SEARCH FOR FRACTIONALLY CHARGED PARTICLES PHOTOPRODUCED FROM COPPER*

R. Galik \dagger, C. Jordan $\dagger \dagger$, B. Richter, E. Seppi and R. H. Siemann \dagger
Stanford Linear Accelerator Center Stanford University, Stanford, Calif. 94305 and
S. D. Ecklund National Accelerator Laboratory, Batavia, Illinois 60510

Abstract

A search for fractionally charged particles photoproduced from copper has been performed. No such events were detected. Lower limits for the mass of the quark established by this experiment are as follows: m (charge $=1 / 3)>3.6 \mathrm{GeV} / \mathrm{c}^{2}$ and $\mathrm{m}(2 / 3)>4.5 \mathrm{GeV} / \mathrm{c}^{2}$, if the quark interacts strongly; $\mathrm{m}(1 / 3)>1.4 \mathrm{GeV} / \mathrm{c}^{2}$ and $\mathrm{m}(2 / 3)$ $>1.8 \mathrm{GeV} / \mathrm{c}^{2}$, if the quark does not interact strongly ("leptonic" quark).

(Submitted to Phys. Rev.)

[^0]
I. INTRODUCTION

Since the development of symmetry ideas based on a triplet of fractionally charged particles, quarks, ${ }^{1}$ there have been many attempts to discover a real particle of fractional charge. The experimental techniques of these searches are varied, including chemical ${ }^{2}$ and cryogenic ${ }^{3}$ techniques as well as particle counting techniques. The latter have been used for both cosmic ray and accelerator experiments. Although some positive results have been reported, ${ }^{4}$ they have not withstood criticism. ${ }^{5}$ At the present time, the most stringent upper limits on quark production cross sections and lower limits on quark masses come from the accelerator experiments. ${ }^{6}$

Interpretation of a null result in any of these experiments is extremely uncertain because the dynamics of quark production are not known. At least one particular model, the statistical model of Hagedorn, ${ }^{7}$ makes very pessimistic predictions for the cross section for the production of high mass quarks in hadron-hadron collisions. In this model, the cross section for production of quark-antiquark pair depends on the mass m as

$$
m^{n} \exp \left(\frac{-2 m}{T}\right)
$$

where $T=160 \mathrm{MeV} / \mathrm{c}^{2}$ and is independent of incident energy, and n, which is in the range of 3 to 5 , depends on details of the quark spectrum. For high masses, the cross section drops an order of magnitude as the mass increases by $190 \mathrm{MeV} / \mathrm{c}^{2}$.

Consider for example the result of Antipov et al. ${ }^{8}$ for a beam energy of 70 GeV , a secondary momentum (for singly charged particles) of $50 \mathrm{GeV} / \mathrm{c}$ and an angle of 0 mrad . The experimental result is the observation of no quarks while approximately $10^{9} \pi^{-}$mesons were detected. Using the measured π^{-}
cross section, an upper limit for the differential cross section for production of charge $2 / 3$ quarks at $33.3 \mathrm{GeV} / \mathrm{c}$ is determined to be

$$
\frac{\mathrm{d}^{2} \sigma}{\mathrm{~d} \Omega \mathrm{dp}}<7.7 \times 10^{-6} \frac{\mathrm{ub}}{\text { ster-GeV/c }}
$$

To interpret this result Antipov et al. ${ }^{8}$ consider only the phase space for the reaction $N+N \rightarrow N+N+Q+\bar{Q}$ and conclude that the total cross section for production of quarks with mass $4.5-5 \mathrm{GeV} / \mathrm{c}^{2}$ does not exceed $4 \times 10^{-7} \mu \mathrm{~b}$. An alternative interpretation of this result is to relate the limit for the differential cross section to the π^{-}cross section by using the data of Bushnin et al. ${ }^{9}$ and the statistical model. The result is that the quark would not have been detected if its mass is greater than $2.5 \mathrm{GeV} / \mathrm{c}^{2}$. Hence even though quark-antiquark production may be above threshold, the cross section may be so small that no events were detected. Because the temperature in the model T does not depend on incident energy, the same conclusion would be true for experiments at the ISR and NAL.

