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- I. INTRODUCTION 

Matrix elements of local charge densities <+’ I JoI z,K>’ find very intuitive 

expressions in the language of the infinite momentum parton modell: as in 

ordinary quantum mechanics, they can be written as overlap integrals between 

the parton wave functions of the hadron states $ and $‘. Several authors 2-4 

have considered such expressions in various versions of the parton model. 

Unfortunately, the lack of specific information about the parton wave functions 

prevents the extraction of much information beyond the Drell-Yan2-West3 

relation. 

In the present work, we consider the angular momentum properties of the 

wave functions involved in the overlap integrals, and are led through these 

considerations to propose a specific statement of universality among hadron 

form factors (Section II). The hypothesis can be directly tested in the case of 

the transition yvp -) A’( 1236), and this is done in Section III of the paper. In 

this section we also present some statements made by the model about certain 

other transition form factors (yVN - S11(1525), y,# - D13(1525)) of exper- 

imental interest. Section IV of the paper contains some discussion of our 

results. 

II. FORM FACTORS IN THE PARTON MODEL 

The physics discussed in this paper is viewed exclusively from the infinite 

momentum frame (IMF) introduced by Drell and Yan2, in which the initial 

hadron momentum Pp is the four vector (P + m2 /2P, 0 , 0 , P), P-+ m, and 

the four momentum carried by the current is # = (mv/P, Q, 0, 0). As 
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P-m, wehaveP2=m2, q2=-Q2, q.P=mv. Many of the kinematical 
-h 

aspects of momentum space wave functions in the IMF are reviewed in an 

article by Kogut and Susskind5, to which we refer the reader. In constructing 

form factors in the parton model, it will suffice (as discussed in Refs. 2 and 5) 

for us to consider the matrix element < h’P_th’ I Jo I hP_A> oo, where EA(_P’h’) 

denote the momentum and helicity of hadron h(h’), g’ = g i Q = P-I + Qy 
X 

and the subscript m on the matrix element denotes that the limit P - m is to 

be taken. The parton model then is a statement that 

<h’P’A’ lJ,l hPA>a, = z($ , ji, $) o3 
a 

(1) 

where jt is the bare charge density operator of parton type a, and J, ($‘) is the 

initial (final) hadron state expanded onto a Hilbert space of many-parton wave 

functions at infinite momentum. In momentum space, ~,6 and +’ carry as argu- 

ments the longitudinal fractions q i, the transverse momenta I&, and the 

z-components of spin hi of the partons. (The hi differ from parton helicities 

only by corrections of O(Q/P) ). 

We now observe a simple fact which is essential to our discussion: at - 

infinite momentum the bare charge density ji cannot flip the spin of the parton 

from which it scatters. E. g. , in the case of spin l/2 partons, 

<qE’h’ Ij”lqKA>m = e 
[1 
ii(g’A’) you(Ph) 1 M 

= e (277 P) Qhl (2) 
with a normalization u+u = 2E for the spinors. From Eq. (1) it then follows 

that none of the parton spins are flipped during the scattering. Therefore, if 

the physical matrix element <h’ E’ h’ I Jo I h Eh> cc’ does not vanish for h’ f A , 
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there must, in order that AJz # 0, occur a flip in Lz, the total z-component 

-of o&al angular momentum of the partons; this consideration then implies 

the presence of components with different Lzls, including L, f 0, in the 03- 

momentum parton wave‘function of any hadron with spin. For example, we 

shall see (in Eq. 12) that for the nucleon <N El-l/2 I Jo I N El/2 > oc F2(Q2), the 

Pauli form factor. The non-vanishing of F,(Q’) necessitates a classification 

scheme at infinite momentum in which neither Sz nor Lz are separately diagonal. 

This is a parton model realization of the conclusion of Dashen and Gell-Mann’. 

We shall have more to say about this in the ‘concluding section of the paper. 

Let us expand the hadron ket in terms of eigenstates I L>, IS> of Lz and 

Sz respectively 

Ih, p,, Jz =h> = c CL” IL> IS> 
L+S=A 

with c I CL” I 2 = 1. The kets IL > and IS > should display additional labelling to 
L 

indicate the intermediate angular momenta which couple to give the final values 

of L and S, but we omit this for the sake of typographic clarity. 

It will now prove convenient to project the state ve ctors I L > onto kets 

l2&...&; 7Jl... qn> which provide a basis set in transverse position space. 

It is then a straightforward exercise starting from momentum space and Fourier 

transforming, to write the form factor in terms of the transverse position 

space wave functions. We shall only state the result here, leaving the deri- 

vation to Appendix A: 
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limp_,P-’ <h2 ,p’ A2 I Jo Ihl _Phl > 
- 

$$a z; hl 
e ( qL (771..77,*q (4) 

with M = h2-Xl. 

h Eq. (4)s “al’ labels the struck parton, with charge ea. The 5; are equal 

to 21i - 2Co, the displacement of zi from the “center of mass” ZXo = C n i 2&. All 

the spin parts have dotted out, conforming to the previous discussion; and the 

independence of the $‘s of the momenta P and< P’ is a result of the Galilean 

invariance in the infinite momentum frame5. 

