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ABSTRACT 

Gauge models in which the symmetry breaking is dynamical, realized by 

certain composite Higgls fields acquiring a vacuum expectation value, are more 

constrained than corresponding models in which the symmetry breaking is 

implemented by auxiliary elementary scalar representations present at the 

Lagrangian level. Thus, in the former case, physical quantities which would 

otherwise be free parameters become computable. We illustrate this notable 

fact for the interesting case of the electron-muon mass ratio in Weinberg’s 

chiral SU(3) model. 
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Multiplets of scalar fields play a central role in the 

current efforts to construct renormalizable models of the 

weak interactions based on a gauge principle.’ It is in fact 

through the symmetry-violating vacuum expectation value 

(VEV) of such multiplets that otherwise massless vector 

me sons and fermions acquire mass and that the excess of 

symmetry present in the Lagrangian is prevented from being 

communicated to the solutions of the theory. 

In model-building activities, it has be come customary 

to think of these multiplets as elementary and, 

consequently, to associate wi th them sets of canon i cal 

fields in the Lagrangian whose coup1 ings, among themselves 

and to the fermions, are regarded as more or less arbitrary. 

Following one’s intuition, choi ces of di fferent scalar 

representations can then be made to generate the des i red 

pattern of VEV’s and masses. 

While this approach is certainly very useful in that it 

allows one to simply monitor the symmetry breaking, it is 

not aesthetically appeal ing in that it introduces a 

dependence on more parameters than one would expect in a 

fundamental theory. Furthermore, as we have been reminded 

a 
recently , the presence of canonical scalar fields in the 

Lagrangian does not a priori appear to be a vital 

prerequisite for spontaneous symmetry breakdown. The role 

of elementary seal ar fields in these phenomena could, in 
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fact, be .assumed by dynamical bound states, simi lar in 

spirit to the fermion pairs of Nambu and Jona-Lasinio? The 

fundamental world-Lagrangian wou 1 d then only involve 

elementary fermions and gauge fields. 

Of course, whatever we gain by adopting this approach 

we pay for by giving up our controls on the theory (its 

solutions) and, short of acquiring a considerable amount of 

insight into non-perturbative effects, our general abi li ty 

to perform even approximate calculations. What we gain, on 

the other hand, includes very important advantages such as 

being able to compute, at least in principle, quantities 

which would otherwise be free parameters. Some such 

quantities may actually be computed using conventional 

perturbative techniques if certain conditions, dependent 

upon truly non-perturbative effects, are met. With in 

certain assumptions about the structure of the VEV’s of 

dynamical bound states (which assumptions are testable by 

non-perturbative calculation), it is thus possible to test a 

gauge theory in which the symmetry breaking is postulated to 

be of purely dynamical origin. 

In the present note, we shall illustrate the above 

assertions with reference to one of the longstanding 

problems of particle physics, the calculation of the 

electron-muon mass ratio. It is well known that attempts to 

solve this problem within the context of gauge theories with 
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el emen ta ry Higg’s fields have been faced by very serious 

difficulties?” After rephrasing these difficulties in our 

own 1 anguage, it wi 11 become clear how an approach using 

dynamical symmetry breaking avoids them and, thus, makes it 

possible to compute that ratio in models based on gauge 

groups for which we had previously been forced to regard the 

ratio in question as a free parameter. This is true, in 
S 

particular,of Weinberg’s SU(3)xSU(3) model, in the context 

of which the suggestion that the electron- muon mass ratio 

in gauge theories should be computable was originally made , 

and obstacles in the way to its implementation were later 

pointed out.’ It is in terms of that particular model that, 

to have something definite in mind, we shall present our 

arguments, in spite of the fact that our considerations will 

manifestly possess a wider range of applicability . 

In gauge models with elementary Higg’s fields, the mass 

of a lepton is usually obtained from the perturbative expan- 

sion of Fig. 1. The f i rst and second terms on the r.h.s. 

of this equation represent zeroth order singlet and tadpole 

conributions, where, in the latter, the VEV (denoted by a 

cross> of the relevant scalar field is computed in the tree 

approximation from the scalar potential appearing in the 

Lagrangian. Subsequent terms in the expansion of Fig. 1 

represent one-loop contributions from gauge boson and scalar 

exchanges and tadpole terms, while a sum over two-loops and 
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higher order contributions is, also, implicitly understood. 

