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Preface 

These are notes based on lectures delivered by J. Ellis, 

R. L. Jaffe and M. Nauenberg at the U. C. Santa Cruz Summer 

School on Particle Physics, June 25th to July 6th, 1973. 

Chapters 1,2,5,8 and 9 were prepared by J. Ellis, Chapters 

3,4,6,7 and 10 by R.L. Jaffe. 

The notes are intended as a simple pedagogical intro- 

duction to the main ideas of scale invariance at short 

distances and near the light-cone, and their application to 

deep inelastic and other phenomena. The notes are not intended 

as a critical review of the field. We apologize at the out- 

set, to the initiate for ignoring work of which we may not 

be aware and to the newcomer for leaving out due to limita- 

tions of time some large bodies of material which should 

perhaps be covered in introductory lectures. Among the latter 

are: the formal theory of broken scale and conformal invar- 

iance and renormalization group techniques. Excellent intro- 

ductions to these subjects can be found in C. Callan in the 

proceedings of the 1971 Les Houches Summer School and S. 

Coleman in the proceedings of the 1971 International Summer 

School of Physics "Ettore Majorana". 

We would like to thank Mike Nauenberg for organizing the 

Santa Cruz School, Sid Drell and SLAC for hospitality while 

much of this work was done , and for bearing the publication 

expenses and the secretaries at SLAC and the Center for 

Theoretical Physics at M.I.T. where the lectures were typed. 



Finally we wish to thank the participants in the summer school 

for many helpful comments, corrections and discussion. 
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l- Introduction 

1.1 - (Introduction)2 

It is an old idea that in high energy reactions masses and 

other dimensional parameters might become irrelevant. In the 

absence of such mass and length scales the reactions would 

become scale invariant. This hope is clearly not realized in 

high energy hadronic reactions, which seem to be controlled by 

Regge singularities, which yield amplitudes of the form 

(S/So) O1 (t) 

with dimensional parameters a' and S 0' However it has recently 

been suggested theoretically', and to some extent confirmed 

experimentally2, that deep inelastic lepton hadron processes 

might be approximately scale invariant in the limit 

92 -+ -00, q*p + M , u = -2q;p 
fixed 

q 

The theoretical basis for this expectation is the observation 

that the asymptotic behaviours of these processes are related 

to singularities of current products J(x)J(O) at short distances 

(x P -f 0) and near the light cone 3 (x2 -+ 01, and the fact that 

in many model field theories these singularities are indepen- 

dent of mass parameters (scale invariant). 
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In these lectures we will discuss these ideas of scale 

invariance at short distances and near the light-cone, showing 

how they can be used in the phenomenology of deep inelastic 

processes, and other effects such as e- e + annihilation and 

current algebra anomalies. 4 Deep inelastic scattering 

data will be used as crutches to support our theoretical 

ideas, and are indeed the principal checks on them at the 

present time. However we hope to make it clear that deep in- 

elastic scattering is just one of several areas where 

these ideas apply. 

In this lecture we first discuss the relevance of short 

distance and light-cone behaviour to various phenomena, and 

then discuss model field theories which are the basis for 

the subsequent theoretical developments. The next lecture 

will review the data on deep inelastic reactions, showing the 

experimental evidence for scale invariance. Then a lecture on 

the parton model will show how the model field theories can be 

induced to be scale invariant. The rest of the lectures will 

discuss scale invariance at short distances more formally. 

There will be a "technological" lecture on singular functions 

in field theory, fourier transforms, and so on. Then there will 

be lectures on operator product expansions at short distances 

and on the light cone, and the Bjorken-Johnson-Low limit. 5 

Finally there will be lectures on anomalies, other processes 

where light-cone ideas apply, and on sum rules and fixed poles 

in deep inelastic scattering. 
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1.2 - The Relevance of Short Distance and Light-Cone Behaviour 

In this section we will briefly review the kinematics of 

a few processes and show how their behaviours are related to 

short distance and light-cone structure. We also review the 

Regge limit in x-space, showing that it is not in general 

related to the light cone. 

- + 
(a) e e -t hadrons 

We consider the one-photon exchange contribution to this 

process: 

The cross section can be written as 

(1.1) 
where q is the sum of the lepton momenta. We will be interested 

in the behaviour of this cross section as q2 + 00. To analyze 

the expression (1.1) we work in the centre of mass frame so that 

q = (Q,O,O,O). Also we can 

Eq. (1.1) by the commutator 

Q>O 

replace the product J,,(x)J'(O) in 

[J,(x) ,J'(O)] since in the region 

because of the spectrum properties. We then have 



(1.2) 

The integrand can be written as a function of x0 and x2: - 

As Q -f *, contributions to the integral from finite non-zero 

values ofxowill vanish because of the rapid phase oscillations 

of the factor eiQxO. Hence the asymptotic behaviour of the 

integral will be controlled by the behaviour of 

asx -to. 0 But because it is the matrix element of a commutator, 
2 it vanishes for x = x 2 2 o-&<o. Thus the asymptotic behaviour 

-+ of a(e e -+ y -+ hadrons) is controlled by the behaviour 4t5 of 

Suppose this cross section were indeed scale invariant, 

i.e. did not have any dependence on mass parameters, as qL -f ~0. 

Since a cross section has the dimensions (length) 2 or equiv- 

alently (mass) -2 , we must have 
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if mass scales are not to control the limit. Since the kine- 

matic factors outside the integral in (1.2) are mass independent 

this means that 

should be independent of any masses. Since currents have 

dimensions (mass) 3 (because charges J d3x_ Jo(x,t) are dimen- 

sionless) , this means the vacuum expectation value should 

diverge as x -6 asx +O. ?J 

(b) - Commutators and the Bjorken-Johnson-Low Limit 

Equal-time commutators are also short-distance properties 

of the field theory, because they are local. An example is 

the arrent algebra commutator 

(1.3) 

which is transparently independent of masses. These commuta- 

tors are mass independent (scale invariant) because they 

are derived from the basic canonical field theory commutator 

for scalar fields and anticommutator 

for spin-l/2 fields, which are themselves mass independent. 



-6- 

Many applications have been made of the current algebra 

commutators (1.31, and these are now generally accepted as 

valid. If we want to probe the short distance structure of 

hadrons further, then we must find ways of looking at other 

equal-time commutators. One way was proposed by Bjorken, 

Johnson, and Low'. Consider the matrix element 

and where R(A(xjB(O)) = (3(x,) [A(x),B(O)I is the retarded com- 

mutator, H and H' are two hadronic systems - for convenience 

we now take them to be identical single particle states of 

momentum p. Take the limit q. -+ ia with g fixed: 

partial integration 

where the second term is and b[?c) 

then by 

The procedure can be repeated, the (l/qojn term being related to 

Unfortunately the limit q. -+ ia is rather unphysical. However 

we will see in a subsequent lecture how 



can be related via dispersion relations to moments of structure 

functions in deep inelastic lepton-hadron scattering. Using 

these relations, commutators of the currents and their time 

derivatives can be probed, giving us ways of exploring short 

distance behaviour. 

(cl - Deep Inelastic Scattering 

In electroproduction experiments the lepton scatters 

off the nucleon target with the exchange of a virtual photon 
2 with space-like momentum q < 0. In the next lecture the kine- 

matics of this and related processes will be reviewed in detail. 

For the moment we just consider the simplified case of a spin 

zero current scattering off a spin-averaged target. The total 

inelastic cross section 

Using the completeness of the intermediate states we can 

rewrite (1.4) so that 

(1.5) 

where q is the momentum of the current.* What we will now 
3 argue is that in the limit 

(1.6) 

* We will always covariantly normalize states 

qlp'> = (27~)~ 2E s3(p - Q') 
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then the asymptotic behaviour of the cross section is controlled 

by the behaviour of 
( p \, ~(x)-p%) \ 

2 near the light cone x s 0. The limit(l.6) is called the 

Bjorken scaling limit. Depending on the strength of the light 

cone singularity 

in the scaling limit: this is called the scaling behaviour. 

To make plausible light-cone dominance we work in the rest 

frame of the target: p = (M,O,O,O). Then q = ($O,O,A$Yp 
=: 

(ii ,0,0,$-z) in the scaling limit. We can rewrite (1.5) in 

the form 

(1.7) 

. where 1x1 f r and we have expressed the matrix element in - 

(1.5) as 

NOW if we perform the angular integrations in (1.7) we find 

a- c?.. 
(1.8) 

Now we consider the phase var iation of the integrand in (1.8); 

we can write 



in the scaling limit. As before we argue that the integration 

in (1.8) will only get contributions from values of x0 and r 

where the phase variations (1.9) are not large. For the first 

term in (1.9) this means 

for the second term 

In both cases 

so that in the scaling limit (1.6) we are probing the light- 

cone behaviour of the matrix element 

In electroproduction we measure 
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In the next lecture the kinematics will be discussed in detail: 

here we just note that experiments strongly suggest that W 
UV 

becomes scale invariant (independent of mass parameters) in the 

scaling limit q2 , q-p -t m with w fixed. This means that 

has the same type of singularity as found in simple field theory 

models, which always have mass-independent singularities. (You 

are not asked to understand these comments now, just asked to 

accept them - we hope to make things clearer later on!) 

It is sometimes convenient to re-express vectors a in 
u 

terms of light-cone variables 

2 = (a-, a u 1t a2! a+) 

where a+ = l/J‘z (a 0 f a3). Scalar products take the form - 
a*b = a+b + a-b+ - a l b where z E (a,,a,). We then see 

that q2 = 2q+q- and v = q+p- + q-I?+* In the scaling limit 

7 -+- -3 

remains fixed. Examining the exponential in equation (1.5) 

we see that e iqx = e i (q-x+ + q+x.J and the s,tandard phase 

variation arguments tell us that regions of space with x +O 

control the scaling behaviours. This point will be taken up 

later in discussing the parton model. 
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(d) The Regge Limit 

So far we have given examples of processes which are 

connected with short distance and light-cone behaviour. Just 

to reassure you that we are not trying to take over the world, 

we now give an example of a process clearly unrelated to 

eitherx -0orx -0. Consider the same cross section 
u 

discussed in the previous section, but now consider the limit 

cl2 fixed, q*p -+ O" 

normally assumed to Regge dominated like hadron-hadron scattering. 

Going through the phase-variation argument as before we find 

the kminant contributions come from Ix21 = O(l/q2) I which 

does not tend to zero in the Regge limit q2 fixed, q-p -f a, 

so we do not get any closer to the light cone in the limit. 

The weak constraint lx21 = O(l/q2) means that hadronic mass 

parameters may well control the asymptotic behaviour, as is 

true of conventional Regge asymptotic formulae (S/So)a. 

(e) - Anomalies 

All the previous instances where we showed short-distance 

and light-cone effects were important involved processes at 

large momenta, where it is intuitively plausible that such 

effects might turn up. However short-distance effects also 

occur in processes at small momenta. Examples are current 

algebra low energy theorems, which tell us a lot about pion 
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interactions at low momenta, and come from equal-time current 

commutators, which are indeed short-distance effects. There 

are more interesting and model-dependent effects at low momenta 

connected with short-distance behavior - the current algebra 

anomalies. 4 The best-known example is that6 in the Ward 

identity relating 

to 

The naive Ward identity is 

(1.10) 

which can be used to argue that if PCAC is used to relate T ,Jp,k) 

to the K' + 2-y decay amplitude, then the latter should vanish. 

This conclusion is unsound experimentally, and in fact the Ward 

identity (1.10) is untrue in field theory models. In general 

an extra term 

lpi CT- 
%y P R (1.11) 

should be added to the right-hand side of (1.10). The 7ro+2y 

amplitude is then proportional to A in the PCAC approximation. 

The anomaly (1.11) arises in perturbation theory because 
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in order to prove (1.10) it is necessary to make illegal 

changes of variable in the integration for the lowest order 

fermion loop contributions 

These operations are illegal because the loop is divergent at 

large values of the loop momentum. This reason suggests that 

maybe the anomaly is connected with short-distance behaviour. 

This suggestion is confirmed by careful studies 4 of (1.10) 

in configuration space, which show that the partial integration 

required to derive it may break down if 

has an E -9 singularity when x -y -E +O. Since the currents 
3 each have dimension (mass) , this is indeed the strength of 

singularity expected if mass parameters become irrelevant 

at short distances (scale invariance). Therefore the anomaly 

and the no + 2y decay rate should be taken into account when 

constructing models for short-distance behaviour. 

1.3 - Model Field Theories 

After seeing that short-distance and light cone effects 
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are relevant in a number of processes, the next step is to 

construct models for behaviour in these limits. Because they 

are the only fully consistent models of currents available, we 

examine simple field theories, as was done in the proposal and 

development of current algebra. 7 As remarked earlier, the 

current algebra commutators 

are themselves already statements about short-distance 

behaviour. 

Two models are often used in motivating current algebra: 

one is the familiar quark model 

where the a's are SU3 triplet indices. The vector and axial 

currents 

obey the SU3 x SU3 current algebra. This is true even though 

the masses me break SU3 x SU3 symmetry (the currents are not 
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conserved). This is an example of a mass parameter not affect- 

ing behaviour at short distances. Interactions can be added to 

: the most popular one is to add an SU3 singlet vector meson 

which also has no effect on the current algebra. 

Another possible model has basic octets of spin zero 

fields: 

where the Ma and Pa are scalar and pseudoscalar fields respec- 

tively. Again SU3 x SU3 currents 

y-y- &.) u pfl (.$q 14 {y) .A- pjyp$ pcx'i 
P 

G?J 

A 
? \ IX 1 clc 

P 

can be constructed, which obey current algebra despite the 

scale (and SU3 x SU ) symmetry breaking mass terms. 3 
Models like (1.13) and (1.14) are generally mass independent 

(scale invariant) at short distances and near the light cone. 

For example the free fermion propagator 

x,x, T-W 
-ijii 

QS 2-3 c3, 

and the free boson propagator _ l/x2 as x2 + 0 in a free field 

theory. We will see later how the mass independence (scale 

invariance) of these basic singularities suggest the scale 

invariance of products of currents also. 
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Connected with the mass independence of the short distance 

and light-cone singularities is the fact that they generally 

respect whatever symmetries (SU3, chirality, etc.) are violated 

by the mass terms in the theory. 

Models like (1.13) and (1.14) can be used to specify 

commutators other than the current algebra ones: examples 

include the commutators between space components of currents: 

and the commutator of a current with its time derivative: 

The structure of these commutators is model dependent. 

A main burden of these lectures will be to argue that a 

slightly modified version of the model (1.131, with three 

identical triplets of quark fields is in good agreement with 

what is presently known from experiment about short distance 

and light-cone effects, while also making plenty of predictions 

yet to be tested. 8 We should point out that if model field 

theories are calculated in perturbation theory, then the scale 

invariant behaviour found in free field theory, or by manip- 

ulations of interacting field theories using canonical commuta- 

tion relations, gets changed. Scaling gets modified by log- 

arithmic factors, or the power of singularities in x 2 may get 

altered. There is no evidence from deep inelastic electro- 

production experiments that scale invariance is broken, however. 
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Therefore in these lectures we will generally use canonical 

field theory results8 and ignore perturbation theory. 
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2- KINEMATICS, SCALING AND COMPARISON WITH EXPERIMENTS 

2.1 - Introduction 

In this lecture we review the kinematics of inelastic elec- 

troproduction (e' +N+e + + hadrons, v '+N+p ' + hadrons) 

and neutrinoproduction (v + N + {$!-I + hadrons, '; + N -f (gz) + hadrons*) . 

The crossing properties, analyticity, q2 -t 0 limit, positivity 

and Regge behaviors of the inclusive structure functions are 

discussed. Also we review the scaling laws expected'. for the 

various structure functions, and some consequences of these laws, 

particularly in neutrinoproduction. Finally we discuss the 

qualitative features of the data on scaling in electroproduction 2,3 , 

neutrinoproduction 4,5,6 and electron-positron annihilation 7 . 

We outline the extent to which scaling ideas have been checked, 

and give sources where the data may be found. 

*Experiments at CERN* and NAL' also have events which have not 

so far been explained away as not being of the type v f N + v + 

hadrons. 
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and it will be useful to introduce the variables, QL 
5 = TV' 

1 
w ‘= = 2v 

' Q2 
-, which remain fixed in the scaling limit,and the 

variable y = v/ME. See figure 2 for the kinematic range in 

any experiment: l<U<=J, O<E, v<l. -- - - 

B - Electroproduction 

In the case of electroproduction the graph in figure 1 

is proportional to: 

(2.1) 

where u and 5' are lepton spinors. We then have the differen- 

tial inelastic cross-section: 

d z$ PII (2-f? ~"k+'p-~x) (2.2) 

where the sum is over all final hadronic states X. Substituting 

(2.1) into (2.2) we find the cross-section is proportional to: 

(2.3) 

(we assume that the lepton beam is unpolarized) and 

The electromagnetic current is hermitian, but we have written 

J+ 1-I 
in (2.5) so as to make a closer connection with neutrino- 

production, where the hadronic weak current is not hermitian. 

We can rewrite W 
I-lV 

replacing the 6 function by an integral and 

translating JV+: 

W 
I.lV = & ld4x eiqx <plJy4(x)Jv(0) Ip> 

Further, we can replace the product J u +(x)J.~(O) by the commutator 
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[J,+(X), J,(O)] because the product Jv(0)JU+(x) does not con- 

tribute for co > Q. W l-iv 
is simply related to the absorptive 

part of the forward amplitude for virtual photon-hadron scattering: 

T I.lv has the usual analyticity properties, and in particular dis- 

persion relations for it can be written. We will consider the 

case where the hadron target is unpolarized: then T 
I.lV 

depends 

on just the two momenta q and p, and Lorentz covariance, parity 

and current conservation decree that it can be written: 

and W MV can be similarly expressed in terms of two structure functions: 

(2.8) 

In the limit q' + 0 the diagonal components give the total 

photon-nucleon crnss-section, and so should be non-singular. This 

means that W2(q2,v) = O(q2) as q2 -t 0 and that 

v2w2 (s2 ,v) + q2Wl(q2,v) = O((q2)2) as q2 -f 0. 

Knowing these constraints, it is possible to introduce kinematic 

singularity free amplitudes; this will be done in later lectures. 