While the statistical model may not correctly describe quark-antiquark production in hadron-hadron collisions, it should be recalled that it gives an approximate description of particle production ratios. ${ }^{7}$ The predictions of this model are sufficiently discouraging that we felt the possibility of quark production in photon initiated reactions should be investigated. The Drell model ${ }^{10}$ provides an approximate picture of particle production in photon reactions. ${ }^{11}$ The cross section for production of a spin 0 particle in this model is

$$
\begin{equation*}
\frac{\mathrm{d}^{2} \sigma}{\mathrm{~d} \Omega \frac{\mathrm{dp}}{\mathrm{p}}}=\frac{\alpha}{2 \pi} \quad \mathrm{Q}^{2} \frac{\mathrm{E}^{2}(\mathrm{k}-\mathrm{E})}{4 \pi \mathrm{k}^{3}} \frac{4 \theta^{2}}{\left[(\mathrm{~m} / \mathrm{E})^{2}+\theta^{2}\right]^{2}} \sigma_{\mathrm{TOT}}{ }^{(\mathrm{k}-\mathrm{E})} \tag{1}
\end{equation*}
$$

where θ is the production angle, $\sigma_{\mathrm{TOT}}{ }^{(\mathrm{k}-\mathrm{E})}$ is the total quark-nucleon cross section, Q is the particle charge, and other quantities are defined in the

Feynman diagram for the process (Fig. 1). The mass dependence of this model is much less extreme than that of the statistical model. Two specific comments should be made about the above equation; first, the matrix element used to derive the cross section is not gauge invariant. A gauge invariant extension of this model by Stichel and Scholz ${ }^{12}$ for the reaction $\gamma \mathrm{p} \rightarrow \pi \Delta$ predicts a larger cross section than the Drell model. Second, an additional factor of order unity, which is dependent on the anomalous magnetic moment of the produced particle, multiplies this cross section when considering production of spin $1 / 2$ particles. ${ }^{10}$

To attain large center-of-mass energies with a photon beam at SLAC (Stanford Linear Accelerator Center), it is necessary to use a complex nucleus as a target. The use of the internal motion of the nucleons in the nucleus to increase the center-of-mass energy is not a new idea as it has been used in previous particle searches. ${ }^{13}$ Danos and Gibson ${ }^{14}$ have published theoretical estimates for the probability of having a high momentum component in the nucleus. These estimates together with a cross section calculated in the Drell model indicate that quarks in the $2-4 \mathrm{GeV} / \mathrm{c}^{2}$ mass range would be produced in sufficient quantities to be detected at SLAC.

Quark searches have been performed at several electron accelerators including SLAC, ${ }^{15}$ but these experiments have been designed primarily to detect "leptonic" quarks. ${ }^{16}$ In each of these experiments many collision lengths of material were placed between the production target and the detectors. Since the production mechanisms in photon initiated reactions may be complementary to that in proton-proton collisions, and since no search for strongly interacting quarks have been performed at an electron accelerator, we have done so.

The theoretical uncertainties in interpreting the results of this experiment are as great as in the hadron initiated experiments, but at least are different.

Hadron and photon initiated reactions taken together can give more confidence to a conclusion than either can separately.

II. EXPERIMENTAL DESCRIPTION

This experiment was performed in End Station A at SLAC. A schematic of the beam line is shown in Fig. 2. A high energy, high intensity electron beam was incident on a bremsstrahlung radiator of either 0.0285 or 0.1069 radiation lengths. The electron beam current was measured to an accuracy of $\pm 1 \%$ by a precision toroid ${ }^{17}$ before striking the radiator; this current measurement served as the primary monitor of the beam flux. After the radiator the electrons were bent out of the beam line. The photon beam was collimated twice before reaching the target; each collimator was followed by a magnet to remove charged particles from the beam. The beam also passed through an ion chamber and a thin Cerenkov monitor; ${ }^{18}$ the latter gave a reliable secondary measurement of the beam flux. The photon beam was incident on one of two copper targets 0.638 ± 0.005 and $1.257 \pm 0.008 \mathrm{~cm}$ thick and then dumped in a water cooled tungsten block downstream of the target.

The relation between the primary electron beam current and the photon flux has been measured during several previous experiments for a standard radiator (0.0285 radiation lengths) and standard beam collimator settings. Under these conditions it is known that 0.0215 ± 0.0010 of the electron beam power is in the photon beam. ${ }^{19}$ The energy spectrum of the photon beam can easily be calculated. ${ }^{20}$ When a nonstandard radiator or nonstandard collimator settings were used, the Cerenkov monitor, which was calibrated under the standard conditions, was used to determine the new ratio of beam powers.