Needless to say, we know little or nothing about the wave functions ~,6, except 

for their normalization (derived in Appendix A): 

(d?7i/~i) d2Xi’ ‘(C17i it) ‘(Cni-I) 

= 
’ A’A ‘h’h (5) 

However, let us explore the following line of reasoning. It is clear from the 

previous discussion on anomalous moments and L-S mixing that the P- CO 

parton Hamiltonian is a fairly complex object, and that the wave functions for 

the hadrons in the I&IF have little apparent relation to the usual “constituent 



quark” wave functions of the ordinary quark models, except perhaps through 

a unitfiy transformation given by the hadron dynamics. Now, consider as an 

example the singly charged non-strange baryons ( 
+ 

WW, ,+ (1236), 
+ 

D13@525), 

etc. . ) The non-relativistic quark model predicts similar spatial wave functions 

for the P( 938) and A’( 1236), but quite a different one for the Df3(1525), since it 

is an I= 2 excitation. In the IMF, however, it may be that the wave functions 

for a given Lz are not too different for 3 of the non-strange low-lying baryons 

of a given charge (so that the minimal quark makeup is identical - ppn in the 

above example). Let us weaken this statement some, and postulate that for 

equal values of L, L’ there is enough similarity in the wave functions such that 

the Q2 behavior of the integrals / 
%!*$ h 

+E, e qL is not very different for any 

of the low-lying baryons of a given charge and hypercharge. We must however 

immediately stipulate that in the case hl f h2,Q must be large enough to 

deaccentuate the orthogonality properties of the wave functions. Note that, in 

contrast to the case of deep inelastic electroproduction, the validity of Eq. (4) 

does not hinge on Q being large’. 

The last step ‘s to assume that representations at P = 03 are sufficiently 

mixed so that each of the different Lz values is reasonably represented in the 

wave functions of all the low-lying non-strange baryons - more concisely, the 

p I L s for given h are non-zero over the whole spread of the L’s for any of the 

low-lying non-strange baryons. 

The end result ofiall these speculations is an experimental prediction: 

namely, that the matrix element <h* P’ h’ I Jo I h gh,, can be written as N- 

EFaA(Q 2 )* G(Q 2 ), where G(Q2) contains all the dependence on h, h’, h, h’, but 

is a very slowly varying function of Q2. The factor P originates from Eq. 13) 

inserted in the expansion (1). 
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To compare any specific case with experiment, we set 
c, 

lim 
<h2 P’ hl + M IJ,I h&> 

P+cO = r(Q2) i 

< h4._P’A3 + Ah IJ,I h3 gA3>- 

and hypothesize that for Q2 away from zero (say Q2L 0.5 GeV2): 

(6) 

(9 r (which depends on all the h’s and A’s) is a very slowly varying function 

of Q2 (i.e., much more slowly varying than the form factors themselves) 

and 

(ii) r(Q2) N 1. This is a guess based on the normalization conditions (3) and (5). 

A gross failure of this condition (say r(Q2)’ 2 10 or s 0.10) would indicate 

that something has gone awry in our reasoning, narnely that the wave 

functions are not all that similar in the IMF. So hypothesis (ii) will play an 

important role in the initial evaluation of predictions of the model. 

A final word about isospin. In applications we shall generally choose 

hl = h3 = h4 = nucleon, h4 = resonance. In this case, we shall test separately 

the hypotheses 

<N*, ,p’ Al + Ah I J;“I N, ,p, Al>* 

M r vys (Q2,Ah) <N*, g’, h3 + AA IJov’s I NE, A3>‘0 (7) 

for the isovector (v) and isoscalar (s) currents, if an isoscalar transition can 

occur (i.e. , for the i: = l/2 resonances). 

We now turn to some examples. 
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h III. APPLICATIONS 

10 YvP - A+(l236) i 

It will suffice to examine hl = h3 = l/2, Ah = 0, -1. According to the 

preceding discussion, we shall also deal in this case exclusively with the iso- 

vector current. Eq. (6) takes the form 

lim 
<APt*$lJ$NF’;> 

P-=0 <NP_‘*+ IJo” N,P ;> 
= rItQ2) (8) 

and r l(Q2) should conform to hypotheses (i) and (ii). 

In terms of standard invariants, we have for the nucleon 

<NP’~’ IJvlNPh> = ii (P’A’) (TUFT+ Ff)yV + icVV q” (~3Fz + *2)/2m 1 u(PA) 

(9) 

while for the N- A transition we simplif/ matters by keeping only the magnetic 

dipole transition (this being a very good approximation to the data8) : 

<AETA’ IJF I NgA> = i F*(Q2) e I.l@,py Pa spvy (P’h’) u (PA) (10) 

The spinors are normalized to J; a! @a = 2M, iiu = 2m, where M and m are 

the masses of A(1236) and N( 939), respectively. 

Working in the infinite momentum frame # = (P + m2/2P, 0, 0, P), 

qn = (mv /P,Q, 0,O) defined in Section II, it is a kinematical exercise to show 

that 
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l@P P-l< NP’ $ IJolN$> = ~(T~F;+ sl) , (11) -“ccl 

lim pdo3 P-l <NE’ -3 IJ,I NP&> = (Q/m)(T3Fz+,FZS) , 

lim ’ 2 p-m P-‘<AP_‘&J;lN$> =(Q /J6)F* , 

lim pAa, p-1 <A?’ -9 IJzlN$> = [Q(M+m)/(fj.] F* . 

(12) 

(13) 

(14) 

Ignoring the isoscalar pieces, we can then process Eqs. (11) -(14) through 

Eq. (8) to obtain the relations 

%Q~F*(Q~) / [d6 F$Q2)] = ,,(Q2) 9 

m(M + m) F*(Q2) / ((6 Fz(Q2) ] = r-(Q2) , 

(15) 

(16) 

with r,(Q2) satisfying our hypotheses (i) and {ii). 