It is often convenient to introduce cross-sections for the absorp- 

tion of transverse and longitudinal photons: 

G (c&v)= 
q- &,‘,ql = 4+$ r-w, -f- \hj2((- &gJ 3 

(2.9) 
In the limit q2 -+ 0, vw2 is simply related to the total photo- 

production cross-section: 

lim 2 

q2 + 0 

-vW2(q .v) = 1 

M2q2 4Tr2a 
Ot0.t. (I)) 
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K E v + q2/2 is a conventional flux factor, equal to the equiva- 

lent real photon momentum. The diagonal elements of W 
l-iv 

must be 

positive semi-definite, and the off-diagonal elements must obey 

Schwartz inequalities. This requires: 

(2.10) 

which imply the expected positivity of aL and cs T' From equations 

(2.3), (2.41, (2.7) and (2.8) it follows that the differential 

cross-section can be written: 
d*r ____1__^_ c9c 

J--y = 4hE25?g vu, j (2.11) 

c - Neutrinoproduction 

Ln the case of neutrinoproduction 10 the graph 

proportional to: 

where we have assumed the conventional V-A charged 

in figure 1 is 

(2.12) 

current-current 

theory. An amplitude of the form (2.12) yields a cross-section 

proportional to: 

t: 
Md 
Wk. (2.13) 

and 

where 

as before. 
The Lorentz decomposition of W 

PV 
is now more complicated, because 

the weak currents are not conserved, and have both vector and axial 

components: 
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(We have assumed T-invariance to eliminate a possible term 

1 
- (P$v 
2M2 

- P,$) The forward current amplitude 
7 

T has a similar structure to (2.14) and as before W 
UV 1J.v 

= $-+- ImT 
I-lV' 

The cross-section formula for neutrinoproduction is corres- 

pondingly more complicated; however, the contributions of W4 and 

W5 can usually be neglected at present. This is because they 

appear in (2.14) multiplied by c "1-r (and/ or cv) and 

ia (k')PC(l-y5)uv(k) = -m3 ia (k') (l-y51 uv(k) 

so that the contributions of W4 and W5 to the cross-section are 

proportional to lepton masses.* w, I W, and W, obey the positi- 

vity constraints: 

0 s &.J~lW~\ i 

Retaining just the contributions of wl, W2 and W 3 we have 

I L 3 

(2.15) 

(neglecting lepton masses) the following differential cross- 

section for neutrinoproduction: 

On changing from neutrino scattering to anti-neutrinos, the W3 

term changes sign because of the different leptonic coupling. 

Data on neutrino scattering often are presented in terms of the 

differential cross-section with respect to 5 =-q2/2v and y=v/~ 

*In the absence of lepton polarization measurements, only three 

different combinations of structure functions can be separated. 
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D- Scaling hypotheses and some consequences 

Naive scale invariance demands that the cross-sections (2.11) 

and (2.17) just be functions of the invariant energies in the 

Bjorken limit: 
2 1 -2v -q +w,v-+m,~=--= 

5 ,2 
This is immediately seen to implv the Bjorken' scaling hypotheses:* 

6 cs) 

(2.18) 

We should notethat in many modelsl‘ 

so that (as can be seen from equation (2.9))- vanishes in 
OT 

the scaling limit. Evidence on the scaling behavior of the 

structure functions, and the behavior of aL/aT, will be discussed 

in section (2.3). 

Data on neutrinoproduction are often presented in integrated 

forms, because of the low statistics available in experiments 

up to now. If wl, vw2 and vW3 scale as in (2.18), then in 

neutrinoproduction: 

*The naive scaling laws for W4 and W5 would be vW4, 

vw5 -t functions of 5. These are not generally realized in models: 

for example in the quark model with interactions V2W4(q2,V) -f F4(5) I 

v2w5 (q 
2 

,v) -+ F5K). 
11 



where 

If we assume the Callan-Gross relation (2.18) and introduce the 

(2.22) 

(constrained by (2.15) to have IBI 5 1) then 

and (2.24) 

Note that, as expected from the scale invariance of the inter- 

actions apart from the dimensional coupling constant G, the cross- 

sections rise linearly with E. Note also that since Q2 =gcv = YEH 

that we should expect: 
<Q'L3 mL E (2.25) 

in the scaling region. 

E- Properties of structure functions 

Before looking at the data on scaling, we will just note 

some more properties of the structure functions wl(q2,v). First 

their crossing properties: 

(2.26) 

which may be derived by the substitution q -+ -q in the definitions 

(2.14). We would expect Reqqe behavior for the structure functions 

when CT 2 is kept fixed, and v + 00. If we assume exchange of a 

leading factorizable Reqqe pole with intercept a, then 
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If the leading Reqqe poles were to contribute in the scaling limit 13 , 

then the residues fii(q2) would have to behave as: 

/3, -+ (T2Y ) jq nJ (fy* , /g-J (yj+ , %.& (2.28) 
2 in the limit q -f co. They would then dominate the behavior of the 

structure functions in the limit 5 = i -t 0, yielding: 

The leading Reqqe poles which might contribute are: 

wl, w2: Pomeron with c1 N 1 

F73: w,A 1 2 with CI = z 

Hence it is expected that: 

(2.30) 

The difference F2ep - F2en should be dominated bv the A2 meson 
1 Reqqe trajectory with a = 2, yielding: 

p(g) - FIR(S) Y 3: 9s 3+0 (2.31) 

Finally we note that the analyticity, crossing and Reqqe pro- 

perties enable dispersion relations to be written down for the 

There could also be real polvnomials on the right hand sides of 

equations (2.32), which would not contribute-to the absorptive 

parts Ki of the Ti. The equations (2.32) will be essential later 

on when we write sum rules which test models for Bjorken scaling. 
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2.3 - Qualitative Features of 'Data on Scaling 

In this section we briefly discuss the experimental evidence 

on scaling in electroproduction, neutrinoproduction and electron- 

positron annihilation, referring to sources where the data may 

be found. 

A- Electroproduction 

Experiments, principally those by a SLAC-MIT collaboration, 

seem to have established the following facts about electroproduction. 

2 a) The structure functions Wl and 3W2 seem to scale , for both 

neutrons and protons, for 1 or 2 < Q 2 5 10 GeV2. 

b) For both neutrons and protons, the ratio cL/aT 3 seems to 

be small, as expected from the Callan-Gross relation, and a 

scaling behavior of the type v %OT + f(c) is not ruled out by 

the data. 

c) The structure function JWY < SW;' in the observed range 2,3 , 

the ratio lying between 0.3 and 0.9 approximately. 

cl) The data are consistent 2,3 with gWeZn < ?W;' approaching the 

same limit as 5 + 0, as expected if the structure functions are 

dominated by the Pomeron in this limit. 

B- Neutrinoproduction 

As remarked earlier, the low statistics of data on neutrino- 

production mean that they are usually plotted in an integrated 

form, and detailed checks of the scaling behaviors of the structure 

functions are not yet possible. Also, data are so far only available 

from nuclear targets which are almost equal mixtures of neutrons 

and protons. However, various consequences of the scaling hypotheses 
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discussed in the previous section have been tested experimentally. 

a) Data from CERN (qarqamelle) 4 are consistent with (5 and 
V 

a3 rising linearly with E for E7,Q kv 

b) The ratio 'c/c, seems to be roughly constant at around 0.4 

for 2 i E L 50 GeV 4,5 . As FzN + F;' = FF + F;' by charge sym- 

me try, examination of formula (2.24) shows that c;/cv = 3 L would 

correspond to B=l, or maximal V-A interference. Thus the data 

suggest that V-A interference is quite large. This is confirmed 

by data on the y distributions 4,6 in neutrino and anti-neutrino 
3 

reactions below 50 GeV which are close to sg a (l-y& dav = 
dy 

constar 

as expected from equation (2.23) if B%l. - 

c) Data from NAL6 are consistent with <Q2> rising linearly 

with E in neutrino reactions up to 150 GeV. 

Thus data on neutrinoproduction are nicely consistent with 

scaling, although it should be emphasized that many of the CERN 

data have Q2<l GeV2, and so are really only shallow inelastic. 

C- Electron-positron Annihilation 

As discussed in Lecture 1, the simple scaling prediction is 

that o(e-e+ + y -t hadrons) aC'% as q2 -t to. - + Since cf(e e + Y + u-u+1 
?I 

should also % G by QED, this means we should observe 
9: 

t, 
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Data from energies below q2=25GeV2 so far show little sign 

of this limiting behaviour setting in 7 . Indeed the CEA data at 

qL=16 and 25 suggest that the hadron-muon ratio rises in this 

energy range. However, in view of the large error bars on the 

data, probably no firm conclusions about scaling should be drawn 

until more accurate data are available. SPEAR should provide some 

very soon. 
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FIGURE CAPTIONS 

1. Kinematics of inelastic lepton scattering. 

2. Kinematic range of inelastic lepton scattering. 
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3- Parton Model 

3.1 Introduction 

The parton model was originally introduced by Feynmanl 

to account for the systematics of high energy hadron-hadron 

collisions. Soon after the SLAC-MIT inelastic electroproduc- 

tion experiments were performed, it was observedL that the 

parton model provides a natural explanation for the observed 

Bjorken scaling. Unfortunately, in its early (and simplest) 

formulations3 the model suffers from several diseases e.g., 

it is not Lorentz covariant, and it is sufficiently poorly 

defined to make it difficult to determine which of the model's 

predictions are reliable and which are not. 

Light-cone and short-distance expansions were developed 

independently and are not afflicted with these diseases. 

However, it was apparent almost from the beginning that light- 

cone expansions and algebra are in some sense equivalent to 

the more general features of parton models. This equivalence 

has been worked out in detai14, and the parton model has been 

cured of several of its diseases by Landshoff, Polkinghorne, 

and Short 5 in a formulation which is in many ways a momentum 

space representation of light-cone expansions. 

Despite subsequent developments, the naive parton model 

remains the simplest approach to the derivation of the funda- 

mental results of short distance and light-cone expansions. 

Hence the inclusion of this lecture is a series primarily 

dedicated to light-cone and short distance physics. It should 
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be kept in mind that the rather awkward assumptions made in 

parton models have analogs in the coordinate space approach. 

It is important to resist being seduced by the elegance of 

that approach into the misapprehension that it involves no 

unconventional assumptions. 

The outline of this lecture is as follows: First, we 

introduce light-cone coordinates which will simplify our 

subsequent work; second, we give a brief derivation of the 

parton model in electroproduction; third, we derive a selec- 

tion of sum rules and other relations in a quark-parton model; 

fourth, we discuss briefly the parton model of the e+e- total 

annihilation cross section; fifth, we outline a hierarchy 

for the generality of parton model results; lastly, we 

enumerate some other processes to which parton models have 

been applied, both those which can also be treated with light- 

cone or short distance methods and those which can't. 

3.2 - Light-cone variables 

It will be convenient to introduce the coordinates6 

for any four vector aP (likewise for any tensor tap***). 

We reserve the notation a 1-I for the usual coordinate repre- 

sentation a = (a 
u 0,al,a2'a3). In terms of a+ we find - 
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a2 +2 = 2a+a -a, (a, is the Euclidean vector [a ,,a,]) which 

AUV may be summarized in terms of a metric tensor g with 
,+- A-+ 
g = g = 1, Gii = -1 for i = 1,2 and all other entries 

zero. Then a2 Al.lV * = 8&g . 

An entire canonical formalism for field theory may be 

developed in these coordinates. 7 The usual association of 

the Hamiltonian, H, with propagation in time is replaced by 

the identification of P E & (PO-P3) with propagation in 

X+3. The mass shell equation; P- = (PL2+M2) 2p is reminiscent 
+ 

of nonrelativistic dynamics with P--Energy; P++smass. This 

analogy is developed fully by Kogut and Soper. 7 

3.3 - Derivation of the Parton Model 

Derivations of the parton model tend to be unsatisfying. 

Since we intend to use the model only heuristically and as a 

mnemonic for light-cone calculations, this need not overly 

concern us. A more satisfactory derivation is possible, 

though the physics is the same as presented here. Our 

derivation parallels that of Drell, Levy, and Yan 3,8 except 

that we prefer light-cone variables to the infinite momentum 

frame. 

*This notation has the rather unfortunate side effect that 
+ 

a-=a. However, we will be careful to use only covariant 
? 

(as opposed to contravariant) vectors and avoid this complexity. 

Note that @+- = g-+ = 4 f- = 1. 



-38- 

We begin with the usual expression for W 
VU: 

where J and IP> are in the Heisenberg picture. Now intro- 
1-1 

duce the operator: 

(3.2) 

(remember -c 5 l//z (x0 + x3) ) which transforms from the 

Heisenberg to interaction picture in light-cone coordinates. 

[The r development is determined by the "Hamiltonian": 

where P- ' o is the non-interacting part. J signifies T-ordering, 

analogous to time ordering]. Wh) converts JII(x) to the 

free current jU(x): 

(3.3) 

So Eq. (3.1) becomes 

As 17bhn Ellis described in the introductory lecture, we may 

take the Bjorken limit by letting q- -+w with all other momenta 
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fixed (5 f -q2/2P*q = -q+/P+, etc.). As Ellis discussed 

q -+a implies T -f 0. Let us suppose then that T may be set 

to zero in the matrix element of Eq. (3.4) (we shall return 

to this question): 

(3.5) 

where /UP> = U(,r = O)jP> 

Eq. (3.5) is the parton model for inelastic electro- - 

production. To see this consider IUP>: 

(3.6) 

Here c' indicates a sum over all states except IP>. This is 

"old-fashioned" perturbation theory* in light-cone variables, 
-+ 

in particular: P,,P+ and mass are conserved at each vertex 

while P- is not. Also, the states In> (and Im>) are free 

(multi-) particle states, i.e., eigenstates ofgo. In a 

* See Drell and Yan, Refs. 3 and 8 for a reminder of the 

rules of old fashioned perturbation theory. 
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simplified notation: 

(3.7) 

with x, \&,\"=I. The free currents in Eq. (3.5) can 

only scatter off a free particle in the state In>, which may 

be illustrated as follows: 

(Fig. 1) 

Note there is no form factor at the photon vertex and no 

final state interaction. This is the essence of the parton 

model: The elastic and incoherent scattering off of consti- 

tuents in the Bjorken limit. Scaling will be seen to follow 

directly from a reading of Figure 1. 

The essential dynamical ingredient of the model is the 

replacement U(T)U -IL (0) -f 1 as q -+a. It is not clear that 

this replacement may be interchanged with the implied sum 

over intermediate states in Eq. (3.4), and in fact, in renorm- 

alizable theories it can't. Consider for example, 

<njU(T)U-'(0) IP > with (P> a single particle state of momentum 
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(3.8) 

Let In> be a collection of particles with momenta 

[Momentum conservationdemands $ xi = 1, E cli = 0 I. 

The form of G i guarantees 3-momentum and mass conservation. 

As q--ta 'I Q I-/s-t but the interaction dependent terms in 

Eq. (3.8) vanish only if (P-(n) - P-(P)) is finite for all 

(3.9) 

One way to enforce this (due originally to Drell, Levy, and 

Yan3) is to introduce ad hoc a transverse momentum cutoff -- 

into 'I <nlL; _ (0) jP>. Then %zi never becomes large and Eq. (3.8) 

reduces to <nlP> as desired. A covariant formulation of 

the same (ad hoc) dynamical supression was introduced by -- 

Landshoff, Polkinghorne, and Short. 5 From here on we shall 
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realize the parton model by the simple expedient of assuming 

a transverse momentum cutoff, i.e., by assuming all particles 

in the state In> in Eq. (3.7) have momentum lplil < PAmax 

relative to the incident proton. 

P (n)-P-(P) also grows large as xi+O. Disposal of this 

region and the proof that l>xi>O in most models may be con- 

strutted following Drell, Levy and Yan. 
3 

In renormalizable perturbation theory without the 

introduction of ad hoc cutoffs the interaction dependent -'- 

terms in Eq. (3.8) remain important in the Bjorken limit 

and neither a parton model nor scaling is obtained. 

Combining Eq's. (3.5) and (3.7) with the transverse 

momentum cutoff we may demonstrate Bjorken scaling: 

where the state In> consists of a collection of particles with 

limited transverse momentum: 

(3.10) 

Terms with ai an cannot occur on 

account of the transverse momentum cutoff and absence of 

final state interactions. By virtue of this jF(x)jy(0) 

is a single particle operator: 



(Fig. 2) 

(3.11) 

where w Born 
IJV 

is the structure function for the Born graph 

‘_, 
h-.. \. 

/ 
(Fig. 3) 

for scattering off of parton i. Consider (e.g.) a spin l/2 

parton 

(3.12) 

The &-function is the imaginary part of the parton propagator 

in Figure 3, Qi is the parton's charge. 

From here on we consider the laboratory frame: 
-f 
?I, = z, = 0; q2 = al+q-r P2 zz M2 = 2P+P-, v = P+q + P-q,, 

and the Bjorken limit: q +m,~ = -q+ fixed (0 _< 5 2 1). 
p+ 
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To isolate Wl consider W 
YY 

E -q 
YY 

Wl = Wl: 

LI IaX- 5&x9 is the probability per unit phase 

space to find a parton with momentum P+i = EP+ in a proton. 

In light-cone variables: 

so --$ z n, i&i”&-%;\ p is the parton probability density 

per unit dc. A more convenient notation is 

where u,(c) is the probability of finding a parton of species 

" a " with momentum cP+. Finally then 

Analogously 
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thereby establishing Bjorken scaling. 

3.4 Sum Rules and Spectrum Relations in the Quark Model 

To illustrate the convenience of the parton model, we 

shall quickly derive a series of sum rules and spectrum re- 

lations which will be explored in more detail later. For the 

present we confine ourselves to the quark model and return to 

the question of generality later. From the electromagnetic:* 

and weak 

\ -&) s 
(3.16) 

currents of the model and Eq. (3.14) and its neutrino analog 

the following table may be constructed: 

(3.17b) 

* We use Gell-Mann's notation u,d,s for the conventional 
p,n,X quark triplet with charges 2/3,-1/3,-l/3 and stranqe- 
ness 0,0, -1 respectively. u(S) r d(E), s(S) 
denote the probability densities for the quarks as partons. 
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(3.17c) 

(3.17d) 

& ‘\ Here J> has been set to zero9 and charge symmetry has been 

used: 

Expressions for F2(<) are not given since as we have already 

seen for electroproduction: F2(S) = 2gF,(S). The quark 

density distributions u, d, s, etc. are non-zero only for 

0 <E Cl. 

A. Callan-Gross Relation: 10 

As already remarked F2(<) = 2SFl(<) for ep, en, vp, or 

vn scattering. This is a consequence of the spin structure 

of a spin-l/2 current. Had quarks spin-O,Fl(S) = 0 would 

have been obtained. As discussed in lecture 2, experiments 

support the spin-l/2 assignment although the evidence is not 

at all conclusive. 11,12 

B, Adler-Sum Rule: 13 
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This is the simplest but least precise derivation of 

Adler's Sum Rule: From Eqs. (3.17~) and (3.17d): 

because the integral just measures twice the proton's third 

component of isospin. Note we have had to use the fact that 

all partons have xi between zero and one. 

C. Gross-Llewellyn Smith Sum Rule: 
14 

From (3.17e) and (3.17f): 

(3.19) 

where B(P) and S(P) are the baryon number and strangeness of 

the proton. 

D. "Duality" Sum Rule: 15 

From Eq. (3.17a) and (3.17b): 
I 

Now if the only u and d quarks in the proton and neutron reside - 

in some isospin symmetric Irsea" of qe pairs denoted by c(x) 

then: 
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u (5) = u. (5) + c (xl 

d (5) = do (5) + c lx) 

fi (5) = aa = c(x) 

The integral is just proportional to the proton's 

isospin and we obtain: 

(3.20) 

E. Nachtmann relation: 16 

From Eq. (3.17a) and (3.17b) it follows immediately that 

Current data show R y l/3 near 5 = 1. 