Particles produced in the target were detected with the SLAC 20 GcV spectrometer. ${ }^{21}$ The length of the particle flight path from the target to the momentum
focus of the spectrometer (see Fig. 3) is approximately 43 meters. The spectrometer detector was equipped with a specially constructed set of trigger and hodoscope counters. The configuration of these counters is shown in Fig. 3. Five thick scintillators (made of NE102 and equipped with Amperex 56 DVP phototubes) were used to make ionization measurements for each particle. The light pipes of these counters were oriented such that it was not possible for a particle to pass through more than two light pipes. Five planes of 1.27 cm thick hodoscopes (overlapped to give 2 cm wide bins) were used to measure particle position. These hodoscopes were used to be sure that particles did not pass through the light pipes or near the edges of the thick counters and to reconstruct the particle trajectory through the detector. Three hodoscopes were necessary to obtain a redundant measurement of the vertical trajectory because of the large angular dispersion in the vertical. In the horizontal, all trajectories coming through the spectrometer are approximately parallel, and therefore only two hodoscopes are needed for a redundant measurement.

In addition to the thick scintillators and hodoscopes, the spectrometer was equipped with a threshold Cerenkov counter (with sufficient gas pressure to count protons at the spectrometer momentum), a lead-scintillator shower counter, and a range telescope.

The thick scintillators and hodoscopes were built with high linearity phototube bases to insure the tube response was linear for pulses of currents up to $300 \mathrm{~mA}(-15$ volts into 50 ohms). Typical relativistic particles produced pulses $3-4$ volts in amplitude; hence the phototube response was linear over the expected range of pulse heights. The response of a typical counter was checked with cosmic rays by pulse height analyzing the counter response for different counter high voltages. It was verified that the counter had the expected gain characteristic for pulses up to 6.5 volts in amplitude.

The mean value of energy loss $(\bar{\Delta})$ of a charge $1 / 3$ particle of $6.67 \mathrm{GeV} / \mathrm{c}$ momentum in a 5.08 cm thick scintillator is plotted as a function of particle mass in Fig. 4. This calculation includes the density effect correction and uses the parameters of Sternheimer ${ }^{22}$ for $(\mathrm{CH}) 2^{\circ}$ The minimum mean energy loss occurs at a mass of $2 \mathrm{GeV} / \mathrm{c}^{2}$. For this value of mass, the distribution of energy loss ${ }^{23}$ is plotted in Fig. 5. Figure 5 also shows the energy loss distribution for a relativistic muon.

From these energy loss distributions, it is seen that for a counter to be efficient for all possible quark masses, it must be officient for muons when the counter signals are attenuated by a factor of 12. All discriminator levels for the thick scintillators were set so that the most probable energy loss for muons was a factor of 30 above the threshold. This insures greater than 0.99 efficiency for charge $1 / 3$ particles. All hodoscope high voltages were set to a voltage 200 volts above the knee in a plateau curve taken with a factor of 12.6 attenuation in the signal.

Both anode and dynode signals from each thick scintillator were used. After inverting, the dynode signal was used for both a discriminator input and the input to a camera system to be described below. The anode signal was used as the input to two analog-to-digital converters. 24 By use of a resistive signal splitter, the effective gains of these $A D C^{\prime}$ s were in the ratio of $9: 1$. Thus one $A D C$ was sensitive to the pulse height expected for charge $1 / 3$, the other to that expected for charge 1.

The event trigger was a five-fold coincidence between the scintillation counters. The timing was such that events with velocities down to 0.55 c would make a coincidence, and it was symmetric about a velocity of c to allow subtraction of accidental events. A subsequent circuit limited the trigger rate to one per SLAC pulse. To avoid accidental coincidences in the hodoscopes and ADC's caused
by the loose trigger timing, the trigger signal was put into coincidence with signals from Q_{1}, Q_{3} and Q_{5} where these latter signals determined the timing. The resultant coincident signals were used to gate the hodoscopes and ADC's.

A resistive signal splitter divided each hodoscope signal into two with a ratio of amplitudes of $0.88: 0.12$. Each of the resultant signals was input to a discriminator; thus each hodoscope element was pulse height analyzed with a three channel pulse height analyzer.