Next, we compare (16) quantitatively with experiment. (We choose (16) 

rather than (15) because the necessary vanishing of r+(Q2) at Q2 = 0 probably 

impedes r+(Q2) from becoming slowly varying until considerably higher values 

of Q than those at which r (Q2) attains this behavior. ) F*(Q2) is related to the 

form factor Gi(Q2) measured by Bartel et. al. 9 through the relation 

Gi (Q2) = /$ m /G+m)” + Q2 F*(Q2) , (17) 

so that the condition (16) becomes 

__ pL_ 
GG(Q2) / j: Q2/(M+m)2 F; (18) 

For Q2 > 0.5, the experimental results8 Gp(Q2) = G ‘(Q2) /U E M +KP) N 

G$Q2)/~ n N (1 + Q2/0. 71)-2, GE” N 0 combine to give 
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Fz(Q2) 5 1.85 (1 + Q2/4m2)-‘(1 + Q2/0. 71)-2 (19) 

In Fig. 1 is plotted the LHS of Eq. (18) for the data in (Ref. 9 with 

0.5 GeV2 < Q2 5 2.34 GeV2. It is seen that r-(Q2) is indeed very slowly vary- 

ing over this range of Q2 0 (Statistically, in fact, it is quite consistent with being 

constant (- 0.76) with a x 2 = 8 for 11 degrees of freedom. If we fit to the data 

of Q2 > 1, the constant is 0.73 with a x 2 of 0.55 for 3 degrees of freedom.) Both 

the average value of r (Q2) and its behavior as a function of Q2 are in remark- 

able agreement with our hypotheses (i) and (ii). 
[ 

For comparison, a plot of 

G~(Q~)/G,P~I~) in Ref. 9 shows this ratio decreasing much more rapidly with 

Q2 than r-(Q2), with a x2 for a constant fit being over 40 for 11 degrees of 

freedom. 1 
We can now also check the consistency, with our model, of the magnetic 

dipole approximation for the N - A transition: for large Q2, the condition for 

the compatibility of (15) and (11) is that 

F$Q2) = (2mW + m)/Q2) $‘?Q2) (r+(Q2)hJQ2)) . (20) 

The previously listed form factors give 

Fz = 3.15 (m2/Q2)Fy 

at large Q2. Numerically, Eq. (20) reads 

F; = 4.62 (m2/Q2)F’T (r+(Q2)/rJQ2)) - 

(21) 

(20’) 

We have just found r (Q2) = const N 0.76, so that agreement between (21) and 

(20’) is obtained for r+(Q2) = const 1~ 0.52, completely within the limitations of 
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our hypotheses (i) and (ii). 
-c, 

Comparison with “Relativistic” SU(6) 

In a sample-comparison with an N- A transition form factor obtained via 

symmetry considerations, we note the U(6,6) prediction of Salam, Delbourgo 

and Strathdee lo that 

F*tQ2) = P - mj2 + Q G;tQ2) 

where we have omitted all Q2-independent factors. We can most easily compare 

this with the prediction in the present work by calculating the ratio 

* 2 [ 1 F (& ) U(6,6) G;( Q2) 
oc 

present work 

c (M -. rnJ2 + Q2] [(M + ml2 + ~~1 [4m2 + Q~] 
JL 

Q4 + 2(M2 + m2)Q2 + (M2 - m 
J (23) 

Over the range of data shown in Fig. 1, this would have the U(6,6) form 

factor grow larger than ours by 46%. This represents a 5-6 standard deviation 

departure from the data. 

2. yvp - Df3(1525) 

In this case, we work with the representation of the vertex function given 

by Bjorken and Walecka 11 , which incorporates all three amplitudes for the 

excitation: 
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<N*_P’ A’ IJselNPA: 
4 

= T’l(P’A’) 
.[ 

qpl(eoq Poq -eoPq2) (73 gr+gs) , , 

+2fz CY‘P Y .v s 
I-1 1QPY p q s b-3+ +q 

+iMq Y” s Y5 (7 3(g; + g3v) + (is; + g$) UP, A) 
Fl 1 (24) 

where Sy = E yAv (T Av u 
p q e = Eyhva PtA qv e” O 

In Appendix B we sketch the kinematic manipulations involved in obtaining 

the infinite momentum limit of (24). The result is 

lim P-cOP-1<D13 P-ltlJrl p’$~> = ~~~~ - Q2 g; 

-3M(M+m) V 
g2 

+ M(2w” + M + m) g; 
I 

/ 43 

(25) 

limp P-‘<D13P,’ -9 IJ;Ip_‘& r 
--ccc 

= T3QL-(2u*+M+m)Q2g: 

+ 3MQ2 V 
g2 

+ M (2w*(M+m) -Q2) gz 1 / 46 

(26) 

with w* = (M2 - m2 L Q2)/2M. 

There are similar equations for gr , i = 1, 2, 3. 

The gils are related to the Feynman helicity amplitudes 

g L = K . ( l/~~(Q/Mkl ) 
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(27) 
/ i 

where K = 2 J2 M 5/2 (E* + m)1’2.q*2 . 