F. Llewellyn Smith relation: 17 

Eqs. (3.17) involve 6 independent structure functions, 

but s(c) and s(t) occur only in the combination s (5) + s(C) 

from which it follows: 

(3.21) 

G. Momentum Sum Rules: 18 

Momentum conservation requires j&z 'zFLL,l~)---.1 
CL 

Uncharged "gluons" also contribute to this sum rule although 

they do not participate in lepton scattering and their 

distributions cannon be directly measured. We may separate 

their contribution: 

(3.22) 
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where the sum now ranges only over charged constituents 

and E is the fraction of the proton's momentum carried by 

the gluons. From Eq. (3.22) we obtain the inequality 

(which follows from the observation u(5),u(<)....s(<)dO, as 

required by positivity discussed in the previous lecture). 

E itself may be measured using neutrino structure functions: 

(3.23) 

which may be evaluated from present data: 19 

Gluons seem to be required, which is not unexpected since 

they presumably supply the forces which bind quarks together. 

Finally, let me list a series of results which may be 

reqarded as exercises for the impassioned reader: 

(2) In the vector gluon model, where apJFif = 2imu;y5d 

(m =m U d is the mass of the u-quark, and we have set 

% = 01, calculate divergence-proton "inelastic 

scattering" and show 20 

(3.25) 
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This practically unobservable result shows that the bare 

quark mass (mUI is in principle observable and finite in the 

parton model. 

Before returning to discuss the generality of these 

results, we discuss briefly application of the parton model 

to e+e- annihilation. 

3.5 e+e- -f -+ hadrons 

The same analysis which led us to the parton model for 

electroproduction leads to the following picture of e+e- 

annihilation: 21 

kc? i- 2 

L' LvbL $---Yz+i 
'2 y 

%--- \ 
2-->-ao i 

7. 
) 

(Fig. 4) 

Briefly: the virtual photon decays into a parton-antiparton 

pair which subsequently develop into hadrons without substantial 

interaction. The vanishing of interaction terms such as 

is in analogy with the vanishing of vertex corrections in the 

parton graphs for electroproduction. Consequently: 
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(3.26) 

(for spin-l/2 partons) 

a result which we will see to be very fundamental from a 

coordinate space point of view. 

3.6 A Hierarchy of Parton Model Results 

The time has come to discuss the generality of the 

various results we have derived in the parton model. Much 

insight into the reliability of the parton model comes from 

experience with light-cone and Bjorken-Johnson-Low techniques 

and will be obvious later on. 

The first class of results are scaling laws. These are 

shared by all approaches in which interactions are negligible 

near the light-cone. Although they are all violated in lowest 

order of perturbation theory in renormalizable theories, never- 

theless all techniques which predict scaling produce the same 

scaling laws.* 

Sum rules are far more variable. Those which depend 

solely on the relation between parton distribution functions 

*This is not the case for the structure functions which violate 
chiral symmetry (W4 ,[q',v]). These depend non-trivially on 
the interactions which violate the symmetry. See Ref. 20 for 
a discussion. 
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and conserved quantities such as I 3' S and B may be abstracted 

from the algebra of current commutators near the light-cone. 

Examples of these are the Adler and Gross-Llewellyn Smith 

sum rules. The correct algebraic derivations of these sum 

rules are quite different. The Adler sum rule depends only 

on the isospin algebra of the weak currents and is valid in 

all reasonable models which scale. Moreover, it is actually 

the Bjorken limit of a fixed-q2 sum rule and thereby acquires 

a rather different significance than the G-LS sum rule which 

doesn't have a fixed-q2 analog. The G-LS sum rule is a 

sensitive test of the fractional baryon number which distin- 

guishes the quark model: For example, in the Sakata model the 

right-hand side is -2 rather than -6. 

Sum rules which rely upon "intuition" regarding the 

parton distribution of hadrons should be kept distinct from 

the "algebraic" sum rules discussed above. Whether they 

follow from the absence of exotic exchanges in the t-channel 
22 

(as does the "duality" sum rule) or from more elaborate hypo- 

theses (as, for example, the "mean-square charge" sum rule of 

Bjorken and Paschos) 23 , these results are a step removed from 

those which rely solely on the algebra. 

Spectrum relations may be classified similarly. All of 

the ones discussed in the previous section have been shown 

to follow from the algebraic properties of the currents. 
24 

(The Callan-Gross relation follows from the Dirac algebra 
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rather than an internal symmetry.) The momentum sum rule 

is rather complex and will be discussed in a later lecture 

more carefully. 

Finally we note that the parton model predictions for 
+ - e e + X are actually consequences only of scale invariance at short 

distances. The scaling law and proportionality to CQ* are 
aa 

shared by all reasonable models which have Bjorken scaling. 

3.7 Other Parton Processes 

Since its development in the regime of electroproduction, 

the parton model has been applied a wide variety of processes 

augmented with various additional assumptions. A few of 

these (numbers 1,2, and 4 below) will be discussed later in 

John Ellis' lectures. For the sake of completeness, I list 

a selection of these determined purely on the basis of personal 

taste., They are listed more or less in order of increasing 

numbers of additional assumptions, in all cases the model is 

applied in a particular scaling limit: 

Process 

1. e+e- -f h + anything 

2. ep + eh + anything 

3. PP -t u+p-- + anything 

YP -+ iJ-+1-I- + anything 

4. ep + ye + anything 

5. Connections between form 
ep -t e + anything 

References 

25 

26 

27 

28 

29 

factors and 
30 
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Process References 

6. ab -f cd at wide angles 31 

7. ab + c + anything when P is large 32 
CL 

Many of the predictions of the parton model follow 

from its operator structure near the light-cone and at short 

distances. Nevertheless the model is more predictive than 

is its short-distance and light-cone structure alone. It is 

important to remember this although we have introduced the 

model merely as an expedient. Ellis will discuss the distinc- 

tion between partons and the light-cone in some detail later. 
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4. - Singular Functions and Fourier Transforms 

4.1 Introduction 

Practical use of short-distance and light-cone expansions 

requires facility with the Fourier transformation of various 

singular functions. Derivations of the necessary formulae 

are usually rather technical and too frequently non-experts 

are put off by this technology. In this lecture we attempt 

to introduce the required formulae without referring to the 

Bateman manuscript or other sources of arcana. First we study 

the general properties of the singular functions which are 

expected to occur in operator product expansions. Second we 

discuss the propagator functions of free scalar field theory in 

some detail and quote an explicit expression. From this we 

derive a formula for the Fourier transform (F.T.) of simple 

(integer power) light-cone singularities. Lastly we extend 

this, via analytic continuation, in d - the dimension of the 

singularity - to the general case. Use of analytic continuation 

allows us to circumvent a lot of algebra but is open to the 

criticism that the F.T. may not be analytic in d. We may be 

assured of the correctness of the proceedure by its agreement 

with the often q'zoted result of the more tedious analysis. 

The casual reader may wish to skip this lecture. He must 

do so at the price of accepting Eqs. (4.15), (4.16), (4.17) 

and (4.21) on faith. 
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The singular functions which occur in operator product 

expansions are generally of the form (l/x 2 d ) plus some boundary 

conditions which tell us how to treat the singularity at x2=0. 

The boundary conditions are conveniently included in the 

singular expression itself by addition of a small imaginary 

part (is) to x2. For general operator products the determin- 

ation of the proper is-prescription may be a delicate matter. 1 

We will frequently encounter three different prescriptions: 

First that appropriate to a simple product: 

second, that associated with a commutator: 

and third, that appropriate to a time-ordered product: 

The equivalence to the commutator, T-product or ordinary product 

is to be understood as follows: for a free, massless, scalar 

field, calculation of the matrix element on the right will 

yield the singular function of the left with'd = 1. For integer 

values of d the second singular function reduces to either* 
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6(n) (x~)E(x~) or (x~)~~~CX~) E(x,,) according to whether d is 

positive or negative. The explicit formulae are derived 

below (see Eq's. (4.19) and (4.20)). 

4.3 Free Field Propagator Functions 

The Feynman propagator for a free scalar field is familiar 

in momentum space: 

The is-prescription is determined by the boundary conditions, 

in this case that AF propagate particles forward and anti- 

particles backward in time. The coordinate space propagator 

is defined as follows: 

where uk - (j& m2)1/2 . AF(x,m2) is the usual two point 

function: 

(4.4 

*(j (n) (t) E dn/dt% (t) and is defined by /_zdt d (I-l) (t)f (t) 

zz (-pf (n) (0) for a suitable test function f(t). AlSO 

& (x) = 1 for x>O 
-1 for x4' 
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The equivalence of Eq's. (4.2) and (4.4) may be verified by 

substituting the plane-wave decomposition of $(x) and using 
2,3 

the canonical commutation relations. 

Often we will require the free field commutator function: 

(4.5) 

-11 of which may be verified by taking the imaginary part5 

of Eq's. (4.2), (4.3) and (4.4). 

Other propagator functions appropriate to retarded or 

advanced propagation, free field anticommutators and the 

like are defined by suitable is-prescriptions and may be 

found in appendices to any reputable field theory text. 2,3 

Generally the T-product, simple product and commutator suf- 

fice for our purposes. For future reference note that the 

singular function of Eq. (4.7) may be rewritten as follows: 

(4.8) 

We enumerate some properties of A- (x,m2) and A(x,m'): 
+ 

I. A(x,m2) vanishes for x2 6 0. This is required 

by locality (see Eq. (4.5)): $(x) should commute 
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with itself at spacelike separation. We shall not 

verify this explicitly. t 

II. A(x,m2) = -A(-x,m'), directly from Eq. (4.6) or (4.7). 

A(x,m2) Ix =. = 0. 
" + 

III. A(x,m2) = A (x,m2) + A'(x,m'), and AF(x,m2) = 

0 (x,1 A+(x,m2) - e(-x,)A-(x,m2) 

where 

(4.9) 

To learn more we must construct an explicit representation 

in terms of familiar functions. It is sufficient to consider 

only A'(x,m'). First2 perform the energy and angular integrals 

of Eq. (4.9): 

(4.10) 

(4.11) 

4 From property II and Lorentz invariance it is not hard to 

see A(x,m2) = 0 for all x2 < 0. 
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where k = 121 and ak = (g' + m2)1'2. Already from Eq's. (4.10) 

and (4.11) we see that A+(x,m2) is singular when xO=r: the 

derivative (a/Jr) of the integral in Eq. (4,ll) diverges at 

its limits. 

For a complete evaluation of the integral of Eq. (4.11) 

we refer to Bogoliwbov and Shirkov. 2 Before quoting their 

result we can at least motivate the appearance of Bessel 

functions. Define 

k = m sinh 0 

w, = m cash 8 "K 
x0 = JZ2cosh e. 

r = JX2 sinh 6, 

and consider (eg.) x < r. Substitution into Eq. (4.11) yields: 
0 rQ0 

which is a familiar representation of a Bessel function 4 : 

Other regions of coordinate space are treated analagously, and 

one finds discontinuities across the light cone, x0 = +r. When 

the required r-differentiation is 

become light-cone singularities. 

Without further ado we quote 

performed the discontinuities 

the result of this calc.ulation2: 

(4.12) 
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Note that the most singular term is independent of mass: the 

leading light-cone or short-distance singularity of free field 

theory is just what would be expected only the basis of scale 

invariance. 

4.4 Integer Power Singularities 

From the definition (Eq. (4.7)) and the explicit form 

(Eq. (4.12)) of A(x,m*) we may recover the Fourier transform 

of all singularities of the form: 

or 

As mentioned earlier these are the singularities appropriate 

to commutator functions. The treatment of other is-prescrip- 

tions is entirely analagous. 

From Eq. (4.6) note that 

(4.13) 

We are finished as soon as we can learn how to differentiate 

Eq. (4.12) with respect to mass. For this we employ the 

Taylor expansion to be found in any treatice on Bessel functions: 
4 
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It is then a matter of algebra to verify: 

(4.14) 

Comparing Eq's. (4.13) and (4.14) we conclude: 

and by inversion: 

Aside from the numerical factors these results could have 

been anticipated on the basis of dimensional analysis (to 

guess the powers), symmetry (to guess the s(kO)) and locality 

(to guess the O(k2)). These three equations are the funda- 

mental tools for light-cone and short-distance calculations. 

It is instructive and useful to generalize them to the case of 

non-integer singularities. 
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4.5 General Power Singularities 

We wish to find the Fourier transforms of generalized 

functions of the form: 

(4.18) 

Generalization to time ordered, retarded or other products is 

a matter of i-epsilonics and is left to the reader. 

Our strategy is to 

e-functions for integer 

terms of Ed(x) and then 

non-integer d. We will 

but note that it agrees 

tedious integration. 

Consider first Eq. 

relate Ed(x) to d-functions or 

d, rewrite Eqs. (4.16) and (4.17) in 

analytically continue the result to 

not justify this analytic continuation 

with the result of direct and more 

(4.8), replace the dummy variable k 
-I 3 

by x, differentiate n-times with respect to mL and set m"=O: 

(4.19) 

Second, consider Eq. (4.18) for positive d: 

Define the logarithm with its branch cut running from 0 to 

-a along the negative real axis, so 
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Then 

For positive integer d, Ed(x) = 0 as expected. For any d>O 

we obtain: 

(4.20) 

Let us now substitute Eq's. (4.19) and (4.20) into Eq. 

(4.16) (and also use (n-l) ! = I'(n) to facilitate the contin- 

uation): 

Finally use the identity: 

and let n = -d-l 
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Now we forget that d is an integer and let Eq. (4.21) define 

the F.T. of Ed for any d. The assumption is that the F.T. of 

Ed is an analytic function, which I will not attempt to prove 

here. Eq. (4.21) agrees with the result of the conventional 

calculation quoted, for example, by Frishman. 5 
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5- OPERATOR PRODUCT EXPANSIONS 

5.1 - Introduction 

jge saw in the first lecture how various processes probe 

the short distance and light-cone singularity structure of 

hadrons. Also we have seen in the parton model how model field 

theories milght be used in describing the data. In this lecture 

we extend the formal discussion of the previous lecture to 

discuss the general structure in field theories of operator 

products at short distances and near the light cone, which is 

the basis for the rest of the lectures. 

It turns out that in simple model field theories 1 operator 

products at short distances (or near the light cone') can he 

expanded as a series of other operators multiplied by 

successively less singular c-number functions 

(5.1) 

(5.2) 

Some significant features of Eqs. (5.1) and (5.2) include: 

(a) The singularities are c-numbers, not operators. It 

should be emphasized that this property has not been checked 

experimentally. It would require for example seeing whether 

the Bjorken scaling behaviour of virtual Compton scattering 

away from the forward direction was the same as that of the 
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imaginary part in the forward direction, as measured in deep 

inelastic scattering. 

b) The operators appearing in the short distance 

expansion (5.1) are local and generally include familiar 

objects measurable directly, such as currents. The expansions 

therefore give connections between two current processes 

(in certain limits) with one current processes, which are 

the bases for deriving sum rules in deep inelastic scattering. 

(c) The bilocal operators Oi(xio) appearing in the light - 

cone expansion (5.2) are analytic as x + o and the first 
1-I 

terms in their expansion are given by the leading terms in 

the short distance expansion (5.1). 

In this lecture we will seek to make plausible the 

postulation of such operator production expansions for 

hadrons, discussing how they occur in the canonical mani- 

pulations of free and interacting field theories, and how one 

might try to investigate their existence in renormalizable 

field theories. We discuss the connections between short 

distance and light-cone expansions. Also we examine the form 

expected for the short distance expansions of pairs of 

hadronic currents, and finish by relating the c-number term 

in the product of two electromagnetic currents to the asym- 

ptotic cross section a(e-e+-+ y + hadrons). 

5.2 - OPERATOR PRODUCT EXPANSIONS IN FREE-FIELD THEORY 

AS a first example of how operator proctuct expansions 

like (5.1) and (5.2) occur in field theoryl, we consider the 

simplest case of a free scalar field. We are interested in 

composite operators made out of pro:lucts of the constituent 



ields: objects like e(x) = $(x) $(x f 1. Actually, as written 

O(x) is not a sensible definition because it has a non-zero 

(and in fact infinite) vacuum expectation value. This is 

because the negative frequency parts of 4(x) contain creation 

operators a"(k) which do not annihilate the vacuum. To 

remove this problem we must redefine O(x) (and indeed all other 

composite field operators) so that the positive frequency 

parts of 4(x) 
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always stand to the right of the negative frequency parts. 

Thus we redefine 

This procedure is called normal ordering. Consider now the 

product 

Clearly the complete four field product is not normal ordered, 

and so will become infinite when XV?,‘ To see what the 

singularity is, we rewrite O(x)@(O), using the canonical 

commutation relations of free field theory to interchange 

positive and negative frequency parts of 4(x) and $(O): 

in the notation of lecture 4. We get: 

(5.3) 
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The normal ordered products on the right-hand side of 

(5.3) are non-singular as xp+O: all the singularities have 

been absorbed into the quantities A-(x,M2) which 

We can expand :$1(x)$(0): about the limit x = 0: 

so that introducing 

we have in the limit xU+O an expansion: 

Note that the expansions (5.3) and (5.4) are of the form 

promised in the introduction: they contain c-number singular 

functions multiplying operators. The short distance expansion 

(5.4) contains local operators, and the bilocal operator 

:$(x)$(O): appearing in (5.3) (the prototype of a light-cone 

expansion) is analytic as xU-+O, with the first terms in its 

expansion given by the leading terms in the short distance 

expansion. 
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Two comments are in order. The first is that expansions 

analogous to (5.3) and (5.4) will also hold for other current 

products, such as time-ordered products and commutators. 

They are readily obtained by just taking the relevant combina- 

tions of expansions of simple products. The singular functions 

then get changed to 1/x2-i& for time ordered products, and 

s(x )6(x2) for commutators. 0 The second comment is that 

operator product expansions similar ,to (5.3) and (5.4) can 

easily be derived in free fermion field theories. A- (x,M*) is 

now replaced by the fermion singular function 

and there are complications of spinology, but the idea is 

the same. 

Consider the physically interesting case of two SU3 

vector currents made up of fundamental free fermion fields 

q(x) belonging to a triplet representation'(quarks!) 

Manipulations similar to those carried out earlier in the 

section give an expansion resembling (5.3). The analogue 

of the :.$(x)$(O): term in (5.3) has pieces proportional to 

(5.5) 



-75- 

For the moment we will only be interested in this object at 

short distances, where it is proportional to 

Using 

this can be re-expressed in terms of the vector current and 

the axial current 

Adding all the pieces together one finishes up with 

q. . . . 
(5.6) 
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where the dots indicate less singular terms. The short distance 

expansion for the product of two axial currents is exactly the 

same as for the product of vector currents. The expansion for 

the product of an axial current with a vector current has the 

form 

+ l . . (5.7) 

For time ordered products we just replace (x2-i~xo) in 

(5.6) and (5.7) by (x2-is). 

We could go on to consider more complicated products of 

operators. For example the short distance singularities of 

the triple product 

could be studied. In a subsequent lecture we will be concerned 

with the c-number part in an expansion of this product, as it 

is connected with anomalies in current algebra low energy 
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theorems. In a free fermion field theory it will be proportional 

to 

at short distances. 

5.3 - OPERATOR PRODUCT EXPANSIONS FOR TWO CURRENTS 

In the previous section we discussed the form taken 

by the operator product expansions of pairs of currents in 

the canonical quark model. We should ask ourselves what 

happens in other models and how to parametrize the operator 

product expansion (5.6), (5.7) so as to accommodate more 

general possibilities. 

