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ABSTRACT 

Several new model independent techniques for the analysis of multi- 

dimensional data are presented and applied to exclusive multiparticle 

production. For the reaction pp-+pprr'n+~c-~- from 12 to 28 GeV/c, 

an algorithm that directly compares two multidimensional point dis- 

tributions is used to show that the shape of d120/d($?)12 is energy 

independent while d60/dx6 (x=p,,/pmax) varies dramatically with beam 

energy. A multidimensional test for independence is used to show 

that the multivariate differential cross-section approximately fac- 

tors into its cylindrical momentum components, 

d180/d(a18 r d%/dp;, ' d60/d(p12+ * d60/d$. 

The shape of d60/dcp6 i 6 also shown to be compatible with that pre- 

dicted solely by kinematics. 

(Submitted to The Physical Review) 

*Work supported by the U.S. Atomic Energy Commission. 



Multiparticle production presents a difficult problem in data analysis 

due to the large number of independent observables necessary to completely 

describe the data. Excluding spin information, an n-particle final state 

requires jn-4 independent measurables for a complete description. The nor- 

malized multivariate differential cross section 

can be thought of as a probability density function in the chosen measur- 

ables, x x 1 2 ' l ‘X3n-4’ defined over their physically allowed values. 

Each event can be represented as a point in the multidimensional space 

. 
whose coordinates are the measurables of the event. This point contains all 

the information in the event and, thus, the collection or swarm of experi- 

mental points in this space contains all the information from the experiment. 

The purpose of data analysis is to infer the properties of the unknown prob- 

ability density function (p.d.f.) from the experimental point sample in the 

multidimensional space. For exclusive experiments where all 3n-4 independent 

observables are measured, this p.d.f. is directly related to the transition 

matrix element squared for the reaction. 

This report describes the results of applying several newly developed 

nonparametric (model independent) techniques for investigating the proper- 

ties of multidimensional point swarms 1,2 to the reaction pp+pp~+~+~r-lr- from 

from 12 to 28 GeV/c.3 An algorithm that directly compares the shapes of two 

multidimensional point distributions is used to study the energy dependence 

of the multivariate differential cross-section, while a multivariate in- 

dependence test is used to study its factorization properties. 
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Comparing Two Multidimensional Point Distributions 

This algorithm tests the hypothesis that two multidimensional point 

samples were drawn from the same unknown p.d.f. It is completely described 

in Reference 1 and only its essentials are discussed here. The two samples 

(classes) with Nl and N2 events, respectively, are combined into a single 

sample of Nl+N2 events with each event tagged as to its origin. Associated 

with each event in the combined sample is a measure of the composition of 

the events closest to it. Specifically, the closest k points to each point 

are examined and the number that come from class one, k 1' is observed. In 

Reference 1, it is shown that for the null hypothesis (both samples from 

the same p.d.f.), this quantity kl, as measured for all of the events, is 

distributed according to a binomial distribution Bk(k ) with probability P 1 

P = Nl/(Nl + N2). For alternate hypotheses, this quantity will not be so 

distributed. A Pearson x2 statistic 
4 is formed between a histogram of the 

frequency of the various possible values of kl (0 < kl I k) and the corres- 

ponding binomial distribution. Since this x2 is a measure of the deviation 

of the experimentally measured frequency of kl from its expected distribution 

when the two samples have the same multidimensional shape, it provides a mea- 

sure of the disagreement between the multidimensional shapes of the two samples. 

To study the energy dependence of the shape of the multivariate differ- 

ential cross-section for the reaction pp+pp~r+fl+rr-~-, 203 events at 12 GeV/c 

were compared to 196 events at 28 GeV/c.5 Figure 1 shows frequency histo- 

grams of the number of 12 GeV/c events in a 20 event neighborhood about 

every event in the combined sample for various coordinate subspaces. 

Figure la compares the two samples in the six-dimensional subspace of scaled 

center of mass momentum components 7 parallel to the incident beam. The fre- 

quency histogram, for this case, deviates considerably from the binomial 

distribution (open circles) expected for the null hypothesis, indicating 
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that these two samples differ considerably in their multidimensional shapes. 