The discussion of Section II and Eqs. (ll), (12), (25) and (26) then lead to 

the following version of Eq. (7): 

‘%/2 = K l t-g,> 

q/2 =K l (g3/J3) 

g~yS-3M(M+m)g~yS+M(2w*+M+m)g~‘S 

M J6 rz”(Q2) . 2FT’ ‘(Q2) / Q2 

-Q3 (2w* + M+mkl Vys+3MQ g2 3 VyS+QM 

x (6 Q ry’ ‘(Q2) Fi’ ’ / m 

(28) 

(29) 

with rVPS 2 f (Q ) satisfying hypotheses (i) and (ii). (They are also different from 

the r’s in Eq. (8)) 

What can we learn from Eqs. (28) and (29) ? 

a) Since Ff is not particularly small, Eq. (28) tells us that it is inconsistent 

for all the isoscalar amplitudes to vanish for Q2L 1. Eq. (29) gives the added 

information that some linear combination of these is suppressed, due to the 

small size of Fi. The measured height of the second resonance peak deduced 

from electroproductmn total cross sections from hydrogen and deuterium 

seem to show 12 a D/H ratio of 1.5 f 0.3, and decreasing, near Q2 = 1; the 

systematic deviation from a value of 2 indicates the presence of both I = 0 and 

I = 1 excitations of the peak. To actually separate the I = 1 and I = 0 components 

of the D13, the isospin structure of the Sll excitation must first be elucidated 
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through a study of the electroproduction of 7’s from deuterium. 

b) Given our ignorance of the separate isospin amplitudes, we form the i 

linear combinations pi” ‘+ $ to obtain a single pair of equations for the electro- 

production amplitudes from protons: 

2w*(M+m)-Q2,gf-3M(M+m)gg+M(2w*+M+m)gg ) 1 

Q -Q2 (2w* +M+m)gy +3MQ2gl + ,M((zw*(M+m) -Q2 gg ) 1 
-&~6(r~F~+rSF~)/m 

(30) 

(31) 

At Q2 = 0, it is well known l3 that g2 (which corresponds to helicity 3/2 

in the yV-proton C. M. ) is considerably larger than g3 (h = l/2), and of course 

g1 does not contribute. However, at Q2 = 0 our equations are not helpful: 

Eq. (30) is not valid (because of orthogonality), and Eq. (31) is an identity. 

For Q2 > 0, the amplitude analysis of the data is at present in a very 

confused state. Recent measurements on yV p‘-- pq 0 14,15 allow one to 

estimate with some confidence the peak cross-section for yVp - S11(1525). 

Subtracting this from the cross section for yV - (1525 peak) 12,16 , one obtains 

an estimate for a(yVp - D13(1525)). Three data points obtained in this way 

are shown in Fig. 2. 

To compare with experiment, we shall state here the-relation between 
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peak cross sections and the helicity amplitudes. As shown in Appendix B, 
- -c\ 

(Oh) peak =4 ~a! ‘412/ - m2) 
1 (32) 

where I’ is the full width of the resonance, and h = l/2, 3/2, L. 

The measured cross section is 

u=u +EU T L 

= i (?/2 + o3/2) +EU L (33) 

where E , the longitudinal content of the virtual photon, is generally close to 1 

in the resonance region for moderate values of Q2. 

Eqs. (30) and (31) are not solvable in any ordinary sense (since the r’s 

are unknown, and there are three unknown amplitudes appearing in two equations). 

We shall examine the implications of Eqs. (30) and (31) by testing in turn three 

extreme possibilities: 

a) uL = u l/2 = 0, ?3/2 # ’ 

In this case, we can obtain gi from Eq. (31) (with g1 = g3 = 0) 

g; = Fr rv / (MmQ2) (34) 

and calculate the cross section using Eqs. (2’7), (32) and (33). The result is 

1 
opeak = ?! O3/2 1x 

167r mM2 (E*+m) 2 f ,F,“,2 ,rVj2 
I? (M2 - m2) m2 Q4 

w-9 

A best fit to our three data points with a constant r V is shown in Fig. 2 as 

a dashed curve. Not only is the fit poor ( h2 = 25 for 2 degrees of freedom) but 

V the required value of r- is on the low side (r V = 0.19). To obtain a better fit, 

-15- 



.’ 

one could have to allow r to vary by more than a factor of 2 over the Q2 range 

‘of thcdata (0.5 5 Q2 5 1.5). So this solution is definitely unsatisfactory. 

b) uL = a3 /2 = 0.3 o~/~, #O 

In this case we have from Eq. (31) 

46 rv Fv 
g; = 

- 2 
(36) 

mM 2w*(M+m) - Q2 

167ra! E*+m M2 
apeak =1/29/z= I? M2 m2 m2 q*4 - 2 IF,“,” lrv12 

(2u* (M+m) - Q2) 

(37) 
This solution is unphysical in that it develops a pole in the cross section when 

2w*(M+m) = Q2, which happens at Q2 = 1.04 GeV2. 

c) 9/2 = u3/2 = 0 , UL # 0 

The relevant equations in this case are 

gy LX 
-43 rv Fz 

Q2m(2w* + M + m) 
(33) 

and 
32ncr E*+m M2 c 1 

upe.ak N uL = r M2-m2 m2 Q2 (2w*+M+m)2 
- ,,,“I2 lrv12 

An excellent fit with constant rv (shown as a solid line in Fig. 2) is obtained 

for 
rv = 0.47 

with x2 = 0.37 for 2 deg/f. 

This is satisfactory on all counts. 