First we examine what happens in theories with more 

triplets of quarks 4 , where the current takes the form 

and the sum over c indicates a sum over a new internal index 

llcolourll. The operator parts of the expansion will be 
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unaffected: replacing eq.(5.5), where one pair of fermions 

has been reduced, will be something proportional to 

yielding 

at short distances, which gives the same currents in the 

same combinations as in the single triplet model. However, 

when the second pair of fermions is reduced in to get the 

c-number part, there will be a sum over the colour index, 

and the c-number will be multiplied by the number of colours.* 

Since the c-number is SU3 symmetric, if we assume the usual 

SU3 assignment for the electromagnetic current, then the 

coefficient of the c-number term in (5.6) is proportional to 

the sum of the squares of the charges of the fundamental spin 

l/2 fields 

where 

%A is defined analogously, and in general equals SJJ. 5, 

*The same will be true of the c-number parts of other expansions. 
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In a theory made up from fundamental spin zero fields, 

both the first and second terms in (5.6) are altered: the 

firstterm now has a coefficient 

and the second term vanishes (why?). Accordingly, we allow 

the axial current term in (5.6) to have an arbitrary coefficient 

KJJ in general, and define KAA and KJA analogously. (In fact 

there are arguments why the K's should be equal. 5, 

The coefficient of the term 

in (5.6) is determined by current algebra. It contributes to 

[J;(x) ,J:(O)] a term 

The square bracket is just* -2nie(x0)6'(x2) which at x0 z 0 

gives 22-2 6 3 (5) , 
xO 

and hence the current algebra equal time 

commutator. The 

*Recall from Lecture 4 that 

and that * n= \,2,-.* 

c 
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terms do not concern us, and we will not discuss them further. 

Notice that the second term in (5.6) appears in the 

commutator of two space components of the currents*: 

(where the letters i,j,k etc. are 3-space indices) 

Near x0 IJ 0 

so that the space-space commiltator contains a term 

(5.8) 

*See footnote on preceding page 
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For reference we also quote the c-number part of the 

commutator of two SU, currents: 

so that 

where 

5.4 - OPERATOR PRODUCT EXPANSIONS IN THEORIES WITH INTERACTIONS 

In this section we briefly discuss what happens to 

operator product expansions when interactions are switched on. 

One way of studying this question is to use the canonical 

commutation relations of a theory with interactions to study 

its short distance and light-cone singularities. 

Consider for example a quark theory with the vector 

gluon interaction 
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In their studies of this model Gross and Treiman' found that 

in order to extract the leading singularities it was sufficient 

to treat the gluon as an external c-number field. (We refer 

to their paper6 for details.) They then showed that the only 

effect of a c-number gluon field on the singular functions 

on the light cone was to multiply them by a phase. For x2 - 0 

where the integral is along a straight light-like path from 

0 to x. 

The short distance expansions are therefore unaffected 

because they come from the tip of the light cone where the 

phase is zero. Away from short distances along the light 

cone, the phase does not affect the Lorentz or internal 

symmetry structure of the bilocal operator, but it does 

means that the bilocal operator is not simply expressible 

in terms of quark fields alone. 

Another method of studying operator product expansions 

in an interacting field theory is to use perturbation theory. 7 

It has been shown that in general operator product expansions 

of the type (5.1) or (5.2) remain valid, but that their form 

changes from that in free field theory. Let us sketch what 

happens. Consider an object T(J(x)J(O)) where J is a product 

of two constituent fields, which we take for convenience to 
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be scalar J(x) = :$(x)$(O):. Then the matrix element of 

T(J(x)J(O)) between any pair of hadronic states H and H' 

can be written as a sum of graphs with interactions at the 

points yl...yn, and particles propagating between the 

interactions, the points x and 0, and the external particles, 

each integrated over yl...yn. This sum of graphs can be 

divided into two classes, in one of which a particle propa- 

gates freely between x and 0, and in the other not. 

Figuratively speaking: 

where the shaded areas indicate interaction regions. The 

first class of diagrams looks like 

and so gives to the operator product ex;oansion a term like 

that in the free field case except that <HIT(r$(x)$(O)) IH'> 

may, and in general does, become divergent 8 as x2+0. What 

about diagrams in the second class? It is apparent that 

before the integrations over the interactions yl...yn the 
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diagrams will not have any 1/x2 singularities. However, the 

integrations over y 1 . ..y n can in general yield 1/x2 singu- 

larities, or even stronger ones. If all the integrations 

were convergent, there would be no problem, and the second 

class of diagrams would not be singular on the light cone; 

this is what happens in super-renormalizable field theories, 

like $3. In renormalizable field theories, including for 

example Q4 and the quark-vector gluon theory, the integrals 

are in general diverqent and must be renormalized. The 

singularities at short distances and near the light cone 

are then modified by logarithmic factors in each order of 

perturbation theory. If all orders of perturbation theory 

could be summed, these logarithms might well exponentiate 

to powers. In a vector gluon theory problems come from 

graphs looking like 

where the 
t 

's are vector gluons. The canonical manipulations 

discussed earlier, which just modified the light-cone singu- 

larity by a phase, are completely false in perturbation 

theory. 
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Happily, the data on deep inelastic scattering are 

consistent with canonical light-cone singularities, and give 

no evidence for logarithms, though no one really understands 

how this is possible. In all that follows we will assume that 

the perturbation theory calculations are inapplicable, and 

that operator product expansions for hadronic currents in 

fact have a canonical structure*. This and 

reasons we have not discussed expansions in 

in more detail. 

time are the 

interacting theories 

5.5 - APPLICATION TO e-e'+y+HADRONS 

In Section 5.3 we saw how in canonical manipulations of 

field theories, the c-number part of the commutator of two 

electromagnetic currents at short distances is 

xp2 (5.8) 

where R is a model-dependent parameter (2/3 for fractionally 

*Recently' it has been discovered that non-Abelian gauge theories 

have canonical short distance singularities, while violating 

Bjorken scaling in electroproduction by inverse powers of 

logarithms. 10 
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charged uncoloured quarks, 2 for coloured quarks, etc.). 

We have 

so that the short distance contribution is 

Now we use an identity given in Lecture 4: 

(5.9) 
which in the case n=3 implies 

(5.10) 
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For q2 + m with q. > 0, this gives 

(5.11) 

It is apparent from (5.9) and (5.10) that if we considered 

a weaker short distance singularity than (5.8) then its contri- 

bution to the cross section would fall off more rapidly than 

Hence, as asserted earlier, the asymptotic behaviour of the 

cross section is determined by the leading short distance 

singularity. The parton model result 11 for the cross section 

is identical with (5.10) because the model diagram 

has a canonical singularity of the form (5.8). At large q2, 

the cross section for e-e+ + y + ~-l-l ' is also determined by 

a leading short distance singularity, which is canonical when 

we work to leading order in ~1. It is of the form (5.8) with 

R=l. Hence the expectation is that 
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(5.12) 

as g" -f m. 

As was emphasized in the second lecture, there is as 

yet no overwhelming experimental evidence in favour of this 

behaviour. We regard it as a fundamental test of the ideas 

of broken scale invariance, perhaps even more basic than 

Bjorken scaling in electroproduction. In all field theory 

models studied, (5.12) holds if Bjorken scaling works. Also 

renormalisable gauge theories ' have the property (5.12), but 

Bjorken scaling fails by inverse powers of logarithms 10 . We 

will keep our fingers crossed. 



-89- 

References 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

K. G. Wilson - Phys. Rev. 179, 1499 (1969). 

R. A. Brandt and G. Preparata - Nucl. Phys. B27, 541 (1971). 

Y. Frishman - Ann. Phys. (N.Y.) 66, 373 (1971). - 

H. Fritzsch and M. Gell-Mann - in "Broken Scale Invariance 

and the Light Cone" edited by M. Dal Cin, G. J. Iverson and 

A. Perlmutter (Gordon and Breach, New York, 1971). 

H. Fritzsch and M. Gell-Mann in Proceedings of the Inter- 

national Conference on Duality and Symmetry in Hadron 

Physics, edited by E. Gotsman (Weizmann Science Press, 

Jerusalem, 1971). 

J. Ellis - unpublished (1972). See Lecture 8. 

D. J. Gross and S. B. Treiman - Phys. Rev. D4 -' 1059 (1971). 

See for example W. Zimmermann in Lectures on Elementary 

Particles and Quantum Field Theory, edited by S. Deser et.al. 

(M.I.T. Press, Cambridge, Mass., 1971). 

R. Jackiw and R. E. Waltz - Phys. Rev. D6 -' 702 (1972). 

D. J. Gross and F. Wilczek - Phys. Rev. Lett. 30, 1343 (1973). 

H. D. Politzer - Phys. Rev. Lett. 2, 1346 (1973). 

K. Syranzik informs people that this result was also known 

to G. 't Hooft. 

D. J. Gross and F. Wilczek - NAL Preprint, NAL-PUB-73/49-THY- 

"Asymptotically Free Gauge Theories-I" (1973). 

N. Cabibbo, G. Parisi and M. Testa - Lett. al Nuovo Cimento 

d", 35 (1970). 

S. D. Drell, D. J. Levy and T.-M. Yan - Phys, Rev. Dl, 1617 - 

(1970). 



-9Q- 

6. Light-Cone Expansions and the Quark Light-Cone Algebra 

6.1 Introduction 

We have already argued that the light cone dominates the 

Bjorken limit of inelastic lepton scattering. Also we have 

shown that in free field theory and in interacting theories 

treated canonically (but not in lowest order perturbation 

theory) operator products have a rather simple expansion about 

the light cone. Applied to inelastic lepton scattering these 

ideas have an immediate, striking consequence: the experi- 

mentally observed (Bjorken) scaling requires that the product 

of electromagnetic currents behave like a product of free 

currents near the light cone. Here we will show how this comes 

about, explore its consequences regarding bilocal operators, 

discuss light-cone current algebra and relate all this to the 

parton model. 

6.2 Measuring Light-Cone Singularities and Bilocal Operators 

We suppose that in the vicinity of the light cone the 

commutator of two currents may be expressed as a sum of c-number 

functions singular on the light cone multiplying bilocal oper- 

ators, 2 regular at (x-y) = 0. 1 

(6.1) 

For simplicity we will consider scalar currents until further 
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notice. The sum on [a] covers Lorentz indices (if any), internal 

symmetry labels and strength of singularity. From Eq. (6.1) we 

construct the current correlation function 

(6.3) 

By assumption F(O,x*p) is finite*. 

We can now show a) that the scaling laws determine the 

light-cone singularity of ErB1 and b) that scaling structure 

functions measure the Fourier transform of F IB1 (0,x-p). 

Although this may be done for an arbitrary singularity using 

the Fourier transform relation derived at the end of Lecture 4, 

we prefer to use the more physical example of singularities 

which are integer powers of xL. Locality and crossing require 

the following of Eq. (6.3): 

1. 3 (x 
2 

,x*p) = 0 for x2 < 0 Locality 

2. -$(x2,x-p) = -3-(x2,-x*p) Crossing 

* Since we will only consider a single matrix element of this 
expansion, it is impossible to conclude that the singularity 
is actually a c-number. In the models we discuss this will 
be the case. 
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Suppose now the most singular term in Eq. (6.3) were 

The contribution of such a term to the structure function 

determined by 3(x2,x*p), 

is then: 

(6.4) 

Substituting for F(x*p) its Fourier transform: 

(6.5) 

we obtain 

having used the definition of the free causal propagator and 
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the fact that a(x,O) = (2~r)-1 S(x2)s(xo). 

There are two solutions to the 6-function: 

which in the Bjorken limit reduce to: 

and yield: 

(6.7) 

As discussed in Lecture 2, V(Q2 ,v) should vanish below 

threshold, i.e. for 12vI<Q2 Eq. (6.7) fulfills this require- 

ment if f(a) = 0 for lcll > 1. Whatever dynamics generates 

the dominant light cone singularity must also respect this 

spectral condition2, and we therefore assume f(a) = 0 for 

a > 1 henceforth. Eq. (6.7) reduces to & f (5). 

The result of this brief calculation could have been 

guessed on dimensional grounds alone: Vl(Q2,u) has dimension 

[mass] -2 (see Eq. (6.4)) which we expect to be supplied by an 

inverse factor of v or Q2 in the Bjorken limit. 

Suppose, now, that we consider a term in L (x2 7 ,x-p) with 

one power weaker a light-cone singularity: 
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where the constant, M2 (dimension [mass12), is necessary to 

preserve the dimension of 3 (x2 ,x*p) 0 This contributes to 

V(Q2,v) a term of the form: 

This may be evaluated by inserting the Fourier transform of 

G(x*p) and using the observation from an earlier lecture that 

From which we obtain 

(6.9) 

(6.10) 

where g'(c) is the derivative of the Fourier transform of G(x-p) 

[Eq. (6.10) could also have been guessed from dimensional 

analysis]. 

The relation, apparent in Eqs. (6.7) and (6.10) between 

the light-cone singularity of a term in 3 (x2 ,x*P) and the power of 

v or q2 in the ensuing scaling law is completely general. 

[The reader is invited to derive the result for an arbitrary 

singularity from the technology of Lecture 4. 'I Moreover, 
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the scaling structure function measures, as promised, the Fourier 

transform of the matrix element of the bilocal operator along 

the light cone. 

What is remarkable about the SLAC-MIT experiments is that 

scaling for Wl and VW2 is what would be expected if the electro- 

magnetic currents were constructed from free fields: i.e., the 

singular functions obtained from commuting two currents construc- 

ted of free fields determine that Wl and vW2 scale, provided 

one assumes the bilocal operators to be smooth near the light- 

cone. Jackiw, van Royen and West3 constructed an explicit form 

for the leading light-cone singularity of the electromagnetic 

current correlation function consistant with the scaling of Wl 

and VW2: 

where omitted terms are less singular on the light-cone.* 

S is defined as follows: 
liPV0 

*Actually Eq. (6.11) differs from Ref. 3 in the second term. The 
reason we have chosen the form shown will become clear when the 
quark model light-cone algebra is explored. The second term of 
Eq. (6.11) is current conserving only to leading order on the 
light-cone (which is all that need concern us here) in contrast 
to Ref. 3. 
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(6.12) 

and FL(c) z Fl(S) -+ F2 (5). 

The first integral in Eq. (6.11) would appear linearly 

divergent if FL(T) has the Regge behavior expected of it (see 

Lecture 2). The understanding and removal of this sort of 

divergence will be discussed at length later. First we intro- 

duce the Fritzsch-Gell-Mann light-cone algebra. 

6.3 The Quark Model Light-Cone Algebra 

The observation that Bjorken scaling is equivalent to 

free-field light-cone singularities suggests that symmetry 

relations known to be violated by interactions might neverthe- 

less be valid to leading order on the light cone. The prime 

candidate for such a symmetry is Gell-Mann's SU(3) and indeed, 

Fritzsch and Gell-Mann have proposed4 that the leading light- 

cone structure of current commutators be abstracted from the 

free quark model. As something of a bonus, they found that 

the bilocal operators which are generated by commuting two 

currents form an algebra among themselves. Here we develop the 

quark model light-cone algebra and apply it to the derivation 

of sum rules. 

The strategy is to suppose that the electromagnetic 

and weak currents may be constructed from currents of the form: 



(6.13) 

where $J (x) is a free, - three component quark spinor field and 

x a are the usual w(3) matrices* normalized to Tr x2 = 2(a=0...8). 
a 

Using the free field anti-commutator 

where only the leading singularity is of interest, we find: f 

and 

-- 

*T.he SU(3) algebra is not closed though the U(3) algebra is. 
t 

The identity YPYPYv = S,,pv~ya-i~~pvaY,~5 has been used. 
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For completeness we note that the vector-axial vector commutator 

is obtained from Eq. (6.14) by the substitutions : 

Aca(xlo) C-9 

SC0 (xl 0) f--+ 

and that the axial-axial commutator is identical to the vector- 

vector. 

Note that the bilocal operators in these expansions are 

the bilocal generalizations of the local currents themselves. 

Fritzsch and Gell-Mann' showed that the bilocals generate a 

closed algebra. For example: 

Testing the bilocal algebra is a difficult undertaking since 

it requires a four current process in which all spatial separa- 

tions may be forced to be light-like. The processes ep-+e(u+v-) 

+ x; e+e--y+iJ- + X and e+e--+e e- + X have been proposed as 
5 candidates . However, the likelihood that these experiments 

will be performed in the required kinematic regime is negligible 

for the forseeable future. Unless we have overlooked some 

application, it seems we must content ourselves with the algebra 
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of local currents for the time being. 

Before proceeding to the derivation of sum rules, we note 

that Eq. (6.14) motivated the choice of tensor structure in 

Eq. (6.11). The reader should verify for himself that Eq. (6.14) 

generates the correct scaling behavior for F2(5) in electro- 

production. 

6.4 Sum Rules From the Quark Light-Cone Algebra 

Here we derive several of the sum rules previously derived 

from the parton model and also hopefully learn why others can- 

not be derived. 

1. Callan-Gross Relation 

Eq. (6.14) contains no term proportional to (gUv~-8~av ) 

and by comparison with Eq. (6.11) necessitates FL(S) = 0 which 

is the Callan-Gross relation. Note, no statement about the 

detailed nature of the proton has been made. 

2. Adler Sum Rule 
VP Consider the term in WVv symmetric in 1-I f-f v 

and define * 

* 
The terms involving A: will drop out of the sum rule since they 

vanish at x = 0. 1-1 
For expediency we drop them henceforth. 
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(6.17) 

In the Bjorken limit only f3 '(x*p,O) will contribute to W2. 

Define 

(6.18) 

the limits being set by spectral requirements. Combining Eqs. 
* 

(6.16-6.18) and isolating the coefficient of P P P v 
we obtain: 

or 

Now refer to Eq. (6.18) and note: 

f3S(o,o) is two since sz (010) = 2j:(O) whose proton matrix 

element is 

Finally the usual form of the sum rule follow from the observation 
SP that crossing requires Fzp(<) = F2 (-5). 

*Factors of two and T are formidable in this calculation. Among 
the pitfalls are 
1) 2. from the vectqr;vectqr and axis+-axial commutators 
2) J+,W = J\afqJ\o y-J $T-kd) -tJyr~x3 
3) <PIP'> = (2Tr) 2E 6 (P-P') which implies <p(jy(O)I~> = 2PU 
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Several remarks are in order. First, the parton model derivation 

is easier. Second, it is clear we have assumed nothing specific 

to the proton except its isospin. Third, the derivation still 

has flaws, e.g., how do we know that F2(S)/c does not contain 

a term proportional to 6(c), necessary to validate the sum 

rule, but unobservable in neutrino scattering, or that the 

strong assumption of th, P existence of the bilocal operators is 

really necessary? We will return to these later. 