As fol lows from general renormalization theory 

arguments 6 (partially verified by expl ici t calculations’), 

the divergent parts in the above expansion transform under 

the gauge group either trivially (as singlets) or as the 

zeroth order tadpole terms and can therefore be absorbed in 

a redefinition of the Lagrangian parameters associated with 

these quantities. Consequently, from this perturbative 

point of view we conclude that, if and only if the gauge 

group and the group representations are such as to prevent 

zeroth order singlet and tadpole terms from contributing to 

a certain lepton mass, will this mass (say, that of the 

electron) be “ca 1 cu 1 ab 1 err in terms of other physical 

quantities. 

The first condition (absence of singlet contributions) 

is automatically enforced in chiral gauge theories, such ‘as 
5 

Weinberg’s SU(3)xSlJ(3) model. We remind the reader that in 

this model the leptons are arranged in a Konoponski-Mahmoud 

triplet o(‘, J,e”) with 1 ef t-handed and right-handed 
- 

components transforming under the gauge group as a cl,31 and 

(3,1), respectively. The only meson representation which 

couples to the leptons by the gauge-invariant Y ukawa 

coup1 ing C$+& +H. C. > is a camp 1 ex 3-by-3 elementary 

spinless matrix field transforming as a (3,3). Since the 

VEV of the latter is responsible for the zeroth order lepton 
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masses, to satisfy our second condition that there be no 

zeroth order tadpole term contributing to the electron mass 

we must then insist that the meson field in the array which 

Yukawa-couples to the electron (6 > have, in the tree 

approximation, identically vanishing VEV. 

Straightforward stability criteria imply in turn that, 

if this requ i rement is to be fulfilled, the effective 

Lagrangian cannot possess terms 1 inear in qte , which may 

arise whenever $ is, in the language of Ref.8 , “locked” to I 

other meson representations WI also acquiring a 

non-vanishing VEV. The presence of such “locking terms” as 

counter terms in the Lagrangi an is some t i mes forced by 

renormalizability, i.e., by the need to absorb divergences 

in amplitudes involving both $ andX which exist as a result 

of loop contributions present in some order of the gauge 

interaction. 

Unfortunately, this is precisely what happens in the 

case of Weinberg’s model. If the electron in this model is 

to acquire its mass ( of order 0: times the muon mass> via 

radiative corrections involving the muon, it is necessary 

that there be a direct mass mixing between left-handed ( w L > 

and right-handed (W,) gauge fields induced by some scalar 

meson representation (Z 1. But then there exist 

superficially divergent two- loop di agrams, cons i dered by 

Geo rg i and Glashow+ (see Fig. 21, with four external 
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elementary meson legs including one @ whose renormalization 

indeed requires the introduction of the unwanted locking 

terms we referred to above. Thus, the choice of zeroth 

order VEV which gives the muon a mass whi le keeping the 

electron mass1 ess turns out to be inconsistent with simple 

stability criteria; the VEV of ~2; is incalculable and so is . . . 

the electron-muon mass ratio. 

While there appear to be ways to finesse the impasse 

presented by the diagram of Fig. 2 in models which still 

make use of elementary scalar representations, it seems now 

unlikely that this goal can be achieved with an acceptable 

model, which is not too “ad hoc“ a nd for which the 

electron-muon mass ratio does not depend on a number of 

artificial parameters. 

Flow let us consider the case in which there are no 

elementary scalar fields. Several authors have appealed to 

the possibility that the Schwinger mechanism or some variant 

may provide for the cancellation of the unwanted vector 

meson poles at zero momentum-squared. We do wish to assume 

that the theory exists, as these authors do implicitly. 

However , rather than miraculous pole cancellations, we only 

assume that the theory generates gauge group mu1 tiplets of 

scalar bound states. Given that assumption, it is necessary 

to fol low the observation of Coleman and E. t/e inberg: 

namely that the true vacuum state is obtained by minimizing 
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a potential functional in the effective action which is 

defined as a functional Legendre transform of the usual 

actionja The effective action is a functional of properly 

defined classical fields, but in addition to fields 

corresponding to the elementary fields in the starting 

Lagrangian, there are also fields corresponding to each of 

the bound states. The potential function to be minimized is 

expected to depend on the classical fields associated with 

the assumed scalar bound states. Th i s dependence is 

calculable in principle, but we have no a priori knowledge 

as to the relat ive signs and magnitudes of the coefficients 

of the polynom ial terms. (The potential is an infinite sum 

of polynomial terms by construction, see Ref.9 1. 