I 

As a result of this analysis, we predict that if only one of the three excit- 

ation modes is present in the range 0.5 < Q 2 < 1.5 Ge V2, it is most likely to - 
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be-u,. It is extremely unlikely to be pure CY~/~, and a helicity l/2 dominated 

” cros% section is completely ruled out by the model. We note that the possibi- 

lity of a purely longitudinal excitation is supported by a recent data analysis 
17 , 

but completely rejected in the quark model. 
18 

One must note, however, that since the factor 2w*(M+ m) - Q2 multiplying 

g3 in Eq. (31) is very small in the region of Q 2 - 1 GeV2 ,’ a fair amount of uI,,~ 

can be tolerated by our model if uL is substantial in this region of Q2. 

We have not utilized Eq. (30) as a cross check on these results because 

of the ambiguity introduced by the presence of the % parameters 1; , ’ rs. It 

is interesting that even had we assumed equations such as 

<N *+ 
*t9 IJ,Ip&, - 

P r* <pfg IJ,Ip&>, 

<N *“*&IJOIn~>m - rz <n*i lJol n>oo 

P P 
instead of Eq. (7), the right hand side of Eq. (31) is replaced by r- F2. Since 

forQ2<4Ge v2 Fl and F: are essentially equal, Eq. (31) is stable under 
V this kind of change, with the unknown r- 

P being replaced by r- . 

Let us examine the high Q2 ( 
21 Q2 > > (M + m) j behavior of 

Eqs. (30) and (31). If the scaling of GE and GM continued to hold at very large 

Q2, then Fy - FS x QB4, and Fy - Qm6 ; Eqs. (30) and (31) take the asymp- 
I I Y 

totic forms 

- [GM + m)/M] Q2 g1 - 3JWM + m) g2 - Q2 g3 

(Q4/M) g1 + 3M Q2 g2 - PM + n-0 Q2 g3 - Qw6 

These allow as a solution 

g2(Q2) 5 const - g,(&2) 

gl(Q2) I const . g3tQ2)/Q2 

-17- 
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(30’) 

(31’) 

(40) 

(41) 



From Eqs. (27) and (32), we have the predictions 
a 

uL/“T <, OtQ-2) 

c5j12. 
/ 

ul12 5 const 

that for large Q2 

(42) 
> i 

. (43) 

In fact, it is consistent for u3/2 
I 

cl12 - 0 but not vice-versa. So the situation 

at large Q2 is quite different from the one indicated near Q2 = 1 in the preceding 

discussion. The predicted asymptotic vanishing of uL/uT is again contrary to 

the result of the quark model. 18 It is a long kinematic excercise to show that 

as a result of equations such as (28) and (29), uL/uT - 0 independent of the 

spin or normality of the resonance. The result is, however, not necessarily 

obtained in the Bjorken scaling limit (Q2/M2 - const). 

3. yv Pd S;I(1525) 

We may repeat the whole preceding discussion in the present case, with 

the simplification of dropping the g2 amplitude, given the lack of a helicity 3/2 

state. 

The analogues of Eqs. (30) and (31) are 

Q2g~(M-m)+MQ2g~=2(r~+F~+r~F~) 

-Q2 gy + M(M - m) gi M rv Fl/m 

with 

5/2 = - 
2s M%‘2 (E* + m)-1’2 q*2 2 g3 

$7 =- -l/2 *2 
L 2 M5’2 (E* + m) q (Q/M) gl 

The formulae for the peak cross sections is this case are 

(44) 

(45) 

(46) 

(47) 
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!flC)pe& = 
8 ~a! M2 q*4 

r(M2 - m2) m2 Q2(E* + m) 
Iryl IFZI” 

if gl,2 = 0 
i 

(‘48) 

la T)peak M 
4 To! -M2 

l?(M2 - m2) m2 (E* + m) (M - m)2 

if gL = 0 (49) 

a) y2 = 0 , UL # 0 

The “best” fit, plotted as the dashed line in Fig. 3 against the data of 

Kummer, et. al. , 14 is obtained for 

rv = 0.48 

with x2 = 25 for 3 deg/f. 

V 
The fit is unsatisfacory, the variation required in r- in order to accommodate 

the data being a factor of 2.3 over the range of Q2 considered. 

b) uL =0, u~/~#O (pure El) 

Shown as the solid line in Fig. 3, this fit is obtained for constant r 
V 

rv = 0.39 

with 2 
x = 1.5 for 3 deg/f. 

Thus, we may conclude that our model shows a definite preference for E 1 

dominance, this time in accord with the quark model. 
18 

Finally, as in the case of the D13, we find in the high-Q2 limit 

t/uT <, const/Q2 

for Q2>> (M + m)2. 
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c, IV CONCLUSIONS 

Our Hypotheses (i) and (ii) have allowed us to formulate a comprehensive 

scheme within which to correlate the Q2-behavior ( Hypothesis (i)) and ‘to some 

extent) the magnitude Hypothesis (ii) ( ) 
of the excitation form factors of the low- 

lying baryons to the elastic form factors of the nucleon. In the single case in 

which an experimental test is at present possible (the N - A transition), our 

hypotheses (i) and (ii) are very well supported by the data. We have also sketched 

some implications of our model for the cross sections for yVN- D13( 1525) and 

y V N- S11(1525). Within the realm of present experimental possibility, one 

prediction is of especial interest: In the’ region of Q2 2 1,dominance of the 

cross section for D 13 excitation through a transverse helicity l/2 initial state is 

ruled out, while excitation by a longitudinal photon is highly favored. This is 

contrary to predictions of several versions of the nonlrelativistic quark model, 18 

For much larger Q2, (Q2 >_ 6 GeV2), the prediction is that the ratio gL /3T Lconst/Q’. 