3. Bjorken's Spin Dependent Sum Rule': 

The matrix element <p/Saz(OIO)/P> vanishes between spin 

averaged proton states. If we do not spin average (and choose 

for example a = 3) : 

(6.19) 

where gA 2 1.2 is the axial weak charge. Equation (6.19) may 

be exploited to derive a sum rule analogous to Adler's Consider 
* 

the spin dependent terms in electron scattering: 

* 
That is, we define W 
proton is not averag Ki. 

as before except that the spin of the 
In that case two additional structure 

functions appear, both antisymmetric in 1-1 f-f V. For an intro- 
duction to spin dependent effects and a parton model derivation 
of Bjorken's sum rule see Kuti and Weisskopf.7 
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From Eq. (6.14) we obtain: 

If we take the proton neutron difference only the S5 83(x/O) term 

survives [h, and ho are invariant under isospin rotations]. Fixing 

our attention on the coefficient of E we obtain in the 

Bjorken limit: 8 
,-I 

where 

This sum rule may also be derived in the parton model 7,lO al- 

though the treatment of spin is probably simpler in the light- 

cone approach. 

4. Other Sum Rules and Spectral Relations 

Most of the sum rules and spectral relations discussed in 

Lecture 3 may be derived in much the same manner as the Callan- 

Gross relation and Adler sum rule were derived. The obvious 

exception is the duality sum rule. If we imitate the derivation 

of the Adler sum rule for F;' - F;n , we find: 

where 
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and 

If we attempt 

crossing A (f 3 (0,O) = 0). On the other hand the integral: 

is some integral along the light-cone whose value is unknown. 

The parton model result which depended upon the proton's composi- 

tion cannot be derived. 

6.5 Regg e Behavior and Bilocal Operators 
11, 12 

We return now to the question of how to interpret 

(6.19) 

in the event FL(S) has the Regge behavior (s l/5 as 5 -+ 0) 

expected of it. Such questions are important in understanding 

BJL techniques and the sum rules they generate. Clearly if 

Eq. (6.19) divergesJthe Fourier transform does not exist in the 

usual sense but may be understood as a generalized function. 

To display FL(x*p) in a finite form proceed as follows: 

Let f,(S) = C y(a)lSI-a ~(5) be the sum of all Regge terms 
a>0 

which would cause a divergence in Eq. (6.19). Define 

f?,(5) 5 FL(S) - f,(S) 



-104- 

and add and subtract from Eq. (6.19) the quantity 

Note now* 

for 5>0. For 5<0, the quantity in the brackets vanishes. Then 

i 
,og 

a 

Finally, we obtain: 

7 g(3c) ‘?.J!ip h-c&Y~p~/~ - , 
MT0 I 7 

which is finite. In particular FL(O) = ~~~,(~) - c y(a) 
a>0 

7 
--..~ 

*proof is direct from: 
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The seemingly exceptional values a=0 and 1 may be easily 
12,13 disposed of. 

It may seem that the generalized function prescription is 

somewhat arbitrary. However, momentum space techniques 13 make 

it abundantly clear thatthis is the proper way to interpret 

these integrals: That the bilocal operators' matrix elements 

are finite and well-defined when the relevant structure functions 

scale. Actually it is clear from Eq. 6.11 that they are analytic 

in xep. 12 

6.6 Partons and the Light Cone 

It is instructive to return briefly to the parton model 

and search out the elements which it shares with the light cone: 
14 

(1) The free-field singularity which yields Bjorken 

scaling is generated by the free propagation of the 

scattered parton into the final state. Remember the 

di 

In coordinate space, the propagator 

is A(x) + & S(x2)e(xo) near the light cone. 

(2) An algebra of currents corresponds to a symmetry 

among partons. 
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If these are kept in mind, it is always possible to 

determine which parton model results are consequences of the 

model's light-cone structure alone. 

6.7 Abstraction from Free-Field Theory 

Finally, I would like to comment briefly on the abstraction 

of singularity structure from free field theory. Gell-Mann4 

speculated that abstraction must stop when the abstracted results 

would be invalid in interacting theory treated canonically (by 

which I mean ignoring the divergences of perturbation theory). 

All the results of this lecture satisfy this criterion. 15 Indeed 

we have not gone as far as we could: Mandula" showed 

$7 WLk12, V) scales in the canonical quark gluon model (as it 

would in free quark theory). Recently, however, Broadhurst, 

Gunion, and I 17 showed that in the quark, vector gluon model 

the leading chiral symmetry violating structure, F5(x), is 

explicitly proportional to the quark-gluon coupling, g. Abstrac- 

tion from free field theory implies F5(x) = 0 and this by a 

series of arguments implies a rather trivial theory. This 

supports Gell-Mann's suggestion on the limits of free field 

theory. 
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7. - BJL Limit 

7.1 Introduction 

Bjorken's original investigation' of deep inelastic electro- 

production employed neither light-cone nor parton model techniques. 

Rather it was based on a momentum space realization of the short 

distance expansion developed some years earlier by Bjorken' and 

independently by Johnson and Low', and known as the BJL limit. 

This momentum space approach turns out to be a straightforward 

way to expose the assumptions which underly the sum rules we 

have been discussing and consequently to be a useful framework 

to explore possible violations of canonical scaling results. 

We proceed as follows: 

First we discuss the BJL limit for the simple case of scalar 

currents. Then following Wilson4 we relate the commutators which 

occur in the BJL limit to the short distance expansion. We will 

then discuss BJL limit sum rules and their validity in perturba- 

tion theory. Finally we discuss the "light cone" BJL limit 

and the derivation of fixed-q2 sum rules including Adler's. 

7.2 Derivation of the Limit 

Consider the amplitude for scalar-current, proton forward 

scattering 

T(q2,v) = i / d4x e Iqmx <PIT* (J(x) J(0)) IP > 

= i i d4x e iq*x < PIT (J(x) J(O))IP > + Polynomials in v,q2 

= i I d4x e iq*x < P/0(x0) [J(x) ,J(O)]lP> +Polynomials 

(7-l) 
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where T denotes time ordering. We have allowed for the possibil- 

ity that J(x) J(0) is so singular near x = 0 that the time 

ordered product is not covariant. 5 The covariantizing terms are, 

however, polynomials in q 
lJ 

and p i-1' 
Also we have converted the 

time ordered product to a retarded commutator - allowable pro- 

vided the state Ip> is stable. Consider now the limit q. -f ia 

with G = 0 and (for the moment) pU fixed, and repeatedly 

partially integrate Eq. (7.1): 

(7.2) 

Crossing [T(q2,v) = T(q2, -v)] eliminated the terms in Eq. (7.2) 

proportional to an odd power of qo. 

q. -f ia is a rather unphysical limit but may be related 

to observables via fixed-q2 dispersion relations for T(q2,v). 

Immediately the question of subtractions arises: T(q2 ,v) is 

determined by its imaginary part along the real axis only up to 

a real polynomial in v: 

(we have used the fact that T(q2 ,v) is even in v and have defined 
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wq2 IV) =& Im T(q2 IV) 1. If the integral is not convergent 

the polynomial may be used to provide subtractions in the usual 

fashion.* The dispersion integral may or may not need sub- 

traction depending upon the (measureable) asymptotic behavior of 

w(s2, v) for large v. Nevertheless one cannot rule out a priori 

the presence of a real polynomial regardless of the behavior of W. 

I belabor this point because results obtained from BJL 

techniques depend sensitively upon assumptions about subtraction. 

For the moment we will assume no subtraction is necessary and 

no polynomial is present. Later the effect of a polynomial will 

be made apparent in a specific example. In any practical appli- 

cation the reader is forwarned to explore the sensitivity of his 

analysis to subtraction hypotheses. 

To proceed, rewrite Eq. (7.3) (without the polynomial) in 

terms of the variable w = 2v/-q2 = 2po/qo: 

and take 90 + im, Zj = 0, p 1-I fixed (whence w -+ 0) . As w -t 0 the 

*Suppose, for example, the integral is barely 
formally write: 

divergent, then 

and subtract from Eq. (7.3): 
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denominator may be expanded: 

(7.4) 

We would like to derive sum rules for moments of W(q2, 4 by 

equating powers of l/q0 in Eq's. (7.2) and (7.4). To do so we 

must assume something about the behavior of W(q2, w) as q2+ -M. 

We study here only the simple case when W(q2 ,w) scales:* 

Lim W(q2 ,w) = F(w) 
q2+co 

More complex situations in which the limit q2-+ -a cannot be 

taken underneath the integral are of considerable interest6 but 

are beyond this simple presentation. Comparing Eq's. (7.2) 

(7.4) we obtain (n=O): 

and 

These equations are the fundamental results of the BJL 

*If, for example, vW(q2 ,w) scaled (as is the case for W2) the 

only modification is a realignment of which moments are identified 

with which commutators. 



-113- 

analysis. However the observant reader will realize he has been 

swindled. Although W(q2 ,w) may scale to F(m) there are surely 

corrections to the scaling law which would enter all lower 

order sum rules. For example suppose 

then the above equation for n=l should be corrected to read: 

where the new term arises from inserting the correction in the 

n=O relation. To rid ourselves of these unwanted terms we now 

take p, + CD: 

(7.5) 

and for n 21: 

(7.6) 

Our assumptions (no subtractions, W scales) require the right 

hand side of Eq. (7.5) to exist. Scaling also requires that for 

every n, the commutator of Eq. (7.6)exist and contain a finite 
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term7 2n proportional to p. . * In this language scaling seems 

quite miraculous - requiring the existance of an infinite tower 

of high spin (to obtain increasing powers of po) operators. 

A simple example is in order. Consider a free massless 

spinor theory: 

Dimensional analyses leads us to expect W(q2 ,w) to scale. To 

calculate the n = 1 term we need 

A brief calculation yields 

This is the spin-2 part of the stress-energy tensor: 8 E 
I-lV 

GY,, aJJ - guv L where L is the free spinor Lagrangian. 8 
I-lV 

is conserved and normalized: 

Eq. (7.6) with n = 1 reads: 

*The commutator of Eq. (7.6) grows no faster than p02n-2n-1 
powers come from a, 2n-1 and one from /d3x = /d4x 6(x0). 
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This is correct: since only the Born graph exists in this 

theory: 

On the other hand, consider a free massless scalar theory: 

Dimensional analysis predicts MG W(q2 ,w) to scale so F(u) = 0 

and we expect to get zero by computing the right hand side of 

Eq. (7.6) for n = 1. Using 

we obtain: 

Since the matrix element ~]@(O)+(O) Ip> has no term proportional 

to PO2 we find: 

&:w) --cl 

as expected. To obtain non-trivial results in a scalar theory 

assume vW(q2 ,v) to scale and repeat the analysis. 

In the realistic case of vector and/or axial vector 

currents, this sort of calculation yields sum rules like that 

of Gross and Llewellyn Smith if the commutators are calculated 
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canonically* (as we just did) and if it is assumed that dis- 

persion relations have no more subtractions than they need.** 

In models where scaling is violated (e.g. order by order 

in renormalizeable perturbation theory) commutators become 

anomalous 8 and gratuitous subtraction constants appear. 9 

Although the naive (and useful) form of the sum rules is lost, 

nevertheless the BJL theorem - which is actually little more 

than a definition of an equal time commutator as the coefficient 

of l/(q")n in the expansion of an amplitude - remains valid and 

useful. 10 We will encounter a specific example later. For the 

rest of this lecture we assume, where required, that the com- 

mutators which appear in the BJL expansion are canonical. 

7.3 Relation to Short Distance Expansion 

Wilson4 showed the relation between his short distance 

expansion and equal time commutators. Consider the short 

distance expansion: 

(7.7) 

with 

(7.8) 

valid near 5 = 0. 

*That is: using canonical commutation relations of the fields 
and the naive (unrenormalized) equations of motion 

**This may be weakened, see lecture 10. 
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At small x0, E,(x) is equivalent to a sum of 8-functions. 

Consider 

(7.9) 

for some smooth function v(z). Since En=0 if I;] > x0 it makes 

sense to Taylor expand v(z). 

V(X)= \fjo)-+ r%"3?v~o~ +.,a 

(7.10) 

Since by definition: 

Eq. (7.10) allows us to rewrite Eq. (7.9) as: 

So the quantity in brackets is to be identified with En(xO,G). 

Finally note from dimensional analysis and from the observation 

that Eq's. (7.7) and (7.8) are odd in x0 that: 
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+-1 where the constants A:, A,,... require further analysis to 

determine.* So we conclude: 

Since Eq. (7.11) is odd in x0 the equal time commutator of 

Eq. (7.7) vanishes as it should. The first time derivative is 

non-vanishing at equal times. From Eq's. (7.8) and (7.11) it 

is clear that the spatial integral of the equal time commutator 
. 

of J(x) with J(0) measures the most singular term in the 

expansion and that it is 

0 if 2dn - 2 < 0 

finite if 2dn - 2 = 0 

00 if 2dn - 2 > 0 

If dn < 1 for the most singular term, then after some number 

of time derivatives it will become finite or infinite at x0=0. 

We conclude that the first non-vanishing moment integral in 

the BJL expansion is given by the leading short distance 

*Actually a rather pleasant exercize in complex analysis yields: 

while 2: = 0 by rotational symmetry. 
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singularity. Higher moment integrals determine lower singu- 

larities in a way the reader may work out for himself. 

7.4 BJL Limit Sum Rules 

1. Gross-Llewellyn Smith Sum-Rule: 

To exemplify BJL techniques we return to this (by now familiar) 

sum rule and expose more clearly its structure. Consider the 

amplitude T in neutrino 
UV 

production with ~l=x, v=y and both 

G and $ in the z-direction 

We have explicitly allowed for a 

the dispersion integral (without 

polynomial in v2 even though 

subtraction) converges in 

Regge theory. Taking the limit qO + im (with G = 0) and de- 

fining & W3(q2,V) f F,(q2 ,w) we obtain: 

(7.12) 

On the left hand side only the term proportional to p,/qo has 
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been written, while on the right only the l/q0 term is written. 

7, is a possible l/q2 term in fo(q2) as q2 + -O". All the ignored 

terms must be separately equal unless there are the sorts of 

anomalies mentioned earlier. The commutator in Eq. (7.12) may 

be calculated in a canonical quark field theory:* 

using 

with the result: 

where BP(x) and SII(x) are the baryon and strangeness currents 

in the model. Since 

we obtain finally: 

*This commutator may be extracted directly from the short distance 
expansion (cf. Eq. (5.8)). 



-121- 

Eq. (7.14) reduces to the Gross-Llewellyn Smith sum rule 

provided: 

a. The constant f. is absent. Like the J = 0 fixed poles to 

be discussed in Lecture 10, fo(q2) should be a polynomial in 

cl2 and therefore not contain a term (To) proportional to l/q2. 

b. Our canonical evaluation of the commutator is correct. Per- 

turbation theory is plagued by anomalous commutators. 
8 For 

this sum rule 6 is replaced by 6 - 3g2/2T2 in second order 

in the vector gluon model. 11 

C. F3(5,q2) scales so that the limit may be taken underneath 

the integral sign. If not, the sum rule may make sense as 

the limit of the integral but the implied non-uniformity makes 

its experimental significance dubious. 

It is appropriate to emphasize that neither a,b, or c is 

obtained in perturbation theory. But, for that matter, neither 

is Bjorken scaling for F 1 and F 2 found in perturbation theory. 

2. Cornwall-Norton Sum Rules: 12 

These are the moment sum rules for Wl and W2 generated by exactly 

the method we applied to the commutator of scalar currents. In 

canonical quark theories these sum rules will contain the Callan- 

Gross relation (moment by moment) so we need only write the sum 

rules for (say) W2. To isolate W2 consider TZz - Txx in a 

frame where G is in the 9 direction and G is in the !Z direction: 
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Now take q. -+ im, set G to zero and subsequently let PO -+ a:* 

Since the equal time commutators of Eq. (7.15) are determined 

by the short distance expansion, these sum rules are useful 

if the short distance behavior of a theory is understood. Re- 

cently it has been discovered that this is the case for some 

non-Abelian Yang-Mills theories, 
13 Although the structure func- 

tions cannot themselves be computed in these theories, their 

moment integrals in principle can. 
14 

For a discussion of other 

applications of these sum rules see for example Frishman's NAL 

Rapporteur's Talk. 6 As an example of an application we follow 

Llewellyn Smith 15 to derive the parton model momentum sum rule 

from the n = 

3. Momentum 

For n=O, Eq. 

0 Cornwall-Norton Sum Rule. 

Sum Rule: 15 

(7.15) reduces to (assuming scaling): 

To proceed one must make a model for the currents (eg. canonical 

gluon model, perturbation theory, etc.). We will consider only 

*Asp -+'=,P3+Po 0 
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the free quark model except to quote results which may be found 

in Llewellyn Smith's Hamburg Summer School Lecture. 16 Explicit 

calculation of the commutator yields: 

(7.17) 
7 

Were it not for the factor Q" this operator would be the spin 2 

part of the stress-energy tensor. Suppose we had begun with 

currents proportional to baryon number rather than charge. Since 

B2 = iI in the quark model we would obtain: 

Now use 8 
l-iv - 9pvL (L is the Lagrangian) and the 

normalization <pjBUvjp > = 2pvp, to reduce the right hand side 

to - 4/9 i S3(Z) (2p02 - 2pi2 ) + terms lower order in G. It 

is easy to show that: 

(7.18) 

reproduces the baryon number and therefore the stress energy 

tensor. Combining Eq. (7.16) with (7.17) and taking the appro- 

priate combination of structure functions: 
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In an interacting theory uncharged gluons also contribute 

t0 e PV 
but not to the structure functions. Let E be the frac- 

tion of proton's momentum residing in the glue: 

The sum rule now reads: 

Llewellyn Smith 15 showed 1-s > 0 from the positivity of baryon- 

current, nucleon deep inelastic scattering. It has not so far 

been possible to prove E 2 0 in general 15 so the full parton 

model result is not obtained. 

7.5 Light Cone BJL Limit and Fixed Mass Sum Rules 

Jackiw and Cornwall 17 modified the BJL limit to make use 

of the light-cone formulation of field theories developed in 

recent years. Specifically they considered the limit q- + ia 

with q, = 0 and <, fixed (so; = 0). In terms of invariants 

we find: 

qy z "q+q- - 72 = -4: iCid) 

$ = dP+q - ca 

To exemplify the applications of this limit we derive the Adler 

sum rule. Consider T++ for neutrino scattering: 
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We have used the light-cone formulation of field theory (assumed 

equivalent to the equal time formulation) to write the amplitude 

as an x + -retarded commutator. Writing a dispersion relation for 

T2 allowing for Regge behavior and a real polynomial: 

(7.20) 

Combining Eq. (7.19) and (7.20) and taking q- to im: 

If we identify coefficients of l/q- 

this commutator may be calculated using the canonical light- 

cone anti-commutator of q(x) with its adjoint. 
17 Suffice it 

to say that if the commutator is canonical then the Adler - 

sum rule at fixed-q2 is obtained: 

t 
-G2 
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Note, unlike Gross-Llewellyn Smith Sum Rule, Adler's sum rule 

exists at every q2 < 0. If one tried to derive a fixed-q2 

analog of the G-LS sum rule one encounters a light-cone commuta- 

tor which involves interactions in a non-trivial way. Adler's 

is unique among the sum rules we have discussed in possessing 

a fixed-q2 form. Note also that the "canonicity" of the light- 

cone commutator above is sufficient to derive the sum rule, 

there are no real constants to be contended with. Indeed one 

can show that even in second order perturbation theory in the 

vector gluon model - in which vW2 doesn't scale - the sum rule 

is nevertheless valid. 7 We refer to Dicus, Jackiw, and Teplitz 18 

for the application of this technique to the derivation of sev- 

eral fixed-mass sum rules. 
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8- ANOMALIES 

8.1 - Introduction 

The experimental value of the no -f 2y life-time is 

(0.84 2 0.10) x lo--l6 sec. Current algebra and PCAC can be 

used to calculate the decay amplitude: they imply that it van- 

ishes. I To accommodate the experimental decay rate, one must 

believe either that the PCAC extrapolation is badly wrong, or that 

the current algebra low energy theorem is wrong, or both. 