Figure lb shows the results of comparing these two samples in the 12 dimen- 

sional momentum subspace' transverse to the incident beam direction. Figures 

lc and Id show the comparison in the two six-dimensional cylindrical coordi- 

nate subspaces of transverse momentum. In contrast to the scaled longitudinal 

momenta, the frequency histogram for these cases does not deviate signifi- 

cantly from the expected binomial distribution. The comparison is slightly 

better in the azimuthal angle subspace than the subspace of the transverse 

momenta squared, however, neither deviates strongly from the expected bi- 

nomial distribution. 

These results show that the 12 dimensional shape of the differential 

cross-section transverse to the beam direction, d 12 a/d(z ) 12 
1 

, is either in- 

dependent of or, at most, varies slowly with energy for this reaction in 

this energy range. By contrast, the shape of the six-dimensional differ- 

ential cross-section parallel to the incident beam, ,%/,x6 , is changing 

considerably; thus, the energy dependence of the dynamics manifests itself 

mostly, if not completely, in the longitudinal variables. 

Determining the Factorization Properties of a Multidimensional Point 

Distribution 

This algorithm seeks to test the hypothesis that the unknown multi- 

dimensional p.d.f., from which the data points were sampled, factors into 

the product of two density functions each defined over exclusive orthogonal 

subspaces of the full dimensional space, 

P (X1,X2’ * * .‘XJ = P (X1,X2’ * * .‘Xm) * P (xm+l>xm+2, * * .‘XJ (1) 

For this test, two procedures were employed. 

The first procedure is based on the mutual information measure9 of the 

relationship between coordinate pairs. The mutual information (MI) between 

-3- 

_._..,._ .._ -,.., ,,.- ., . .._.... -. - _ .- 



I c 

a pair of coordinates (xi,xj) is defined as 

M ij = [H(Xi) + H(xj) - H(xi, x,)1 / Minimum [H(xi),H(xj)I, (2) 

where H(xi) is an estimate of the information (negentropy) of the data as 

projected onto the ith coordinate axis. Similarly, H(xi,xj) is the estimated 

information of the data as projected onto the x x 
ij 

plane. If there is no re- 

lationship between xi and x. 
J 

in the data (null hypothesis), then M.. will 
=J 

have a small value 10 while if there is a complete dependence (xi determines 

xj), then M.. 
1J 

will take on its maximum value, unity. For partial relation- 

ships, M.. will have values between these extremes. 
iJ 

The MI measure is a 

generalization of the correlation coefficient 

C ij = <(Xi - cxi>) 

in that the MI measures 

("j - aJ>b/J-TiyqG;';T orj>)2> 

any relationship between the coordinates, whereas 

the correlation coefficient only measures linear relationships. 

The MI measures, M 
ij (l < i 5 18, 15 j < i) were evaluated in the 

following manner. Each axis of the coordinate pair was divided into ten 

channels with equal number of counts in each channel. These channels define 

a 100 cell grid on the X.X. 
1J 

plane and the number of counts in each of these 

cells is determined. The information is defined as 

M 
Hz- 

1 
n-t "& 
6 log 5 

4.4 

where M is the number of cells or channels, n-e is the number of counts in 

each cell and N is the total number of events. For the one-dimensional axis 

projections, nt = N/M by construction so that H = log M and the MI (Eqn 2) 

for this case becomes 
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100 

M = 2 - (l/log 10) c "-e n& 
ij -el N 

log I;j . (3) 

For the factorization hypothesis (Eqn 1) to be true, it is necessary for the 

MI measures for all pairs of coordinates between the two subspaces 

(Mij, 1 < i I m, m + 1 I j I n) to be consistent with the minimum value ex- 

pected for the null hypothesis. 