The time-of-flight between pairs of counters was digitized (using EG\&G TH200A/N Time-to-Amplitude converters). This allowed several checks on an event; first, the three times-of-flight must be consistent, and second, the particle velocity determined by time-of-flight must agree with that determined from the ionization measurements in the thick scintillators. The calibrations of the time-of-flight units and pulse height analysis systems were checked four to six times each day. No significant changes in calibration or resolution were observed.

Additional information on the pulse heights of the shower and Cerenkov counters and the contents of the range telescope were read in with each event. The event reading, recording, online analysis and offline analysis were performed with an XDS 9300 computer.

When the trigger rate was low, a photograph was taken of the pulses from the five scintillators. The dynode pulses were delayed relative to each other (approximately 250 nsec between pulses), added together and displayed on a scope. The resultant trace was photographed. This photograph allowed one to form a qualitative impression of an event. Quantitative measurements were left to the digitizers described previously.

The signature of a quark in this apparatus would be:

1. A good trajectory in both the horizontal and vertical. This trajectory would be detected only by the low threshold hodoscope discriminators, would be within the spectrometer acceptance, and would not pass near the edges or light pipes of any of the thick scintillators.
2. Pulse heights in each of the five scintillators which are consistent with that expected from a particle of definite charge, mass and momentum. This consistency can be measured by using the probability distributions for ionization loss. ${ }^{23}$
3. Times-of-flight consistent with each other and the mass determined from the ionization measurements.
4. A signal on the Cerenkov counter consistent with the measured velocity. No clear interpretation could be made of the shower counter and range telescope signals.

The functioning of the apparatus was checked by simulating quarks with attenuators in the trigger counter and hodoscope signals. The result of this check was that 53% of all triggers were correctly identified by the apparatus and analysis programs. This identification included passing all the tests described above. Of the triggers that failed, 6% were junk events, 23% were outside the spectrometer acceptance or near a light pipe or counter edge and 6% did not have good tracks through the detector. Thus our efficiency for detecting a quark satisfying the above criteria was approximately 82%. Most of the inefficiency (15%) was due to zero or two hits in one of the 5 hodoscopes.

The acceptance of the spectrometer was determined by a combination of calculation and measurement. The acceptance of a small region of the aperture was calculated by Monte Carlo technique. This region was defined by the
hodoscopes and was chosen such that all trajectories passing through it would not pass near magnet pole pieces or defining slits. A data run was then used to determine the ratio of the number of counts in the full aperture (passing all data cuts) to those within the restricted region. The spectrometer acceptance was thus determined to be

$$
\Delta \Omega \frac{\Delta \mathrm{p}}{\mathrm{p}}=5.77 \pm 0.27 \times 10^{-6} \text { ster; }
$$

the error includes the statistical error of the Monte Carlo calculation. For part of this experiment, the spectrometer was operated at higher magnet excitation than ever previously, in fact, at excitations beyond the range of magnetic measurements. A measurement of pion photoproduction at low missing mass and at several incident energies verified that the acceptance did not have any detectable momentum dependence over the range of this experiment.

III. RESULTS

Data were taken at several different angles and momenta as shown in Table I. No events were detected with the signature of a quark as described above. In the final analysis all events which passed only the requirement of a pulse height less than that corresponding to a certain value of energy loss in three of the five counters were examined. This energy loss value was 10 MeV in the 5.08 cm thick counters and 7.5 MeV in the 3.81 cm thick counters. None of these events could be identified as a quark because in all cases at least two of the criteria of a quark were violated. The 90% confidence level upper limits for the cross sections are given in Table I.

We have used two models to obtain estimates of the lower limit for the mass of the quark which can be accommodated by these data. The first is the Drell model ${ }^{10}$ with the distribution of Danos and Gibson ${ }^{14}$ used to estimate the
probability for high momentum components in the nucleus. A total quarknucleon cross section of 10 mb has been assumed. The calculation is discussed in detail in the Appendix, and the 90% confidence level lower limits for the quark mass are presented in Table II.

These lower limits are based on a mean of 2.3 events at each of the data points. Within the model, the 90% confidence level lower limits can be determined for the entire experiment. The results are $m_{1 / 3}>3.6 \mathrm{GeV} / \mathrm{c}^{2}$ and $\mathrm{m}_{2 / 3}>4.5$ $\mathrm{GeV} / \mathrm{c}^{2}$.