It has been known since 1949 that if the 7~' + 2y decay rate 

is calculated in lowest order perturbation theory using a fermion 

loop I then the rate is non-zero. 2 A calculation using the usual 

fractionally charged quarks comes out about a factor of three 

wrong in the amplitude (an order of magnitude in the decay rate).* 

It was Wilson3 who first clearly pointed out how the result of 

perturbation theory' could be understood as a short distance 

effect, caused by the breakdown of naive current algebra calcu- 

lations due to the strong singularity of the Green's function 

<OIT(Ju(x)JV(0)Ap(y)) IO> when x s yU Q 0. 1-I 
This anomaly arises 

not because the current algebra commutators are incorrect, but 

because the delicate manipulations required to drive the IbJard 

identity from the commutators break down if current Green's 

functions are as singular as suggested by scale invariance argu- 

ments. 

*A calculation using an elementary nucleon loop would give about 

the right decay rate. 
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That the anomaly is indeed a short distance effect is made plau- 

sible by the following argument. As we have seen in previous 

lectures, graphs which have no strong interaction vertices, and 

hence are zeroth order in the strong interactions, give an accu- 

rate representation of the conjectured canonical short distance 

behavior of hadrons. In perturbation theory the anomaly arises 

because the triangle graph 

which is zeroth order in the strong interactions, is highly di- 

vergent at large momenta (i.e. short distances) which can be 

shown to invalidate naive manipulations. Hence this anomaly 

arises in theories with canonical short distance behavior, and 

we may call it a canonical anomaly, to distinguish it from the 

Callan-Symanzik anomalies5 which result from the logarithmic 

modifications of short distance behavior found in higher orders 

of perturbation theory. 

In this lecture we first review the simple current algebra 

low energy theorem for IT' -+ 2~ decay which suggests that it 

should vanish. 1 We then discuss the perturbation theory cal- 

culation, 2,4 and then the Wilson analysis 3 showing how short 

distance effects can cause an anomaly. Finally we use the analy- 

sis of Crewther 6 to show how the singularities of two current 

products <OIT(Ju(x)Jv(0))lO> and <OjT(Aq(y)Ap(0))/O> are related 

to the singularity of <O~T(Ju(x)Jv(0)A,~y))~O> which is responsible 



-131- 

for the anomaly. This gives model-independent relations between 

the T' + 2y decav rate, a(e-e++y-+hadrons) and the Bjorken' sum 

rule for polarization effects in deep inelastic electroproduction. 

8.2 - The Current Algebra Low Energy Theorem 

The IT' -+ 2~ decay amplitude is proportional to: 

f d4xeipx<,/T(J,,(x)Jv(0))/~(k)> 

and hence, using the axial divergence as an interpolating field 

for the pion, to: 

$--z (:;- k')~d~%d4y~,riJ,(-*~~~*~~~~~ b&dbe'P."e'ky/k2;6 (8.1) 

where f, 'iz defined bv <O]Au(O)ln(k)> = ik'fV. The straightfor- 

ward way of estimating the v ' + 2y decay amplitude would be to 

use a current algebra Ward identity and PCAC. Defining: 

T l.lvh(p,k) c /d4xd4yeipxe -ik"<OIT(JU(x)Jv(0)Ax(v)) IO> 

and TUv(p,k) Z /d4xd4yeipxe -ikv<OIT(JU(x)Jv(0)a'A-$)) IO> 

we first observe that: 

$y ~~\T-c3,Lx~7,lo)~x(~,)l0> = ~o~~(3,~~~s,,o)~'R~(~~~lo~ 

--c ~IYo-~o)~O \~@M~~,3fJ?-i~J,~O~lb + 6iuo~o~~Uf~.,~~~(o~~8 - 2, 

According to the equal-time current algebra, the last two terms 

in (8.2) should vanish. Fourier transforming (8.2), partially 

integrating with respect to y, and discarding the integral of a 

total derivative, we get the naive Ward identity: 

ikr-qy, (PM = -Jh k/b_) 

If we now define the form factor T(k 2,p2, (k-p) 2, : 

(8.3) 

TUV(p,k) = 1 E 
-21T2 

uva,pak'? (k2 tp2 r (k-p) 2, 
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then the physical 7~' + 2y decay rate is given by: 

lim 
k2+mr2 

2-k2)?(k2,0 0) 
:": 2 

I 

7-r IT 
The usual PCAC assumption is that this = ?(O,O,O). Then the Ward 

identity (8.3) requires that ;?(11,0,0) should vanish.' One way 

to see this is to expand (8.3) in powers of the momenta, noting 

that the invariant form factors in T 
?JVX 

may have no poles, as 

there are no massless hadrons. Another way'to see this is to 

observe that: 

C 
(8.4) 

and proceed as follows. 

If we define F &x,y) = <O/T(J~(x)Jv(0)Ax(y))~O' 

there is the identity: 

(8.5) 

The first three terms in (8.5) are total derivatives, and so should 

not contribute to (8.4), and the last two terms should vanish 

identically because of the conservation of J and Jv. Hence 
1-I 

?(O,O,O) should vanish. The experimental T' + 2y decay rate 

corresponds to ?(rnn 2,0,0) = 0.5. We will see in the following 

sections that this apparent conflict with PCAC and the current 

algebra low energy theorem can be resolved, the reason being that 

in general the Ward identity (8.3) is expected to be false, and 

should have an extra anomalous term proportional to: E 
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8.3 - The Anomalv in Perturbation Theorv 

In this section we discuss the Ward identity (8.3) and see 

how it breaks down in the lowest order of perturbation theory. 
2 

We do not attempt to discuss the anomaly in perturbation theory 

thoroughly, 4 merely to give a flavor of it and motivate the idea 

that short distance singularities may be responsible for the anoma- 

ly* 

The lowest order nucleon loop contributions to T V-)X 
in per- 

turbation theory come from the graphs*: 

(diagram with electromagnetic 

currents interchanged) 

The lowest order graphs for T I.lV 
are identical, except that the 

vertex$ylXY5 is replaced hv imy 5 , where m is the mass of the 

nucleon. Applying the Feynman rules we find: 

T 
0 
)wZI = 

where the superscript' 

(8.6a) 

(8.6b) 

Before we try to verify the Ward identity (8.3) we must first 

make sense of the two integrals in (8.6), both of which are li- 

nearly divergent for large values of the loop momentum r. For- 

tunately both To 1J.VX 
and To 

UV 
can be expressed in terms of convergent 

*Here we use elementary nucleons in the loops - calculations with 
any other fermions are similar. 
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integrals, as follows. By parity and Lorentz invariance: 

with the To' s Lorentz scalar functions of p and p'. The quantities 

Tl o and T2 0 are formally divergent, whereas the other T's are 

finite. However, current conservation 

(8.8) 

relates TlT2 to T3T4,5,6. Using also the symmetry property 

TO ,vx(PIP') = TOylih (p',p) it can be shown8 that 

where T3 o and Ty are finite: 

-r; - &zT',,~p~p~ 
-0 

14 = -&&&,p') -I,,~p,p~f-j 

where Ist (p,p') = I$do 1-xdyxsyt/fy(l-y)p2+x(1-x)~'2+2xyp*p'-m~] 

A similar analysis shows 

1 o = -~~;~m~~>f)~~r(T +LLl PJ 
Comparison of these expression for To I.lVh 

and To I-iv yields 

The precise value of A is model-dependent; for a simple nucleon 

loop it is l/2, for a simple quark loop l/6, and so on. 
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Why is there the extra anomalous term in (8.10)? The per- 

turbation theory explanation runs as follows: because the integrals 

for To 
I-lVX 

and T 0 

UV 
are linearly divergent at large values of r, they 

are ambiguous. To specify them, extra inputs such as in this case 

current conservation, are necessary. Naive manipulations of the 

integrands in (8.6) using the Dirac algebra and freely trans- 

lating linearly divergent r integrals would have led to a "deri- 

vation" of the false non-anomalous Ward identity (8.3). Trans- 

lations of linearly divergent integrals are not generally valid, 

and our calculation using current conservation to specify the 

linearly divergent integrals shows that in this case the transla- 

tions are invalid. 

There are many technical questions about the perturbation 

theory calculation, and we refer to the review of Adler4 for a 

detailed discussion. Let us assume for now that there is an 

anomaly of the form (8.10) and discuss its implications. 

(1) In contrast with the argument of section (8.2) we now 

find T(O,O,O) = A, so that we have a smooth extrapolation from 

the zero momentum point to the T' -t 2y decay point k2 
2 =m if 7r 

we choose a model with A = l/2. 

(2) Can we understand the anomaly from a short distance 

point of view?3 The lowest order graphs calculated in this sec- 

tion have the canonical free field singularity structure at 

short distances. For large momentum the integrand in (8.5a) 

is just the fourier transform of the canonical c-number ninth 
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order singularitv in the expansion of T(JP(x)JV(0)Ah(y)) 

discussed in section (5.2). As discussed above, the anomaly 

arises in perturbation theory because of the divergence of the 

integsand in (8.6a) at large momenta. Hence, in general a 

theory of hadrons which has the canonical ninth order singularity 

structure for <O~T(J~(X)J~(O)A,(~))~O > will have an anomaly like 

(8.10). For this reason we mav call it a canonical anomaly. 

We should perhaps reemphasize that we have not abandoned 

our previous disbelief in perturbation theory as a reliable 

gu.i_de to the short distance behavior of hadrons. The triangle 

graph has no hadronic insertions: it is zeroth order in the 

strong interactions. From our point of view, considerations 

of higher order graphs involving hadronic corrections to the 

simple loop graphs are irrelevant. 

8.4 - The Wilson Argument 

We have seen that in perturbation theory the simple argu- 

ment of section (8.2) leading to the Ward identity (8.3) breaks 

down, and that this mav well be a result of short distance effects. 

Accordingly we now go through the analysis of section (8.2) again, 3 

this time taking more care with short distance singularities. We 

will examine the representation (8.4) for ?(O,O,O). First we 

make a Wick rotation of the x0 and v. integrals and go over to an 

O(4) metric. Then we exclude the regions Ix~I<E, jyOI<e' and 

1 x0-y. 1 <El' from the integrations in (8.4), thereby excluding 

the short distance singularities. F7e will subsequentl.y take the 
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limits E, E' and ~"30; the integral is absolutely convergent, so 

that it is independent of the order in which these limits are taken. 

Comparing (8.4) and (8.5) we see that: 

where 

and J and K are similarly related to the second and third terms in 

equation (8.5). The integral over y in I can be expressed in terms 

of surface integrals at yO=lrs', x0*&". Consider the contribution 

of the surface integral: 

il = @""P 
s 

dLx$ [.+p=o- s~+4)] x,=.+ pdo F I ,x,lzt 1 \ dca-d34, ,7Gtr 

There are singularities in x and y-x in F uvo(x'Y) r and these can 

cause a non-cancellation of the two surface terms in I1 unless 

IXOI>>&'. This we can assume if we take the limit e-+0 after the 

limit ~"0. Similarly, we can assume that the other surface inte- 

grals in I, namely 

cancel if we take the limit E-+O after the limit E"-+O. Hence we find 

that I vanishes if we take the limit E+O last. Similar analyses of 

J and K show that they will vanish if we take E" or E'+O last, 

respectively. 

Unfortunately, in equation (8.11) only one of the limits 

I El E I E "+O can be taken last, hence only one of I, J and K can 

be guaranteed to vanish. Suppose we take E'-+O last, so that K 

vanishes. Then it easy to see that in a world which is scale in- 

variant at short distance I cannot be assumed to vanish. Consider 

for example 11: when x~y%' FPvX(x,y)%(s') 
-9 if it is scale 
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invariant (mass-independent) at short distances, 

Consider for example I, which in the limit E, s"+O can be written 

Scale invariance at short distance say that as the currents have 
3 dimensions (mass) , FVvh(x,y)~(s') -9 for x%y%s'~O, so that 

XayB F u,o(x,Yb(E '1 -7* As the region of integration over this 
7 singularity has a volume (E') , I1 could very well be non-zero 

in the limit ~"0. Similar arguments apply to 12, and to the 

contributions to J. 

We conclude that in a world where F uvx(x,y) has a scale 

invariant ninth order singularity as x%y%O, !!(O,O,O) may be non-zero, 

or equivalently there may be an extra anomalous term in the Ward 

identity (8.3), as in equation (8.10) . 

8.5 - The Crewther Relation 

The Wilson argument only indicates that an anomaly is pos- 

sible: precise evaluation of the anomaly requires a model for 

short distance behavior. If the chosen model is the canonical 

behavior of a model field theory, one method of evaluation is to 

calculate the lowest order of perturbation theory loop. As the 

anomaly only depends on a multiple short distance behavior, this 

would give the same result as an analysis in configuration space.' 

However, there is one relation involving the anomaly which is 

independent of the specific model for short distance behavior, 

which was derived by Crewther.6 It relates the anomaly to sin- 

gularities in products of pairs of currents, which can be mea- 

sured in other processes. 
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The idea is as follows: consider some triple current pro- 

duct with operator product expansion: 

(8.12) 

where the On(O) are local operators, and the Fn(x,y) singular 

c-number functions. We also have the simpler expansion: 

(8.13) 

(where the Em(x) are c-number singular functions) which means that: 

(8.14) 

when x%0 and y, y-x>>x. There are also expansions: 

(8.15) 

(8.16) 

when both x and v are small, but x<<y, y-x. Comparing (8.12) 

and (8.16) we see that there is a consistency condition on F,(x.y) 

in terms of the Fm and E&,,: 

(8.17) 

when x<<y, y-x. 

We now apply this relation between the singularities in two 

and three current products to the expansion 

(8.18) 

The c-nuder function A ?JVX (x,;) has a ninth order singularity 

as x, yQ0, and is responsible for the anomalv, as argued in the 

previous section. First we take xQ, y-x in equation (8.18), 

using: 

(8.19) 
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where we have used equation (5.5) with the is-prescription for 

time-ordered products, taken the value of the dabc appropriate 

for our combination of currents, allowed for the model-dependent 

factor KJJ discussed in section (5.3), and the dots in (8.19) 

stand for terms which are less singular or have different quan- 

tum numbers. Hence: 

which comes from the-axial current 

with the model-dependent factor S Ail. 
Substituting (8.21) into (8.20) and 

an equation analogous to (8.17): 

analogue of equation (5.6), 

discussed in section (5.3). 

comparing with (8.18) we get 

(8.22) 

valid in the limit x<<y, y-x. 

Hence A llvx (XtY) is determined bv two-current singularities 

in the region x<<y. To determine the anomaly it is necessary to 

know Allvh (x,y) for all small x and y. Fortunately it can be 

argued that A l.lvx (x,y) has a unique form in the short distance 

region. In spin zero model field theories A 
1-lVX 

is zero; in spin 

l/2 theories its SU3 generalization is (as argued in section (5.2)): 

(8.23) 
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where NJJA is a model-dependent constant (NJJA =. 1 in the quark 

model, 3 in the three-colored quark model, etc.) Furthermore, 

it can be proved using conformal invariance, 10 which is expected 

to be a good symmetry at short distances, that the form (8.23) 

is unique. 

Taking the limit x<<y, y-x of (8.23) and comparing it with 

(8.21) we deduce: 

(8.24) 

To qet from the relation (8.24) to experimental quantities, cer- 

tain steps are necessary. In all models, SAA = SJJ. 

Also, in all models with the usual SU3 assign- 

ment for the electromagnetic current Jr = Jz + &: Ji we have 
J3 

R = 2/3 SJJ Explicit integration of A I-lVX 
to get the anomaly (or 

equivalently a lowest order perturbation theory calculation) yields: 

NJJA = 6?(0,0,0). Hence we eventually conclude that: 

(8.25) 

The Crewther technique can be applied to deduce relations involving 

other parameters in the short distance expansions of section (5.3). 

For example, by considering the limit y<<x, x-v%0 one obtains: 

N JJA = KAA 'JJ (8.26) 
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By considering the Crewther argument applied to 

<O/T(AV(x)Av(0)Ax(y))~O> one deduces (in an obvious notation) : 

NAAA = KAA SAA (8.27) 

NAAA is related to the anomaly in the Ward identity for the three 

axial- current Green's function. By current algebra this is 
10 

related to the 7~ -t 2y anomaly, such that: 

NAAA = NJJA (8.28) 

Combining (8.249, (8.26), (8.27) and (8.28) we see that: 

KJJ = KJA = KAA (8.29) 

which is a useful restriction on the multiplicity of parameters 

in the expansions of Chapter 5. 

8.6 - Implications for Models of Short Distance Behavior 

Let us now consider the implications of the Wilson analysis3 

and the Crewther relation 
6 for building models of short distance 

behavior. As mentioned earlier, the experimental value of 

T(mfj,O,O9, deduced from the IT' + 2y decay rate, is about three 

times larger than its quark model value. In the quark model, 

?(O,O,O) = $ and KJJ = 1, R=+ If we believe PCAC so that 

;i;(mG,O,O) = T(O,O,O), then equation (8.24) tells us that the 

quark model for either or both KJJ or R should be modified. As 

mentioned in Lecture 5, R is measurable in principle: 

a(e-e++y+hadrons) - R 
u (e-e+-+y+u-p+) 2 a_ -+a 

The other parameter KJJ is the coefficient of the axial current 

in the product of two vector currents at short distances, and 



-143- 

as the coefficient in the Bjorken7 sum rule for spin-dependence 

in deep inelastic electroproduction: 

;dg91(S)ep-en= gA 
6 KJJ (8.30) 

This sum rule was derived and notation defined in Lecture 6, using 

the quark light-cone algebra in which KJJ = 1. It could also be 

derived using the BJL techniques of Lecture 7. Unfortunately, 

polarized deuterium data are necessary for testing (8.30), but 

will not be available for some time. However, using reasonable 

additional parton model assumptions, a sum rule can be written 

down for scattering off polarized protons alone, which should 

enable the quark model prediction KJJ = 1 to be checked. 
12 

In all models with fundamental spin zero fields, KJJ = 0 and 

there is no anomaly. In models with spin $ fields, KJJ is always 

1. This suggests it is likely that the quark model prediction 

RL-; should be modified by a factor of 3. This is what happens 

in the quark model of many colors. In this case ?(O,O,O) = 5 

KJJ = 1 and R = $C, where C is the number of colors. Because of 

the r" + 2y decay rate, C = 3 is fashionable, 9,13 yielding 

R= 2, but as discussed in Lecture 2, there is as yet no over- 

whelming experimental evidence in favor of this value. 
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9 - FURTHER APPLICATIONS OF LIGHT-CONE ANALYSIS 

9.1 - Introduction 

So far our applications of light-cone ideas have just been 

to the total deep inelastic cross sections. In this lecture we 

will discuss how these ideas can be applied to other processes. 