If we assume that the minimum of the potential occurs 

at a non-zero VEV for some of the bound state fields, then 

we return to the structure of a theory with Higg’s scalars, 

but without the embarassments of elementary scalars. The 

diagram in Fig. 2 sti 11 exists, but is finite and 

calculable due to the appearance at the vertices of 

convergence factors arising from the structure of the bound 

states. The structure of the fermion mass contributions is 

altered from that of Fig. 1 to that of Fig. 3, where we 

have replaced the classical fields associated with the 

scalar bound states by thei r VE?l’s everywhere in the 

effective action and abstracted the terms proportional to 
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the product of the fermion field and its Dirac adjoint and 

containing no derivatives. In the lepton mode 1 considered 

here, the first term must still vanish as no mass scale can 

appear in i t, and the third term 1 i kewi se wi 11 not 

contribute by virtue of its group structure. We may refer 

to such structure since we have postulated that symmetry 

breaking arises only via VEV’s, and so the polynomial terms 

in the effective action must themselves be gauge i nvar i ant! 

Thus, the terms that contribute to the electron mass for 

instance, include single tadpole terms and also terms with 

three tadpoles such as is elaborated in Fig.4, namely terms 

of the structure proposed by Neinberg. 

Note that al 1 of the fermion masses (that of the muon 

as well as that of the electron in Weinberg’s model) are 

computable as all of the terms in Fig. 3 are finite 

(unrenormal ized). However, given the present day poverty of 

non-perturbative calculational techn i ques, thi s seems an 

impossible task practically. Indeed it would requi re 

non-perturbative calculation at least of the bound states 

and of the potential functional that generates the VEV’s. 

On the other hand, if we are more modest in our goals, 

guided by our experience wi th elementary scalars we can 

assume the existence of, and an approximate form for the 

VEV’s and examine the resulting theory for self-consistency 

(iteratively) and lar this may implications. In particu 
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enable us to calculate the electron-muon mass rati 0 

approximately within the assumptions, though not the 

electron and muon masses separately. 

Specif ical ly, in Weinberg’s chiral SlJ(3) model, we can 

reinstate in form the viability of his original conjecture 

as to the dominant contribution to the electron mass. In 

fact, Fig. 4 is just that contribution with compos i te 

scalars and form factors replacing elementary seal ars and 

vertices. We have already argued that the first and third 

terms in Fig. 3 do not contribute to the electron mass in 

this model. Thus, for the contribution represented by Fig. 

4 to be dominant we must assume that the second term and the 

implicit terms of Fig. 3 are, for the electron, in 

comparison, negligibly small. This imp1 ies, in particular, 

that the one-tadpole term for the electron must be 

sufficiently small (say, at 1 east one order of magni tude 

smal ler than g > in the scale set by the corresponding 

tadpole term for the muon. 

To determine the self-consistency of this assumption we 

must consider terms in the effective action that are 1 inear 

in ,.3 (.y and involve fgL, (as well as any other fields), since .’ 

these provide the kind of functional coup1 ing that would 

tend to generate a non-vanishing VEV for y$ once <$+>#O, and 

a rgue that these terms are at least one order of magnitude 

smaller than Lit. This we expect to be true, indeed, in the 
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case of contributions coming from diagrams wi th the 

topological structure of Fig. 2 because of the fol lowing 

reasons : a) these diagrams involve one explicit power of o( 

originating in the vector meson-fermion vertices; b> the 

effective scalar-fermion coupling constants should be very 

small, if the appearance of parity and strangeness violation 

effects at intolerable levels in the hadron sector is to be 
IL 

avoided . 

Thus we are led to the following approximate expression 

for the electron-muon mass ratio in a chiral SU(3) model 

with composite Higg’s fields: 

where M, , 14, are the masses of the physical (diagonal I gauge 

bosons and 5 is the mixing angle relating these bosons to WL 

and W,. Eq. (1) assumes that the mass scale characterizing 

the fall-off in momentum space of the form factors in Fig. 

4 is sufficiently large so as not to appreciably affect the 

value of the 1 oop integral. hleedless to say, if thi s 

condition turned out not to be true, the electron-muon mass 

ratio would, from our point of view, rega in i ts 
:3 

long-standing status as a mystery . 
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FIGURE CAPTIONS 

1. 

2. 

3. 

4. 

Loop expansion for fermion self-energies. 

Superficially divergent Feynman diagram leading to the loss of the zeroth 

order masslessness of the electron in Weinberg’ s SU(3)xSU(3) model with 

elementary Higg’ s fields. 

Tadpole expansion for ferm ion self -energies. 

Diagram for the electron mass. 
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