To determine the lower limits for the mass of the "leptonic" quark, we have used the Weizsacker-Williams approximation to the Born amplitudes as discussed by Kim and Tsai. ${ }^{25}$ Both the elastic and quasi-elastic contributions have been calculated using the form factors as parameterized by Kim and Tsai. The cross section for this process depends on the fourth power of the quark charge and is approximately exponential in the quark mass as is shown in Fig. 6. Within this model, the 90% confidence level lower limits to the mass of the "leptonic" quark are: $\mathrm{m}_{1 / 3}>1.4 \mathrm{GeV} / \mathrm{c}^{2}$ and $\mathrm{m}_{2 / 3}>1.8 \mathrm{GeV} / \mathrm{c}^{2}$ (Table II).
IV. CONCLUSIONS

We have unsuccessfully searched for quarks photoproduced from copper. Model dependent lower limits have been placed on the mass of the quark.

Although this search has been unsuccessful, photoproduction searches should be pursued at higher energies because the mass dependence of the photoproduction cross section may be much less severe than that of proton-proton collisions.

V. ACKNOWLEDGMENTS

We greatly appreciate the help of G. Fischer during the data collection for this experiment. We wish to thank D. Coward, D. Sherden and C. Sinclair for their invaluable support. A. Golde and E. Taylor coordinated the preparation
of the spectrometer and end station. L. Boyer, M. Browne, S. Coombes, S. Dyer and A. Fillipi provided the necessary technical support. Finally, we wish to thank the SLAC accelerator crews for providing the necessary high energy, high intensity beams.

APPENDIX

The cross section per equivalent quantum for quark production in the Drell model is

$$
\frac{\mathrm{d}^{2} \sigma}{\mathrm{~d} \Omega \frac{\mathrm{dp}}{\mathrm{p}} \mathrm{E} . \mathrm{Q} .}=\int_{\mathrm{k}_{\min }}^{\mathrm{E}_{0}} \mathrm{n}(\mathrm{k}) \frac{\mathrm{d}^{2} \sigma}{\mathrm{~d} \Omega \frac{\mathrm{dp}}{\mathrm{p}}} \mathrm{Pdk} .
$$

In this equation E_{0} is the end point energy of the spectrum, and $n(k) d k$ is the number of photons with energy between k and $k+d k$. $n(k)$ is normalized per equivalent quantum

$$
\int_{0}^{\mathrm{E}_{0}} \mathrm{kn}(\mathrm{k}) \mathrm{dk}=\mathrm{E}_{0}
$$

The Drell cross section, $\mathrm{d}^{2} \sigma / \mathrm{d} \Omega(\mathrm{dp} / \mathrm{p})$ is given by equation 1 and is the cross section per nucleon. P, the probability per nucleus of finding a nucleon of sufficiently high momentum to make the reaction kinematically allowed, is determined from the model of Danos and Gibson. ${ }^{14}$ The distribution published by Danos and Gibson, $P^{\prime}\left(k_{z}\right) d k_{z}$, is the probability of finding a nucleon with a z component of momentum between k_{z} and $\mathrm{k}_{\mathrm{z}}+\mathrm{dk}_{\mathrm{z}}{ }^{-} \mathrm{P}^{\prime}$ is normalized such that

$$
\int_{-\infty}^{\infty} P^{\prime}\left(k_{z}\right) d k_{z}=A
$$

where A is the atomic weight of the nucleus. For large k_{z}, we have parameterized $P^{\prime}\left(k_{z}\right)$ as

$$
\log _{10} P^{\prime}\left(k_{z}\right)=-1.14-4.16 \log _{10} k_{z}-1.10\left(\log _{10} k_{z}\right)^{2}
$$

where k_{z} is in GeV and P^{\prime} in GeV^{-1}. The distribution is spherically symmetric so one can determine the probability for having a total momentum of magnitude
k_{r} to be

$$
\rho\left(\mathrm{k}_{\mathrm{r}}\right)=\frac{-1}{2 \pi \mathrm{k}_{\mathrm{r}}} \frac{\mathrm{dP} \mathrm{P}^{\prime}\left(\mathrm{k}_{\mathrm{r}}\right)}{\mathrm{dk}_{\mathrm{r}}}
$$