We will discuss e- f e + + hadron + anything first, then 

L + p -f L + hadron + anything, then P+P+ (u- + v+) + anything, 

and finally list some other processes and make some philosophical 

comments. 

Even in the most favourable case of e- + e + -t hadron + any- 

thing the light-cone analysis is not nearly as predictive as in 

deep inelastic scattering. There are no sum rules, so that the 

fundamental structures of the field theory underlying hadrons is 

not being probed as deeply. Also there are many cases where the 

parton model can be applied but not the light cone. Thus the 

limitations of the light cone become apparent, and it becomes 

important to understand better what properties of the parton model 

give it its power and can be safely abstracted. 

9.2 - e-e+ + Hadron + Anything 

Many people have pointed out the kinematic similarities 1,2,3 

between deep inelastic scattering 

h 

and one particle inclusive annihilation 
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The former process is (apart from lepton kinematics) 

and the latter 

and one sees that what is different is that the hadron line has 

been crossed from the initial to the final state. Another way of 

looking at the similarity is in the style of Mueller4. Electro- 

production is the total discontinuity of the forward off-shell 

Compton amplitude for q2 < 0. However, the annihilation process 

is just one of the terms in the discontinuity of the forward off- 

shell Compton amplitude for q2 > 0. This can be represented 

graphically: 
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The first term is the discontinuity in (q + P12, the second and 

third are discontinuities in q2, and the last term is the inclu- 
2 sive annihilation cross section, a discontinuity in (q - p) , 

very analogous to the Mueller diagram for inclusive hadronic pro- 

cesses. 

The annihilation process has been treated many times in the 

parton mode15, can we treat it using light-cone dominance? First 

let us do some kinematics. We can rewrite (9.2), replacing the 

6 function by an x integration: 

(9.3) 

which we can express in terms of two gauge invariant tensors (p 

is the momentum of the observed hadron H, and v E p-q) 

We note that wl and w2 are very analogous to the deep inelastic 

structure functions. Including the lepton kinematics, the cross 
- + section for e e + y -t hadron + anything (neglecting terms of 

order l/(q2)2 is 

where we have introduced the longitudinal and transverse "cross 

sections" 
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where M is the mass of the observed hadron and the variable 

5 E q2/2q=p which has the kinematic range (for large q2) 

1 < 5 < G2/2M. We see immediately that the naive scaling hypo- - 

thesis is that 

(9.6) 

2 in the limit q , q*p + m, 5 fixed, 

so that the right-hand side would feature no dimensional constants. 

Integrating (9.5) over 0, da getting z in the 
c\ 

= =$ (2ZT + TL) 

limit q‘, q*p+a, 5 fixed, and then over 5 we get an expres- 

sion for the multiplicity 

If we weight da/d< with the energy of the observed particle, and 

then integrate we get (assuming there is just one type of observed 

particle) the total energy. We can write the final sum rule in 

the form 
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In the lepton centre of mass frame, p. = q,/2f, so 

From Eq. (9.8) we see again that if ctot Q l/q2, then it is 

natural that wl, vi, also scale as in (9.6). Also it is apparent 

from (9.7) that in order for g % log q2, .analogously to the present 

fashion for hadronic multiplicities, we should have 

To see if the light-cone is relevant2 in the limit q2, 

q*p*m,,s f ixed we use the standard phase variation arguments. 

Neglecting Lorentz indices for the moment as they are 

irrelevant to this argument, we can write (9.3) as 

working in the rest frame of the observed hadron, so that 

(9.9) becomes 

Performing the angular integration we get (where 1x1 - r) 

(9.9) 
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The phases of the terms coming from the two exponentials in 

r&m- can be written in leading order as 
2 v,q+oo with 

iV(%+r) 
fixed: e m .%5rm and as usual the dominant contributions 

come from 

so that the light cone between the two currents in (9.3) is indeed 

being probed. 

As suggested by our analysis of the discontinuity, this is 

not the light-cone singularity of a simple operator product. We 

can reduce in the hadron H appearing in (9.3), getting2 

where T and !I! stand for time-(anti-time-) ordered products, 

and the hadronic sources are represented by s+(y), S(z) l 

What light-cone singularity for (9.10) is required to give 

scaling of the form (9.6), and what form is expected in various 
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different models? It is convenient5 

functions vl and v,: 

to introduce the structure 

Quantities Vl and V2 analogous to vl and vZ can be defined 

for electroproduction. It is suggested by the data that as 

expected in models using fundamental fermion fields, FL and 

hence vl vanish in the scaling limit. We will make the analogous 

assumption for vl in the annihilation process. Comparing the above 

equation and (9.5) we see that the canonical scaling expectation 

We can represent v2 in the form 

where the Ci(x) are the leading c-number singular functions, 

and Ti(p=x) are analogous to (but more complicated than) the 

matrix elements of the bilocal operator in electroproduction. 

Then dimensional arguments suggest that the 'i (x) be singular 

functions of order zero. 

Because Jv (xl is always to the left of Jv (0) in the 

expression (9.3), it, and hence the singular function, should be 

analytic in the lower complex x0 plane. This suggests that the 

leading singularity is of the form 



(9.11) 

where 1-I is some mass parameter. Singularities of the form (9.11) 

do indeed occur in free field theory* and super-renormalizable 

field theory models6. Thus we have 

Introducing the fourier transform 

we get 

(9.12) 

Thus we have recovered the desired scaling law for this 

process: notice that at this level s'(e) is completely arbitrary 

(except that it must vanish for 5 < 1 in order to respect the 

spectrum condition). In particular we can choose s'(C) Q C2 as 

* 
It is clear that carrying through the free field theory agalysis 
of Lecture 5 will always yield a singular function of (-x +isxo) 
in current products where J (x ) appears to the left of J(O) l 
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5 -fat so that the multiplicity integral (9.7) diverges as C-+00, 

giving a logarithmic increase in hadronic multiplicity. 

If ~'(~)Q~~, then ;j(<)ac3 as c-+00 and F(p*x) -4 as 

(p-x)+0. At first sight this seems rather strange7. The matrix 

element of the bilocal operator in deep inelastic electroproduction 

is analytic as (pox)+-0, and one might have expected F'(p.x) to 

be similar. In fact there is no reason known why npw should 

not be singular as (p*x)+O, and in general it is singular in 

models. For example the analogous quantity in a super-renormaliz- 

able e3-type theory which scales has a log(p*x) singularity in 

lowest order perturbation theory6. A singularity is possible 

because there is no simple representation for the operator product 

(9.10) controlling the annihilation cross section, and in models 

this complexity is reflected in the expression for F(p*x) which 

has a structure like 

(9.13) 

where 4 is a fundamental constituent field. The integrations 

over y and z in the expression (9.13) can give singularities 

in (p-x) , because they involve integrating over singularities 

in (x-y), (x-z), y and z. Brandt and Ng8 have demonstrated 

explicitly how these integrations over singularities can give rise 

to singularities in (p-x). 

We have shown that the light cone is relevant to e-e+-q-+ 

hadron + anything, and that a canonical singularity gives rise to 

canonical scaling analogous to that in deep inelastic scattering. 

Immediately the question arises whether any interesting predictions 
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can be made from the light cone. In deep inelastic we obtained 

two classes of results: sum rules (Adler, Gross-Llewel3Yn Smith 

etc.) and spectrum relations 

In annihilation it is not possible to derive sum rules and this 

can be seen in two ways: 

a) In deriving sum rules we used dispersion relations to 

connect the real part (given by a canonical commutator) with 

the absorptive part (proportional to the structure function). 

When q2>o I the annihilation cross section is only a portion 

of the full absorptive part of the amplitude, so that the 

connection breaks down. 

b) The sum rules related moments of deep inelastic structure 

functions to matrix elements of local operators which were 

terms in the expansion of the bilocal operator around 

(x.p)=O. In annihilation the analogue of the bilocal operator 

is not in general analytic at (x.p)=O, and is not closely 

related to local operators. 

However it is possible to derive spectrum relations in the 

annihilation region, since these just depend on the internal sym- 

metry properties of the leading light-cone singularity and do not 

require any analyticity properties. Suppose we write cross section 

for e-e++y+hadron + anything in the form: 



(9.14) 

Then the SU3 representations in the current-current channel 

indicated by the arrow will be restricted by the choice of the 

fundamental fields which the current is formed. This is because 

the diagram (9.14) can be written (literally in the parton model, 

figuratively in a more general light-cone analysis) as: 

(9.15) 

If the fundamental fields just belong to isospin singlets 

and doublets (or SU3 triplets) then only I=O,l (or SU 3 singlets 

and octets) will appear in the current-current channel. k 
This gives 

a number of predictions: consider for example e-ef+no+ anything. 

Then 

corresponds to I=2 exchange in the cross channel 

(9.16) 

(9.17) 
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Our assumption on the quantum numbers of the constituents deter- 

mines that the combination (9.16) is zero. Charge conjugation 

requires that (9.17) be zero. Hence 

(9.19) 

This prediction gives a precise check of our ideas about the quantum 

numbers of constituent fields, and should be relatively easy to 

test at e-e+ colliding rings, pions being the most copiously 

produced particles. Predictions analogous to (9.19) can be made 

for other multiplets. 10 

9.3 - L + p + L + Hadron + Anything 

A similar analysis to the previous one can be made for this 

process 2'10 (for simplicity we will restrict ourselves to spin 

zero currents composed of products of spin zero fields). The cross 

section for L + p + L + H + anything is then 

(9.20) 

where the target hadron has momentum P = (M,O,O,O), and the 

observed hadron has momentum k. As before this could be rewritten 
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The light-cone singularity again has the l-x 
2 + i&x0) structure: 

in this case it will be t-x 
2 + i&x0) -1 because of our choice of 

scalar currents and spin zero fundamental fields. 

The expression (9.20) or (9.21) can then be written 

Introducing 

Introducing w'= 2q*k/-q2 and K= z =-f? /-q2 we find the argument 

of the 6 function becomes 

In the limit 2 q j-00 with w,w' and K fixed Eq. (9.22) becomes 
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It is evident that if p-k 2 is kept fixed as q , q-p, q*k-+m (~'0) 

then there is a fair possibility that the t-x 
2 + isxo) -1 light- 

cone singularity will dominate. However, if we also take p.k+m 

the leading light-cone singularity will not in general dominate. 

Non-leading singularities will in general have extra powers of 

WI2 associated with them, but the kernels analogous to g(a, B,p*k) 

might well blow up as (p*k)+a in such a way as to cancel out the 

powers of l/q2. 

This situation is precisely what is found in parton models 

of this process 5,ll : for (p-K) finite in the scaling limit, 

parton model diagrams like 

dominate, and scaling is given by the leading light-cone singularity 

However when (p-k)+-a with K fixed # 0, then graphs like 
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dominate. This graph clearly has no singularity on the light cone. 

In terms of the five regions introduced by Bjorken 
12 in discussing 

final states in electroproduction, the light cone dominates in 

the target fragmentation region and plateau, the hole fragmentation 

region and any finite part of the current plateau 12 . But it does 

not dominate in the central region of the current plateau, or in 

the parton fragmentation region near the high momentum boundary 

of phase space. 

Consequences of applying light cone ideas to the final 

particle distribution in electroproduction have been pursued by 

several authors. 2,10,13 The scaling laws obtained agree with the 

parton model and a Mueller-Regge analysis, and interesting 

testable predictions of spectrum relations can be made. As in the 

case of annihilation, no sum rules can be obtained. 

9.4 - P+PJ (n- + u+) + Anything 

The differential cross section for producing a p-pair of 

mass = dG2 from two incident protons p,p' with total centre of 

mass energy Jls is (for large q 2,s) 



I 
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* 
where (9.23) 

We are interested in the scaling limit q2, S-tM with Eq2/s 

fixed. 

It is difficult 14 to see how dominance of this process by 

the leading light cone singularity of ipp,:IJ,(y)J~(O) ]pp~:> can 

be made plausible except under extra assumptions. Consider a 

term in <ppl:IJu(y)J'(0) Ipp,:> which behaves like (y2-isyo)n 

near the light cone, being of the form 

Suppose for example that f(P*Y, P'.Y, s) were of the form 

(9.24) 

for some exponent m. Then in the scaling limit qL, S’m with 

==q2/s fixed: 

for some exponent n' which depends on n. Hence (9.24) would 

give to (9.23) a contribution 

*The factor of b,(y,q2) in (9.23) comes from the lepton kinematics. 



-161- 

Clearly the possible dependence on s in the matrix element 

allows non-leading light-cone singularities to contribute or even 

dominate in the scaling limit. 

This is exactly what happens in the parton model 15 , where a 

term nonsingular on the light cone controls the scaling behavior. 

In the parton model we must consider two classes of diagrams 

Bremsstrahlung: 

and Parton-anti-parton 
Annihilation 
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It can be argued that the bremsstrahlung diagrams do not contribute 

in the scaling limit. Let us work in the 

using light-cone variables and consider a 

with momentum 

centre of mass frame 

parton from proton p 

which emits a photon of momentum 

leaving behind a positive energy on mass-shell parton with momentum 

Since q2=o (s) , both q, are O(G). But 
- 

parton is physical (!) so by energy momentum 

k+>O because the 

conservation 

This condition cannot be satisfied because p, is O(JS), IPJ 

is cut-off and wee partons (x-to) can be argued away. Hence the 

bremsstrahlung diagram is suppressed, 

The surviving annihilation diagrams have no light-cone 

singularity, because they have no parton propagating between y 

and 0, in contrast with electroproduction 
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Working in the centre of mass frame, the off-shell photon is pro- 

duced by a parton from proton p of type a with momentum xp + 

(finite part) annihilating with an antiparton from proton p' 

with momentum x'p' + (finite part). The probability of finding 

a parton of type a with momentum % xp is (from Lecture 3) 

ua (xl (and similarly for the antiparton u--(x')). We have the 

restriction (xp + x'P')~: Q2 +xx' = T. Hence 

To obtain the coordinate space structure of (9.25) we use 
15 

(9.26) 

where p1 and p2 are momenta such that 

LzI,*~=~ r XX's +- (terms vanishing as s,q2+m) 

Possible choices are (in conventional coordinates) 
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where P = ( p2+m2, P). f- Substituting (9.26) into (9.25) we find 

(9.27) 

which is non-singular on the light cone unless u a and US are 

very bizarre. From (9.23) and (9.25) we see that 

in the parton model in the scaling limit. From (9.27) we see that 

this scaling law is not given by the leading light-cone singularity. 

9.5 - Comments 

There are other processes where light-cone ideas can be 

applied, for example to two photon processes in colliding rings 
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diagrammatically 

ek 
e* 

where the virtual photons are a long way off their mass shell. 

The hadronic state produced may have finite mass -- for example 

a. Tr" 

Also there is a class of processes lb which probe the com- 

mutators of pairs of light-cone commutators. Examples are 

where the (e-e+), (v-u+) and hadronic systems all have large 

masses, 

in the deep inelastic region with the (p-p+) pair having a large 

mass 

(cl 

where both the virtual photons are a long way off mass shell and 

the hadrons have large mass. 

At the moment we feel that the most interesting problem is 

to understand the parton model better, particularly in configuration 

space. Just what are the basic assumptions and properties of the 
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model which make it applicable outside the regions of light- 

dominance? If we had such a formulation, then we might understand 

better how seriously to take these other predictions of the parton 

model. After equal-time commutators, short distance behaviour and 

the light cone, ? where next in x-space. 
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10. J = 0 Fixed Poles 

10.1 Introduction 

Up to now we have applied operator product expansions to 

lepton scattering only at asymptotically large momentum transfer. 

At finite q2 all terms in the expansions will in general contri- 

bute and there is no particular advantage in this approach. 

J = 0 fixed poles are an exception: There is good reason to 

believe that their residues are (simple) polynomials in q2. 

This may be used to establish enticing though difficult to test 

correspondences between large and small (even zero) phenomena. 

I wish to avoid detailed Regge theory (for lack of both 

time and competence) and will use it only to provide a paramet- 

rization of the large V behavior of Tl 2(q2,V). Identical re- 
I 

sults are obtained whatever parametrization is used (provided it 

possesses the usual analyticity and crossing symmetry). Since 
21 Regge ideas are not a priori valid at asymptotic q , it is 

comforting that this analysis is not tied to them. 

I will proceed as follows: first to say what J = 0 fixed 

poles are; next to show why they should not occur in purely 

hadronic processes; third to argue that their residues might be 

expected to be polynomials in q2; finally to apply these ideas 

to the study of electroproduction, specifically in deriving the 

Cornwall, Corrigan, Norton, Rajaraman, Rajasakharan2 sum rule 

and the Schwinger term sum rule of Jackiw, van Royen and West3. 

The latter provides a rich example of the unity of the techniques 

developed in these lectures. 
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10.2 Definitions 

For our purposes a J = 0 fixed pole (hereafter F.P.) is any 

purely real term in a scattering amplitude at infinite energy 

with an energy dependence corresponding to an a = 0 Regge pole. 

We will discuss only forward (t=O) scattering and therefore have 

no experimental reassurance that J = 0 F.P. are indeed fixed 

(independent of t), although theories which generate them inev- 

itably generate no t dependence. 

To be specific, a real term at infinite v, of the form 

C,(s2) in Tl(q2 ,v) (which Reggeizes like va), or of the form 

C2(q 2 u4 )p- in T2(s2 ,v) (which Reggeizes like v 
a-2 ) is a J = 0 fixed 

pole.* 

For completeness we write out the Regge parametrization of 

(10.1) 

If, as we are assuming, the Regge terms scale, then' 

Note the behavior of Eq. (10.1) for c1 = 0: If Re TT(q2 ,v) is 

to remain finite for a = 0 (which it must) then r(0,q2) = 0 

and Im Ty(q2,v) = 0 at a = 0. A J = 0 pole in Eq.(l) is purely 

*For t # 0 Cl and C2 become functions of t. 
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real. A more complex J-plane structure (e.g. a Regge cut or 
R dipole) can generate an CY. = 0 term in Im Tl and logarithms in 

R Re Tl. We will stick to Eq. (10.1). More complex J-plane singu- 

larities present no more than technical problems. 4 

10.3 Exclusion from Hadronic Processes 

Fixed poles are forbidden in hadronic processes by unitarity 

and hermitian analyticity. 
5 A simple proof is as follows : con- 

sider the t-channel partial wave unitarity equation below inelas- 

tic threshold 

By hermitian analyticity (b*(R*,t+i&) = b(R,t-is)) Eq. (10.2) 

becomes: 

(10.3) 

b(R,t) cannot have a pole at R = R. independent of t, for then 

the left-hand side of Eq. (10.3) would have a single pole while 

the right-hand side would have a double pole, which is, of course, 

a contradiction in the absence of essential singularities and 

the like. 

Current scattering processes such as electro- and neutrino- 

production are immune to such arguments. They are calculated 

to lowest order in electromagnetism or weak interactions only 

and therefore do not obey non-linear unitarity equations like 
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Eq. (10.2). Soon after Regge poles were introduced into particle 

physics it was shown that a J = 1 fixed pole was necessary to 

compensate the decoupling of the Pomeron in Compton scattering. 6 

Subsequently Creutz, Drell and Paschos' called attention to the 

possibility of a J = 0 fixed pole in Compton scattering. 