A cylindrical coordimte representation was chosen to describe the 18 

dimensional momentum space for the reaction pp+pp~+~r+;r-~r- at 23 GeV/c. 11 
The 

first six coordinates are the transverse momentum azimuthal angles, cp, for 

each of the particles, followed by the squares of the transverse momentum, 

P_L2, for each of them and finally the six center of mass longitudinal momenta, 

pll, 
for each of the particles. The- 153 MI measures, M.., between each pair 

iJ 
of these coordinates were calculated using Eqn 3. These MI measures were 

then standardized 12 

ii ij = (M.. - 
iJ 

0.0186) / 0.0030 . (4) 

Here 0.0186 is the expected value of M. lj' and 0.0030 is the expected standard 

deviation about that value, for the case where xi and x. are independent (null 
J 

hypothesis). These G ij values were arranged in a lower triangular matrix 

(2 5 i 5 18, 1 5 j 5 i - 1). Table la summarizes this matrix by averaging 

its elements over the regions that correspond to the three six-dimensional 

subspaces of the y, p 
I' and P,, coordinates. A second G ij matrix with the 

rapidity, q, 13 replacing the p,,,is also shown. 

Inspecting Table la shows that the data is consistent with no pair- 

wise MI between the six dimensional subspaces of the 'p and both those of 

the p; and p,, . In addition, there is no pairwise MI within the subspace 

of the p2. 
1 

There is measurable MI within the subspaces of both the 'p and 

p,, as well as between the subspaces of the p2 
1 

and P,, . 
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Momentum and energy conservation require non-zero MI among some of the ' 

coordinates. Specifically, momentum conservation requires non-zero MI within 
, 

the cp and p,, subspaces, while energy conservation requires non-zero MI within 

both the p2 and p subspaces as well as between the p 
1_ 11 

and p2 
4 I 

subspaces. 

Owing to relative average smallness of the l$1/ as compared to the )p,,l) this 
r 

energy conservation effect should appear most strongly in thz p 
II 

subspace, 

with a small contribution to the MI between the p and p2 
II 1' 

and an even smaller 

contribution within the p2 subspace. 
1 

Energy conservation should also pro- 

duce more MI between a particle's p2 
1 

and its own p 
II 

,than with the other 

particles' p . 
II 

A Table la insert subdivides the p - p2 region of the MI 
11 1 

matrix into its diagonal elements, which represent the MI between the p2 
I 

and 

p,, of the same particle and the off diagonal region which represents the MI 

between the p2 and p 
1 II 

of different particles. As can be seen, the average 

MI between the p2 
I and P,, of the same particle is much larger than that with 

different particles. 

Another quasi-kinematic mechanism for the non-zero MI between the p2 
J- 

and P,, could be the inverse energy of each particle that appears in the 

Lorentz invariant phase space volume element 

dv =+ 
i=l i 

This would produce MI only between p2 
1 

and 

vestigate this possibility, Table la also 

for the measurables p2, cp, -1 
1 

and 7 = sinh 

. 

p,, of the same particle. To in- 

shows the corresponding MI matrix 

where m is the 

particle's rest mass. In terms of these variables, the Lorentz invariant 

volume element becomes 

dv = fi (dlap;ay)i . 
i=l 
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The results in Table la show, however, that the phase space density, if any- 

thing, is less factorable when the rapidity, ?l, is used instead of pi,. In 

particular, the MI between the same particle's p2 
I- 

and 'fJ is considerably 

larger than between it's p2 
1 and pII* 

As mentioned above, for the multivariate factorization hypothesis (Eqn 1) 

to be true, it is necessary that all bivariate MI measures, Gij (Eqn 4) between 

the two subspaces be compatible with zero. This necessity is, however, not 

sufficient to insure the factorization hypothesis. It is possible for there 

to exist relationships between the aggregates of coordinates in the two sub- 

spaces that average to zero when projected onto all two-dimensional subspaces 

spanning them. An algorithm that provides a nece ssary and sufficient test of 

the factorization hypothesis is described in Reference 2 and is recounted 

briefly here. 