We close with some remarks about the parton structure of the hadrons at 

infinite momentum, based on the observations made in Section II: (1) The . 

partons used here, if quarks, are to be viewed as “current quarks”. lg The 

wave functions of the low-lying baryon and meson states in terms of these is 

clearly different from the standard constituent quark qqq and qq wave functions 

such a conclusion, for example, casts great suspicion on the standard quark 

model predictions 20 for the spin dependent effects in deep-inelastic lepton 

scattering. (2) Jo can induce transitions involving AJz as high as f 2J, which 

implies that the Lz content of the wave-function of a hadron of spin J extends 

at least over the range -(J + l/2) to (J + l/2) for the baryons, -J to J for the 

-2o- 



mesons. (3) The fact that neither Sz nor Lz are even approximated diagonal 

shows-that the parton Hamiltonian at P - m is more complicated that simple 

string or spin-lattice models. 5 It is obviously of great theoretical interest to i 

find the form and-origin of the spi;-orbit interaction piece. 
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-c, APPENDIX A: DERIVATION OF EQ. (4) 

In this Appendix we shall stick to the notati0.n of Ref. (5), with the exception 

of interchanging the role of the n ’ s and 0’s. 

1. Normalization in Momentum Space 

As in Ref. (5), we define kets lpiKi > which describe partons with longitudinal 

momentum pip, P- 73, and transverse momentum I$. These are normalized in 

a manner invariant to finite boosts in the z directions 

We now construct the ket for a hadron with longitudinal momentum PP, 

transverse momentum 5 : 

lPJS> = 
N dpi 
H p d2Ki pG(P-‘Pi) “2(K-~Ki) 

i=l i 

The normalization 

<pKlP’ I$‘> = p 6 (P -P’) 6 (E - 5’) 

of these kets implies , 

W) 

(A3) 

(A4) 
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2. Invariances in PK Space 

-Lorentz and rotational invariance imply5 that the infinite momentum 

wave function ffiK( P,. . .p, ; 15 1.. . -n K ) is a function of the longitudinal fractions 

77: = P,/P, and of the quantities g i E Js i - n i E-. There is no other p or E 
1 1 

dependence. Note that 

Mathematically, 

Since 

;$“-n K )‘= /%I~---77 n 

3 

= S2(m&) W) 

we have the normalization 

cs 
n d77i 
rl- S(1 -Z?Q) S(Zl&) I /(n,...nn; pI...pn)l 

2 
= 1 

n i=l 77i 
(A7) 

3. Transformations to z-space 

We now procede to express the form factor in terms of wave functions in 

transverse position space. 

Firstly, since [ 5, Pz] = 0, we can define a parton basis diagonal in the 

transverse position gi and longitudinal momentum pip, with normalization 

<pi 5: I pi 2Ci’ = Pi ’ (Pi- pI) 62(si - $ ) (A8) 
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The ket for a hadron is then written 
c, 

Our normalizations (Al) and (A8) imply 

<piXilp;Ei> = &- e 
iK.* X -1 -i pi ‘( P,- P;) (AlO) 

On inserting the expansion 

IPi I&> = J d2Xi<PiXiI PiKi> IPi~i> 

1 
J 

iK.. zi 

=2n d2Xi e -’ IPi zi ’ (All) 

into Eq. (A2), we can compare Eqs. (A2) and (A9) to obtain the relation 

. 

. . . ZCI 

I- 

n 
= (2a)-n III d2Pi 6(ZEi) /%?1..-77n; $--Pn) 

i=l 

s n iP:Ei 
= ei!S* 5 (2r)-n ?J,‘d21?i6 (Z I$> e WI f(nl...77n; I?~--&) (A=) 

i=l 

1 
= 27r - fE*X W~..~,;+.$J 

where 

(A-) 

tA14) 
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So Galilean invariance of / has placed the entire 5 dependence of Z/J K into a 

phase Tactor. Note that ,X is the “C. M. ” coordinate, if we make use of the 

‘i - mi analogy. The /3 dependence has disappeared. i 

We can also examine the consequence of translational invariance. This is 

simply a statement of the independence of /on any external position coordinate. 

Hence we have for any a, 

we shall often choose a, = E = C Pi Xi. 

The normalization of the $.‘s is 

(A19 

From (A13) and (A15) we have 

(A17) 

where $=zi- 5 . What is the normalization of the $ ‘s ? To do this conven- 

iently, we perform a transformation from the n variables Ei to the nt-1 variables 

x1 , -i 5, subject to the condition I: n i 5 f = 0. 

Define 
X -n+l = ii 7p; 

i=l 

X =x -n-l-l - 

-25- 
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so that 
-c, 

xi=2c;+xr n+l i=l...n 

, I 

So in any integral we have 

J It d2Xi... = 
J 

n+l 

i=l 
II d2Xi S(zn+l).-. 

b i=l 
1 

- / 
=t J ; d2X_‘i d2X 6( &&).-. 

i=l i=l 
(Al@ 

where J is the Jacobian 

6x1 6x1 
sx; -- - 6x’ 

. n+l 

6x1 6x1 

6Y; l - l 

By;+1 

. 

. 

. 

“xn+1 6xn+1 “xn+l 6xn+l - - 
sx; ‘-‘6x;+l 6Y; 

. . . 
SYh+l 

6Yl c3Yl 
-.-. 
sx; 6x;+1 

. . 