10.4 q* - Dependence of J = 0 Fixed Pole Residues 

Light-cone expansions with leading free-field singularities 

lead to the expectation that residues of J = 0 F.P. in kinematic 

constraint free (KCF) amplitudes are (simple) polynomials in q2. 

The restriction to KCF amplitudes is to prevent the introduction 

of inverse powers of q 2 into the F.P. residue by arbitrary 

redefinition of the invariant amplitudes. 

The best "physical" motivation for polynomial residues 

comes from parton models. 8 There the J = 0 fixed poles arise 

from the real part of the diagrams whose imaginary part yields 

scaling (we consider spin-l/2 partons for the moment): 

Figure 1 

The fixed pole originates in the Born graphs: 



I 
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Figure 2 

which are "glued" on to the parton-proton amplitude: 

The born graphs (averaged over parton spin) yield 

with p-q = xP*q = xv. As v -+ ~0: 

T Born --+ const 
F.lV 

g 
PV 

+ other terms 

This constant is a J = 0 term in Tl with polynomial (in fact 

constant) in q2 residue. It remains to be verified that this 

term persists when the Born graph is grafted on to the rest of 

the amplitude. To do this would be to duplicate the coordinate 

space analysis which follows. Reference 8 treats the problem 

in detail. Finally it is necessary to argue that no other 

diagrams have J = 0 F.P. This is possible because all other 

diagrams are of the form: 



Figure 3 

It is argued that these are no more than particular contractions 

of parton-proton 6-point functions: 

which are assumed to be strong interaction amplitudes and by 

virtue of this to possess no fixed poles. In the coordinate 

space approach an analogous assumption must be made. In any 

case the consequence that fixed poles at J = 0 have polynomial 

residues is testable (via the sum rule of Section 10.5). The 

reader may either accept polynomial residues as an assumption 

(with the above motivation) and proceed to Section 10.5 or read 

on to discover the 

To proceed in 

review the origins 

lism. A treatment 

origins of J = 0 F.P. in coordinate space. 

coordinate space 9 it is necessary first to 

of Regge behavior in the light-cone forma- 

of the physical Compton amplitude, T 
I-lV' 

in- 

volves too much unnecessary tensor algebra. We shall study 

instead a hypothetical amplitude T(q2,Y) with the following 

properties: 

1. Up to polynomials, T(q2 ,u) is the Fourier transform 

of a scalar function of x 2 and x-p with the boundary 

conditions appropriate to a time ordered product: 
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+ polynomials 
(10.4) 

2. T (s2 ,v) Reggeizes like ~~-1 at fixed q*. 

3. w(q2 ,v) = & Im T(q2,v) is crossing odd: 

W(q2,v) = -W(q2,-v). 

4. ,v) is analytic in the cut v-plane with cuts from 

--m to q2/2 and from -q2/2 to a. 

The strategy will be to show that a light-cone singularity 

in C(x 2 -is, x*p) generates a fixed pole at given J-value depen- 

dent on the strength of singularity. The way we have concocted 

C(x*-is, x-p), a free-field singularity (x2 1 
-is ) will generate 

a J = 0 fixed pole. While other singularities may generate moving 

poles at any J-value or fixed poles at other J # 0, only the 
1 

XL 
.-iE term generates a J = 0 fixed pole and it has polynomial 

(in fact, constant) residue. It so happens that this is also 

the case for (es.) T2 in electroproduction (or neutrinoproduction): 

a free field singularity in <P IT(JV(x) Jv(0)/P> generates a 

J = 0 F.P. with polynomial residue, while all the other terms 

generate only moving poles or F.P. at J < 0. 

The analysis is not without assumptions. Most important is 

the assumption that as t changes from zero any quantity which can 

be t-dependent, is. This is crucial and is violated if there 

are J = 0 fixed poles in photoproduction (or electroproduction) 

of specific final states (eg. yp -+ pp). 
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To begin, consider the Regge behavior which might arise 

from a leading free field singularity in C(x2-is, x-p): 

which contributes to T(q2,v) as follows:* 

(10.5) 

where 

Eq. (10.5) establishes that vW(q2,v) scales. As 5 = -q2/2v 

goes to zero Regge behavior in W(q2,v) is obtained if f(X) is 

proportional to X-' for small 1: 

We will therefore parameterize Regge behavior in y(q2,v) 

by: 

*The subscript on T indicates this particular contribution 
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Eqs. (10.5) and (10.6) are not entirely correct as they stand. 

T$ (s2, v) must be analytic in v. ,v) generated by Eqs. 
I 

Im Tr;‘(s2 

(10.5) and (10.6) is zero for 151 > 1 and equals to 

- which is clearly not analytic. 27-r C B(a) IS/-%(S) for 151 <l 
a 

where the absolute value and E(X) are required by crossing. 

To remedy this we define*: 

(10.7) 

We will need only to consider trajectories with non-negative 

intercept (a > 0). These may be isolated from Eq. (10.7) regard- 

less of q2: 

9” j-kc& 
(10.8) 

Note the following: 

1) An a = 0 term in Eq. (10.7) would contribute a logarithm 

* This is the familiar problem that Regge parametrization of 
the form va does not incorporate the physical threshold. Since 
only asymptotic (v -f a) behavior is of interest, this is unim- 
portant. Alternatively the parametrization (v-v~)~ (or in our 
case (~-1)~) may be used. This form has the correct threshold 
and is analytic. Use of this Regge parametrization is developed 
in an appendix to Ref. 4. 
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to Eq. (10.8), not a real constant. For convenience we ignore --- 

such a term. It presents only technical problems which are 

treated in Ref. 4. 

2) Eq. (10.7) generates no - 

To proceed we subtract from 

terms (all a > 0) 

purely real constant term. 

Eq. (10.5) its leading Regge 

(10.9) 

It is understood that f(X) vanishes outside [-l,l]. All terms 

which vanish less rapidly than l/v have been explicitly sub- 

tracted. Therefore the v + ~0 limit of Eq. (10.9) exposes the 

J = 0 F.P.:* 

where 

* Remember our assumption that T(q2 ,v) Reggeizes like v a-1 
I so 

a J = 0 F.P. is a term proportional to l/v at large v. 
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is explicitly finite since all terms which would have produced 

divergences in the integral have been subtracted off. Also it 

is manifestly a (constant) polynomial in q2. 

As for t-dependence, we shall assume that as t departs 

from zero everything which may develop a t-dependence does: 

f(A) + f(h,t) 

However the light-cone singularity is 

is independent of t. The location of 

was determined by the strength of the 

make that clearer momentarily) and is 

of t.* 

a c-number so its strength 

the fixed pole at J = 0 

singularity (we shall 

consequently independent 

So far we have discussed only the contribution of a leading 

free-field singularity. It remains to show that non-leading 

singularities generate no J = 0 F.P. To do this consider a 

specific example: a singularity one power weaker: 

[C(x2-is, x-p) lnonMleading = log (x2-is) h(x*p) 

whose contribution to T(q2 ,v) we label T2: 

Consider a term of the form 1x1 "E:(h) in h(h) [Again the limits 

of the X-integral must be extended to +m]. Such a term contributes 

*Note, of course, the residue TFP (q2) may develop a t-dependence 
although the location is fixed at J = 0. 
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to T2(q2 ,v) as follows in the Regge limit: 

Non-leading singularities are damped only by factors of Q2 not 

V in the Regge limit.* 

Now a term of the form B(O) IX/'s(X) in h(X) will contribute 

a real constant to T(q* ,v) at large v. According to our assump- 

tion (everything develops a t-dependence if possible) this is 

a moving pole: 

and is of no concern to us. If we subtract off all Regge con- 

tributions with CL > -1 then a J = -1 F.P. emerges: 

but no J = 0 F.P. is found. (Actually the residue of this J = -1 

F.P. is zero by crossing h(X) = -h(-X) though this is not the 

case for other singularities). 

In fact: The location of the fixed pole generated by a 

given light-cone singularity is determined by the strength of 

* Parenthetically this is explicit evidence that the Regge limit 
is not light cone dominated. 
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the singularity. A free field singularity generates a J = 0 F.P. 

The pole is fixed because the singularity is a c-number. 

This completes the argument that J = 0 F.P. residues are 
2 simple polynomials in q . Generalizations to vector currents 

and non-integer dimensional singularities are found in Refs. 10 

and 11. Several warnings are in order: 

1. Such poles are very difficult to isolate experimentally 

since moving poles, cuts, etc. may have intercept arbitrarily 

close to or even fortuitously at J = 0. 

2. We have assumed that it makes sense to expand the current 

correlation function about the light cone to all orders. Perhaps 

some non-uniformity in this expansion generates an a = 0 fixed 

pole in lower order and foils the proof. 

3. J = 0 fixed poles are not excluded from photoproduction, 

e.g.: 

e 

If we now append a photon to the rho, a non-polynomial residue 

F.P. would seem to occur in Compton scattering: 

It is instructive to see what goes wrong with our argument if 
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there are fixed poles in photoproduction. The fixed pole term 

is of the form* 

In coordinate space this yields a string of light-cone singular- 

ities multiplying functions of x*p which are t-independent. 

We had assumed such terms (which are matrix elements of bilocal 

operators) to be t-dependent. The presence of fixed poles in 

photoproduction will generally destroy the proof that F.P. in 

Compton scattering have polynomial residues. 

10.5 Application I. CCNRR Sum Rule -. 

This sum rule is simply the precise statement of the fact 

that the residues of fixed poles in virtual Compton scattering 
2 are polynomials in q . The derivation followed here was developed 

with Llewellyn Smith. 12 Parton model' and light-cone 9 deriva- 

tions are also instructive. To begin we must write a kinematic 

constraint free decomposition to T 
I-lV' 

The usual decomposition 

is not satisfactory: as noted in Lecture 2, if T is to remain 
I.lV 

finite at q2 = 0 Tl and T2 are constrained to obey 

! . 
a.b++- -$q 

( Z-.>Q j 
q, 3) -z ;y& T2 ‘e: Jjb #-++ &/&k 

L 

*We continue to pretend that the amplitude in question Reggeizes 
like vu-'. 
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A constraint free decomposition is: 

-6 (e”d + (10.12) 

A rerun of the derivation of the last section with appropriate 

free-field light-cone singularities establishes that tL and t2 

have polynomial residue J = 0 fixed poles. 

Consider t2(q2,v): 

(10.13) 

The J = 0 fixed pole is a term proportional to l/v2 as v -+ m. 

contains all sorts of leading (a > 0) Regge terms 

which mask the fixed pole. We will assume these to be only 

simple poles with 0 <a $1 - cuts and a possible d= 0 term 

in W 2 are discussed in detail in Ref. 4. To remove leading 

Regge terms: 
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t ww#+2) 

p-2 
+ (-up-2 

CLCknL 2 
o(>O 

write the dispersion relation 

Note, the threshold is v= 0 rather than the physical threshold: 

-q2/2. Now subtract Eqs. (10.13) and (10.14): 

The leading term in t,(s2 ,v) as v -f ~0 is the fixed pole. 

The integral over g2 is convergent since all terms which vanish 
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slower than l/V' 2 have been subtracted out. Eq. (10.15) may 

be evaluated in the Bjorken limit: 

(10.16) 

or at q2 = 0 

(10.17) 

To obtain Eq. (10.17) from Eq. (10.15) note from Lecture 2 that: 

where 0 TOT is the total photoabsorption cross section for real 

photons. The "1" in Eq. (10.17) is from the Born term (Thompson 

limit) which has been separated out from under the integral. 

c is defined in analogy to W2: 

F2 (w) is defined from W2(q2,V) 
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The final step is the trivial observation that the only 

polynomial in q* which is constant at q* = 0 and at q2 = 00 is 

a constant, hence C*(O) = C2(m) or: 

(10.18) 

which is the CCNRR sum rule. 

Damashek and Gilman 13 and Dominguez, Suaya and Ferro-Fontan 14 

have evaluated the right-hand side of Eq. (10.18) from photo- 

production data.* They find within rather wide limits, C*(O) 

to be consistent with 1, i.e. 

From the sum rule we are led to expect the behavior pictured 

w 

*These phenomenological analyses are open to various criticisms. 
Most important we have shown that moving poles and/or cuts 
may have contributions arbitrarily close to or even at J = 0. 
One must assume that the operation of subtracting off known 
trajectories with cx > 0 isolates the J = 0 fixed pole. Addition- 
al ambiguities regarding the intercept of Regge trajectories and 
the onset of Regge behavior are discussed in Ref's. 13 and 14. 
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Area A - Area Be 1 

In particular F*(W) must fall substantially below its 

maximum before the onset of Regge behavior. Close and Gunion 15 

have verified that current data are not in contradition to 

this - neither however is there any substantial support for the 

value 1. A significant test of the sum rule awaits NAL data 

at high w. 

Combining BJL techniques with the assumption of polynomial 

fixed pole residues, a sum rule may be derived for the operator 

Schwinger term. 16 This sum rule is rather important in several 

theoretical applications including electromagnetic mass differ- 

ences.17 It also provides a superb laboratory for studying 

the validity of canonical manipulations in perturbation theory. 
18,19,4 

Our analysis again follows Ref. 4. 

Schwinger terms are non-canonical derivative terms in 

current commutators. The operator Schwinger term in the com- 

mutator of electromagnetic currents is defined by: 

We may isolate it in electroproduction by taking the BJL limit 

of T Oi with qi fixed but not zero: 



-187- 

Using our kinematic constraint free decomposition of T we 
l-iv 

obtain (taking $ = 0): 

where P(q* ,v) is some polynomial in q 2 and v which is to be 

identified with terms on the left-hand side which do not vanish 

as q + 0 ia. Identifying coefficients of l/qo: 

(10.19) 

where t 
L,* 

are defined to have all terms subtracted off which 

in the limit vanish like l/v or more slowly. 

We write dispersion relations for tL and t 
2 : 
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Where WL(q2 IV) = -q2/2r Im tL(q2,v). 

In both dispersion relations we allow a real polynomial; in 

that for tL we explicitly use the first term in the polynomial 

to subtract the dispersion relation. Changing variables from 

v to w 

I, (q2,“> = J I 

In the BJL limit v,-q* -f ~0 but w -+ 0. From Eqs. (10.21) we 

isolate the finite terms for Eq. (10.19): 

(10.22) 

The Schwinger term is the q* -f -co limit of a subtraction con- 

stant. Any other result implicitly assumes the absence of the 

subtraction constant or otherwise disposes of it. 

We shall dispose of it and obtain a useful sum rule from 

the assumption of polynomial residues. We perform the same 

analysis on t,(q* ,v) as we did on t,(q* ,v) when obtaining the 

CCNRR sum rule. That is we isolate the fixed pole by taking 
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v to infinity in a finite energy sum rule: 

(10.23) 

and CL(q2) is to be a polynomial in q*. We require 

Lim q*f, (s2 I 0) (remember the bar indicates the removal of 
q 2-b-, 
all parts which fall slower than l/v). Since C,(s*) is a poly- 

nomial in q 2 it makes no contribution to EL(q2,v) and we find 

=- s 
(10.24) 

which is the sum rule. Now if the polynomial residue assumption 

were inoperative 20 
, a l/s* term in C,(q*) would contribute to 

the sum rule. We call such a term aL(q2). In its most general 

form the sum rule reads: 

(10.25) 

Note that S is never infinite unless the q* -+ -00 limit 

does not exist, despite frequent assertions to the contrary. 
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10.7 Breakdown of Canonical Sum Rules in Perturbation Theory 

Canonically we expect Eq. (10.25) to be fulfilled with 

aL(q2) = 0 and &IL WJ+.4 = '34 : 
e' -, -00 

so that S = 0 in spin-l/2 theories where FL(u) = 0 by the Callan- 

Gross relation. 

In second order perturbation theory this does not happen. 

Consider first a spin-l/2 quark vector-gluon model. 18,19 Since 

Eq. (10.25) should be valid Feynman diagram by Feynman diagram, 

we may confine our attention to the box graph: 

+ 

Direct calculation yields S = 0. However FL(u) # 0 instead 

and moreover 
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This is a non-polynomial fixed pole residue: 

So the sum rule reads: 

and is valid. The breakdown of the Callan-Gross relation is 

accompanied by the appearance of a compensating non-polynomial 

fixed pole. 

In a spin-0 theory4 the following graphs 

contribute to t,(q*,v); the first two contribute to FL(u): 

and only the seagull graph contributes to S: 

s = a2 ‘-x G2 y2+ (I-x)‘M= 
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Again the sum rule is verified, this time conventionally. 

There are however three more graphs in a spin zero theory: 

i 
t 

These have no imaginary part and therefore do not contribute 

to FL(U). The third contributes a logarithmic divergence 

to the Schwinger term 

where R is some cutoff. And the three graphs contribute a 

non-polynomial fixed pole: 

which validates the sum rule 

In summary, the breakdown of canonical scaling laws is 

accompanied by the appearance of non-polynomial residual fixed 
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poles which conspire to satisfy the sum rule. Of course the 

sum rule is only experimentally useful if the fixed pole has 

polynomial residue since a(q2) is not directly measurable. 

Finally we return to the question, raised several days 

ago, regarding B-functions at 5 = 0 in structure functions. 

The problem was that light-cone derivations of sum rules in- 

volve the integration of the Fourier transform of a bilocal 

operator over the range -1 55 ,< 1. For 5 # 0 the F.T. is pro- 

portional to an (observable) structure function. A useful sum 

rule is obtained only if distributions at 5 = 0 are excluded 

by fiat. Now we can identify these distributions with the 

asymptotic limit of non-polynomial residue fixed poles. Again 

the Schwinger term sum rule provides the test case. Jackiw, 

van Royen and West3 derived the S.T. sum rule by purely coor- 

dinate space techniques and found (assuming no Regge terms with 

(10.26) 

This seems to be violated in (e.g.) second order perturbation 

theory of spin-l/2 particles: s = 0; J; d5 5 FL(E) = g2,‘8v2 

However, Zee 18 showed that a careful calculation of FL(<) in 

perturbation theory uncovers an additional term: 

(10.27) 
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The b-function is not present at finite q2 and v and its rather 

arcane origin in the non-uniformity of the Bjorken limit in 

perturbation theory need not concern us. Clearly Eq. (10.27) 

now satisfies the sum rule, Eq. (10.26). 

This treatment is completely equivalent to our earlier 

(BJL + finite energy sum rule) formulation. In Eq. (10.25) 

the integral is to be evaluated before letting q2 -f -m so that 

any A-function which materializes in the Bjorken limit will 

not be encountered. The non-polynomial fixed pole then cancels 

the integral. If, on the other hand, one insists on formula- 

ting the sum rule as Eq. (10.26) it is necessary to treat 

r, 5 L (5) (or its regulated analog) as a distribution with singu- 

larities at 5 = 0 which reflect the existence of non-polynomial 

fixed poles. 

Finally let me note that there are many intriguing and 

perhaps useful consequences of the techniques developed in 

this lecture. The reader is directed to References 4, 12 

and especially 21 for further applications. 
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