The probability P is given by

$$
\mathbf{P}=\int_{\varphi} \mathrm{d} \varphi \int_{\mathrm{k}_{\mathrm{r}}} \mathrm{k}_{\mathrm{r}}^{2} \rho\left(\mathrm{k}_{\mathrm{r}}\right) \int_{\theta} \sin \theta \delta\left(\theta \mathrm{N}^{\left.\left(\mathrm{k}_{\mathrm{r}}\right)-\theta\right) \mathrm{d} \theta \mathrm{~d} k_{\mathrm{r}}}\right.
$$

where θ_{N} is the angle between the missing momentum vector $\left(\vec{k}-\vec{p}_{Q}\right)$ and the momentum of the recoiling nucleus $\left(\overrightarrow{\mathrm{k}}_{\mathrm{r}}\right)$, as shown in Fig. 7a. The kinematics for the process $\gamma+A \rightarrow A+Q+Q$ are used to calculate θ_{N}.

Doing the φ and θ integrals leaves

$$
P=2 \pi \int_{k_{r}(\min)}^{k_{r}(\max)} \sin \theta N_{r}^{\left(k_{r}\right) k_{r}^{2} \rho\left(k_{r}\right) d k_{r} .}
$$

where $k_{r}(\max)$ is large with respect to $k_{r}(\min)$, with momentum and energy conservation determining the former, and the latter being derived from the kinematics displayed in Fig. 7b.

The four-momentum transfer to the nucleus is

$$
t=2 A m_{p}\left(A m_{p}-\left(\left(A m_{p}\right)^{2}+k_{r}^{2}\right)^{1 / 2}\right)
$$

The minimum four-momentum transfer ($|t|$) occurs when the undetected quark has momentum parallel to the missing momentum $\left(\overrightarrow{\mathrm{k}}-\overrightarrow{\mathrm{p}}_{\mathrm{Q}}\right)$. Minimizing $|t|$ gives $\mathrm{k}_{\mathrm{r}}(\mathrm{min})$, the minimum value for k_{r}.

The results of a typical calculation of the cross section are shown in Fig. 8.