. 

6y1 6y1 - . . . 
6Y; 6Y’ n+l 

“yn+l 6yn+1 “‘n+l 6yn+l -. . . -... 
sx; 6x;+l 6Y; By;+1 

The matrix elements are 

6Xi 
-= 6 
6xf ij 

j 

“xn+1 
- = T 6X: 

3 

for i, j f n+l 

for j + n+l 
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“xj =l 
gxkl 

for j # n+l 

6xn+ 1 i 
-= 0 
i5x;+1 

6Y. 6X. 6Y. 
and similarly for all 3 . Of course, all -&- , 2. vanish. 

6yk k k 

The Jacobean matrix then looks like 

1 0 o... 0 1 

0 1 o... 0 1 

0 0 l... 0 1 
. . 
. . 
. . 

P, P, P, - - P, 0 

0 

0 

1 0 o...o 1 

0 1 o...o 1 

0 0 l...O 1 . . . . . . 

P, P, P, - l - P, 0 

Subtract (in each submatrix) the first n columns, respectively, from the last 

column. One obtains for the determinant 

0 . . . 

1 . . . 

0 

0 

0 

0 
. 
. . 
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Expanding by the last column, we obtain (- TX r] i)l = - ZZ q i = - 1 . 

For The two dim nsional case we get 

J = (-%Q)~ =‘l . 

So now, using (A16), (A17) and (A18) the normalization condition becomes 

1 
J 

n d77i 
~?(l--ZZn~)d~Xi s(ZqiXi)d2Xe 

i(Js - 5’). z 

(2n)2 if1 ni 

and hence 

Zqi)d2& S(Zn.i$i) i$(~I...77,;$..$) I2 = 1 (A19) 
. 

We now come to consider the vertex function < n’ K’ I JP I r] I$ > , where J P 
is the electromagnetic current, coupling to the charges eq of the partons. As 

discussed in Drell and Yan, we shall specialize to the “good” currents ,u = 0 or 3. 

In particular we shall choose 1-1 = 0. 

In the parton model, we write 

Wl) 

where joa is the charge density operator for parton a. By hypothesis, joa has 

only a point-type coupling, In momentum space, this translates into 

<P,KBI jOalPaKa> =eaPaP 6~ A’ 
aa 

(A=) 

where Aa (1:) is the initial (final) helicity of the parton a. If n a # n L, a slightly 
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more complicated form is obtained. 

IBtroducing the expansion (All) for the bet I /3IC,>, Eq. (A22) in position 

space reads 

(A259 

We now make use of the expansions (A2) for I p_K> , (A21) for JO, and the 

result (A23) to write 

where 

(A29) 

Equation A24 results after doing the pi, 5; integrations, and using the fact that 

in our IMF, p = p’, which forces pa = Pa since all the other pi = pi0 

Making use of our previous result on transformation of variables, we can 

rewrite (A24) as 

<pK,‘IJOI pK> = 

(A25) 
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The X integration is now trivial, and we obtain our final result 
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APPENDIX B: KINEMATICS 

We begin with a statement of our conventions, and sketch the derivation of 

relevant formulae. 

The matrix element of the current Jp is taken between hadron states 

IhPA>, Ih’ p’ h’ >, normalized such that 

<h’ p,‘h’ I hPh> = (2Q3 2Ep “‘(p’ - I?) 6hh, o (Bl) 

The baryon isobars will be described by Rarita-Schwinger spinors normalized 

to 

W) 
$1 o O* ‘-1J-1/2 ~ = 2M. 

l-y- ‘J-1/2 

As usual, one constructs the tensor 

W 
l-JV 

E (27~~1 Id4xeiqe x <PA I [Jp(x), JvCO,] 1P.A > (B3) 

n 
(P + q - Pn) <n IJv(0)IPA > <nlJp(0)lPh>* 

(B4) 

where (B4) follows from (B3) in the electroproduction region, 

One can also expand 

w = - W1(gpv - ypp12) - - PV + w2 pp pv (B5) 

where 6 c1 = Pp - (P 0 q) qp /q20 The usual ” v W2” having a maximum value of 

approximately 0.3 in the scaling region is equal to $P l q)W2 as defined in 

Eq, (B5). 

The S-matrix for the scattering of a real, transverse photon helicity AY 

from a nucleon, helicity h, into a final state n is 

‘fi = 6fi + i(27r) 44 6 (Pn - P - q) e<nlJ. e(=) IPA > v36) 
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The total cross section is then given by 

2E 2E 
N Y “AA = e2(2nj4 > 

Y n 
c a4(Pn - P - q) I <alJo e(hy)l Ph> I2 

, , 

= -ICY, 
2 I-L 

flu Ev VW 

For a single particle final state (isobar), the sum over n is simply per- 

formed: 

2EN 2Ey 
d4Pn 

%i 
= (2*)4 I - 64(Pn - P 

Y ‘* (27f)3 
- q) 6(P% - M2) e2 I <nlJ. E IPA> I2 

= S?r20! 6((P+q)2 -M2) lSh I2 W9 

where gh is the C 0 M. Feynman amplitude < N*O_ h I J l E (q, h 
r’ 

I N e h > , where 

h = AY - h. For real photons, the invariant 2E E 
NY 

= M2 -.m2. One usually 

retains this flux normalization for virtual photons, with the result 

47rcl! FM 
gh = M2-m2 ( s-M2)2+ ( I’M)2 

I LFh12 W) 

where we have gone from the 6-function to the Breit-Wigner form. 