The procedure for comparing two multidimensional point distributions is 

used to compare the data to another point set of the same sample size con- 

structed as follows. The first m coordinates (Eqn 1) of each constructed 

point are identical to those of each data point, while the remaining n - m 

coordinates of each constructed point are obtained by randomly selecting a 

set of corresponding coordinates from a different data point. Thus, this con- 

structed point set is identical to the data in the subspace of the first m 

coordinates and a random permutation of the data in the subspace of the last 

n - m coordinates. The data points are then compared to the constructed 

points in the full dimensionality using the algorithm discussed in the previous 

section. For the factorization hypothesis to be true, it is necessary and 

sufficient that the multidimensional shapes of these two point sets agree. 

The statistic for testing this hypothesis is less straightforward, however, 

owing to the non-independence of the two point sets. The quantity kl is not 

generally distributed as a binomial distribution Bg (kl), as for the inde- 

pendent case. The kl distribution must, however, be symmetric about a mean 

of k/2 for the null hypothesis. 
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Table lb shows the results of applying this multivariate independence 

test to the data in terms of the same cylindrical momentum coordinates by 

showing the mean and third central moment of the frequency histogram of the 

number of true data points in a 20 point neighborhood of the composite sample 

of data and constructed points. This mean must be compatible with l/2 and 

third central moment must be compatible with zero for the factorization hy- 

pothesis to be true. For this data, it is seen from Table lb that the re- 

sults of the multivariate tests merely confirm the results of the bivariate 

tests and no additional relationships seem to be present among these coordi- 

nates. The hypothesis d 18 
o/da 

18 = d120/d(;L)12 * d60/dp6 was also tested 
II 

with the multivariate MI algorithm, resulting in a mean of .5l2 + .004 and 

third central moment -.00003 5 .OOOl. Combining this with the results in 

Table 1, the following factorization properties of the multivariate differen- 

tial cross-section can be inferred from the data: 

dUo/d($)12 = d%/d(p;+ * d60/d$ 

duo/O; d$ = d 
6 6 o/dp,, * d%/dc+? 

d'"o/d(p$ 26 dp,, 6 r d60/d(p;)6 6 6 
' d ddp ,, 

d180/d(f;318 r d120/d(zL)12 * d6cr/dp;, 

And thus, 
18 18 

d o/d($) r d60/d(p;+ - d%/dc$ 
6 6 

-/dp,, . 

Here the equal sign (=) represents no measurable relationship between the sub- 

spaces, whereas the approximately equal (-) indicates small but measurable 

relationship between them. Furthermore, the replacement of the longitudinal 

momenta, p , 
II 

by rapidity, 7, does not cause the multivariate differen. 

cross-section to be more factorable and, if anything, renders it less factor- 

able. 
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As mentioned above, momentum conservation introduces interrelationships 

within the six-dimensional subspace of the transverse angles. To test 

whether the relationships measured within this subspace (Table la) is due 
6 6 mainly to this mechanism or to dynamical effects, the shape of d o/dcp was 

compared to that predicted solely by kinematics. For this purpose, 970 

Monte Carlo events of the reaction pp+pp(&r) at 23 GeV/c were generated 

according to peripheral phase space. 14 These Monte Carlo events were com- 

pared to the data in the six-dimensional azimuthal angle subspace. Figure 

2 shows the results of the comparison. The frequency of data events within 

a 20 event neighborhood of each point in the combined sample is clearly com- 

patible with the corresponding binomial distribution. Thus, to the statis- 

tical accuracy of this test, the shape of d6cr/dcp6 is compatible with that 

predicted solely by kinematics. In particular, jets in the transverse plane 

would require the data to approximately lie on a lower dimensional manifold 

in this six-dimensional space and would be easily detectable. a 

Helpful discussions with S. Steppe1 and J.W. Tukey are gratefully 

acknowledge, as is the excellent work of D-B. Smith in the data 

reduction phases of the experiment. 
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Table 1: 

Figure 1: 

Figure 2: 

TABI;E: AND FIGUIU3 CAPTIONS 

Measurements of the factorability of the multi- 

variate differential cross-section in terms of a 

cylindrical coordinate decomposition. 

Tests of the energy dependence of the multivariate 

shape of the differential cross-section for various 

coordinate combinations. 

Comparison of the multivariate shape of the six- 

dimensional transverse momentum azimuthal angular 

distribution to that predicted by kinematics. 
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