REFERENCES

1. M. Gell-Mann, Phys. Rev. Letters 8, 214 (1964).
2. W. A. Chupka, J. P. Schiffer, and C. M. Stevens, Phys. Rev. Letters 17, 60 (1966).
3. A. F.Hebard and W. M. Fairbank, Proceedings of the 12th International Conference on Low Temperature Physics, Kyoto (1970).
4. C.B.A. McCusker and I.D. Cairns, Phys. Rev. Letters 23, 658 (1969); W.T.Chu, Y.S. Kim, W.J. Beam and N.Kwak, Phys.Rev. Letters 24, 917 (1970).
5. D. S. Rahm and R.I. Louttit, Phys. Rev. Letters 24, 279 (1970); W.W.M. Allison, M. Derrick, G. P. Hunt, J.D. Simpson and L. Voyvodic, Phys. Rev。Letters 25, 550 (1970).
6. For a recent review see $L . W$. Jones, Proceedings of the 12th International Conference on Cosmic Rays, Hobart, Tasmania (1971).
7. R. Hagedorn, Supp. al Nuovo Cimento VI, 311 (1968).
8. Yu. M. Antipov, V.N. Bolotov, N.K. Vishnevskii, M.I. Devishev, M. N. Devisheva, F.A. Ech, A.M. Zaitsev, V.V.Isakov, I.I. Karpov, V.A. Krendelev, L.G. Landsberg, V.G. Lapshin, A.A.Lebedev, A.G. Morozov, Yu. D. Prokoshken, V.G. Rybakov, V.I. Rykalin, A. V. Samoilev, V. A. Sen'ko and Yu. S. Khodyrev, Soviet Journal of Nucl. Phys. 10, 561 (1970); and Yu. M. Antipov, et al., Soviet Journal of Nucl. Phys. 10, 199 (1970).
9. Yu. M. Bushnin, Yu.P. Gorin, S.P. Denisov, S. V. Donskov, A.F. Dunaitsev, V.A. Kachanov, V.I. Kotov, V. M. Kut'in, A.I. Pertukhin, Yu.D. Prokoshkin, E.A. Razuvaev, D.A. Stoyanova, Yu. S. Khodyrev, R.S. Shuvalov, J. V. Allaby, F. Binon, A.M. Wetherell, G. Giacomelli, A. N. Diddens, P. Duteil, R. Meunier, J.-P. Piegneau, M. Spighel,
K. A. Stahlbrandt, J.-P. Stroot, and K. Schulpmann, Soviet Journal of Nucl. Phys. 10, 337 (1970).
10. S.D. Drell, Phys. Rev. Letters 5, 278 (1960).
11. A. Boyarski, F. Bulos, W. Busza, D. Coward, R. Diebold, J. Litt, A. Minten, B. Richter, and R. Taylor, Phys. Rev. Letters 18, 363 (1967); S. M. Flatté, R.A. Gearhart, T. Hauser, J.J. Murray, R. Morgado, M. Peters, P.R. Klein, L.H. Johnston and S.G. Wojcicki, Phys. Rev. Letters 18, 366 (1967).
12. P. Stichel and M. Scholz, Nuovo Cimento 34, 1381 (1964).
13. D.E. Dorfan, J. Eades, L.M. Lederman, W. Lee and C.C. Ting, Phys. Rev. Letters 14, 999 (1965).
14. M. Danos and B.J. Gibson, Phys. Rev. Letters 26, 473 (1971).
15. G. Bathow, E. Freytag, D.H. Schulz and K. Tesch, Phys. Letters 25 B, 163 (1967); J. Foss, U. Garelick, S. Homma, W. Lobar, L.S. Osborne, and J. Uglum, Phys. Letters 25 B, 166 (1967); E.H. Bellamy, R. Hofstadter, W. L. Lakin, M. L. Perl and W.T. Toner, Phys. Rev. 166, 1391 (1968).
16. T. Massam and A. Zichichi, Nuovo Cimento XLIII, 2611 (1966).
17. R.S. Larsen and D. Horelick, A Precision Toroidal Charge Monitor for SLAC, SLAC report no. SLAC-PUB-398.
18. G.E. Fischer and Y. Murata, Nucl. Instr. and Meth. 78, 25 (1970).
19. C.K. Sinclair, private communication.
20. R.A. Early, SLAC Technical note no., SLAC-TN-66-15 (unpublished) 。
21. W.K.H. Panofsky, Magnetic Spectrometers, SLAC report no. SLAC-PUB798 (1970).
22. R.M. Sternheimer, Phys. 103, 511 (1956).
23. For relativistic particles the distribution of L. Landau, Journal of Phys. 8, 201 (1944) as tabulated by W. Borsch-Supan, Journal of Research of the National Bureau of Standards 65 B, 245 (1961) is used. For other particles the distribution of P.V. Vavilov, Soviet Phys. JETP 5, 749 (1957) is used.
24. D. Porat and D. Ouimette, SLAC Technical Note no. SLAC-TN-71-13 (unpublished).
25. K.J. Kim and Y.-S. Tsai, SLAC report no. SLAC-PUB-1106 (1972).

TABLE I
90% Confidence Limit on the Quark Production Cross Section

Data Point Number	θ^{a}	p^{b}	$\mathrm{E}_{0}^{\mathrm{c}}$	X^{d}	T^{e}	E.Q. $^{\mathrm{f}}$	$\left.\frac{\mathrm{d}^{2} \sigma}{\mathrm{~d} \Omega \frac{\mathrm{dp}}{\mathrm{p}} \mathrm{E} . \mathrm{Q} .}\right\|_{90 \%} ^{\mathrm{g}}$
1	1.26	-21.0	19.99	.0285	.638	1.57×10^{17}	4.7×10^{-5}
2	7.00	-17.5	20.72	.1069	1.257	8.80×10^{16}	4.2×10^{-5}
3	7.00	-17.5	20.47	.0285	1.257	3.08×10^{16}	1.0×10^{-4}
4	7.00	17.5	20.72	.1069	1.257	2.22×10^{16}	1.7×10^{-4}
5	7.00	18.5	20.72	.1069	1.257	3.82×10^{16}	9.7×10^{-5}
6	7.00	12.0	20.72	.1069	1.257	7.20×10^{16}	5.2×10^{-5}

(a). The spectrometer angle in degrees.
(b). The spectrometer momentum in $\mathrm{GeV} / \mathrm{c}$ for a unit charge particle. The sign indicates the charge of the detected particles.
(c). The photon beam end point energy in GeV.
(d). The photon radiator thickness in radiation lengths.
(e). The copper target thickness in cm .
(f). The number of equivalent quanta incident on the target. This figure is corrected for pair production in the target.
(g). The 90% confidence level upper limit to the quark production cross section on a copper nucleus. The units are $\mu \mathrm{b} /$ ster/equivalent quantum.