The observed quantity g = gT + E TL is given by 

5=5 T -bGrL = + (aI/2 + a3/2) + ’ aL 

In the resonance region, E = I for small electron scattering angles and 

moderate values of Q2. 

The Infinite Momentum Limit 

We shall need to evaluate < N* P’ h’ I Jo I N P A > in the IMF. As in the text 

we write (following Ref (11)) 

- 32 - 



<P + q, h’ IJ= EIP h > 

= ’ l ‘J-l/2 
tp + q, A’) q o 0 

p2 
4 

’ ’ %-l/2 

f 2E 
PfBY 

PoqPsY g 2 

+ iMq 
CL1 

Y O s Y5 (g, + g,) 1 U(PI w 

= Fl + F2 + F3 PlO) 

where S = E yhva PAqVeCr = E Our metric and y-matrices 
Y 

those of Bjorken and Drell, 22 &d the normalization of E 
pLJhf.7 

is such that 
-41’ O 

E0123 = +1. We normalize the spinor wave functions to 21, J, I-ll’ o 
= 2M, 

- 
uu = 2m. Equation (BlO) holds for the normal excitations l/2+- l/2+, 3/2-, 5/2+. D .A 

similar form holds for the abnormal excitations l/2+ - l/2-, 3/2+ . ., 0 with 

u - y5u. 

Jn obtaining the infinite momentum limit (IML) of (BlO),it will be convenient 

for us to reduce the second term in (BlO) to an alternate form. Using the identity 

Y 
Epapy 5V 5 = (QAYvgpa + g/-iv %!&A + qd%Agpv 

- gphgo! agpv - g/.lv gr2?+J - gp.go!v gpAJ tB11) 
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we can write 

I 

- 

VI.11 = EPIWY 
PQ! q@ sy 

= P (P.q qoE -P.F$) 
pl 

+ q 
I-l1 

(P*E P.q -m2qnE) 

+ y$m2q2 - P l Q2) 

with the second term becoming 

F2 
-l-y - 

= 2g2e 
‘J-l/2 v 

% 4c"2" 4'LJ-1,2 u 

‘1’ ’ ‘J-l/2 
= 2g27 tp+ %A’) q 

p2 
0. 4 

‘J-1/2 

(J312) 

r 
1 q 

h 
(P*E Poq-m2q.f -P*q q.E +P*Eq2) 

i- E Al tm2q2 - (P o co2)] utp, A) 0313) 

In going from the first to the second line of the last equation we have made use 

of the fat t that -$ ‘1” o ‘J-l/2 p J-Q’ l = 
pl 

-Q 
‘J-l/2 

qPl’ 

Now set E /.A = g/loo With our choice q = (mu/P, Q, 0, 0), we find the IML 

of Sy to be 

II sl Y! co = (0, o, -I’&, 0) (J314) 
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After taking the IML of all scalars such as q l E , P l E , etc. , we find 

- 
<P’A’ lJOIPA >co = ‘Q2 gl + 2(mv - Q2) g2 

1 1 
5 pl"'pJ'1/2 

x v) 1 ‘(’ 9'1J-1,2 
U 

3 
- 2m2(v2 f Q2) g2 

co 

. . . 
‘J-l/2 e q .0. 1 

Fl p2 41L J J-112 00 

- MPQ(g2 + g,) 
’ ’ ‘J-112 2 5 ‘(” 'pJ-1,2 

iy Y u 1 (BW 
co 

The rest is straightforward. The Rarita-Schwinger wave function is expanded 

in the usual way 

+ 
l-y l l ‘J-1/2 

l (P’ A’) = I’-.. 4 C(J-l/2, l/2, J; o’, A’ - G) 
Al’ l x J-1/2, g 

<A 1oo AJ-l,21J-1/2, c > Epl(P’ hl) 0 0. Ep (“’ hJ-1/2) 
J-1/2 

U(P’, h’ -U) 

where 

<A y” AJ-l,21J-1/2, CT > 

I 

2J-1/2 - 2 IhiI I- (J-1/2 + u)! (J - l/2 - u)! - l/2 
X-2 

1 (25-l) 6 J 
a 6 xii, u 
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and the various dot products taken. Useful limits are the following: 

r(P + q, 0) l q = (mu - Q’)/M 

i 

ZZ w* (as defined after Eq.. (26 ) in the text) 

E(P+q,*l)- q = * Q/fi 

Useful spinor IML’s are 

[ 
v<P’, l/2) 

i 
U(P’, -l/2) 

b(~‘, 1/2) K;: “1 U(P, 1/2)jp = - Q 

[G(P’, -l,2Jy$qu~Ps l/2Jm = - (M * m) 

where P’ = P + q = (P + m2+Q2 2p , Q, 0, P)O Formula such as (30), (31) in the 

text follow from a detailed application of the procedure sketched in this appendix, 
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FIGURE CAPTIONS 

‘1. It%tio G$I(Q2)/[2(l f Q2/(M + m) ) 2 1’2 Fv(Q2)] vs Q2. 2 Data taken from 

ref. (9). 

2. Theoretical fits to total D13 excitation cross sections. Data extracted 

from Fig. 7 inA.B. Clegg, ref. (15). 

I 

3, Theoretical fits to total Sll excitation cross section. ,Data taken from 

ref D (14)) based on a branching ratio ( Sll - q p)/( Sll - all) = 0.55. 
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