now seen th&t the N, are a 

J 
solution of a set of equations.for maximum.likelihood and can be solved 

by any method, such as common minimization procedures, and not just 

by the illustrative iterative procedure developed heuristically. 
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FOOTNOTES 

1. J. E. Brau, F. T. Dao, M. F. Hodous, I. A. PlesS' 
Phys. Rev. Lett. 3, 1481 (191). > and R A . . Singer > 
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FIGURF: CAPTIONS 

, i 

Fig. 1: Mass of K-a in 132 K%,x' events at 0.862 GeV/C. The mass 
distribution of all events is shown and underneath it the 

mass distribution of the same events weighted (see text) 
*o for the K channel in (a) and the K *' channel in (b). 

The curves represent the matrix element hypothesis for each 

channel. 

Fig. 2: Mass of K-X in 124 K'Ksti' events at 0.926 GeV/C (see Fig. 1). 

Fig. 3: Mass of K'x* in 132 K'KSY? events at 0.862 GeV/C weighted 

for phase space. For comparison, the phase space mass distri- 
bution is shown (dashed line) generated from a Monte Carlo 

program. 
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