TABLE II

90% confidence level lower limits for the quark mass using the Drell model ${ }^{10}$ and the probability distribution of Danos and Gibson. ${ }^{14}$

Data Point Number	E_{0}	$\mathrm{P}_{1 / 3}$	$\mathrm{~m}_{1 / 3}$	$\mathrm{P}_{2 / 3}$	$\mathrm{~m}_{2 / 3}$
1	19.99	-7.00	2.6	-14.00	3.1
2	20.72	-5.83	3.3	-11.67	4.2
3	20.47	-5.83	3.0	-11.67	3.9
4	20.72	5.83	2.9	11.67	3.7
5	20.72	6.17	3.1	12.33	3.9
6	20.72	4.00	2.7	8.00	4.1
All data	---	---	3.6	---	4.5

$\mathrm{E}_{0} \equiv$ end point energy of spectrum in GeV .
$P_{1 / 3(2 / 3)} \equiv$ momentum of $1 / 3(2 / 3)$ charge quark, in $\mathrm{GeV} / \mathrm{c}$.
$\mathrm{m}_{1 / 3(2 / 3)} \equiv \begin{aligned} & 90 \% \text { confidence level lower limit for the mass of the } 1 / 3(2 / 3) \text { charge } \\ & \quad \text { quark in } G e V / \mathrm{c}^{2} .\end{aligned}$

TABLE III
90% confidence level lower limits for the quark mass using the Weizsacker-Williams method of Kim and Tsai。 ${ }^{25}$

Data Point Number	E_{0}	$\mathrm{P}_{1 / 3}$	$\mathrm{~m}_{1 / 3}$	$\mathrm{P}_{2 / 3}$	$\mathrm{~m}_{2 / 3}$
1	19.99	-7.0	1.3	-14.0	1.7
2	20.72	-5.83	1.1	-11.67	1.3
3	20.47	-5.83	0.9	-11.67	1.2
4	20.72	5.83	0.8	11.67	1.0
5	20.72	6.17	0.9	12.33	1.1
6	20.72	4.0	1.0	8.0	1.5
All data	$-\cdots$	---	1.4	---	1.8

$$
\begin{array}{cl}
\mathrm{E}_{0} & \equiv \text { end point energy of spectrum in } \mathrm{GeV} . \\
\mathrm{P}_{1 / 3(2 / 3)} \equiv & \text { momentum of } 1 / 3(2 / 3) \text { charge quark in } \mathrm{GeV} / \mathrm{c} . \\
\mathrm{m}_{1 / 3(2 / 3)} \equiv & 90 \% \text { confidence level lower limit for the mass of } 1 / 3(2 / 3) \\
& \text { charge quark in } \mathrm{GeV} / \mathrm{c} .
\end{array}
$$

FIGURE CAPTIONS

1. Diagram for Drell model production of quarks.
2. The photon beam line.
3. Schematic of the detector.
4. The mean value of energy loss $(\bar{\Delta})$ for a charge $1 / 3$ particle passing through 5.08 cm of scintillator.
5. The distributions of energy loss in a 5.08 cm thick scintillator for a quark with the minimum mean energy loss and for a relativistic muon. The probability for an energy loss between Δ and $\Delta+\mathrm{d} \Delta$ is $\mathrm{P}(\Delta) \mathrm{d} \Delta$. These distributions include the effects of light collection variation and photon statistics on measurement of Δ 。
6. The cross section per equivalent quantum as a function of quark mass for the first data point in the Kim and Tsai model. Both elastic and quasi-elastic contributions are included.
7. (a) Definition of momentum vectors in the kinematics.
(b) Kinematics for Danos-Gibson quark photoproduction.
8. The cross section per equivalent quantum versus quark mass in the Drell model.

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

$$
\vec{k}=\vec{P}_{Q}+\vec{P}_{\bar{Q}}+\vec{k}_{r}
$$

(b)

2387 AT

Fig. 7

Fig. 8

[^0]: * Work supported by the U. S. Atomic Energy Commission.
 \dagger Present address: Physics Department, Cornell University, Ithaca, New York 14850.
 $\dagger \dagger$ Present address: I. Physikalisches Institut, Aachen, West Germany.

