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Preface

These are notes based on lectures delivered by J. Ellis,
R. L. Jaffe and M. Nauenberg at the U. C. Santa Cruz Summer
School on Particle Physics, June 25th to July 6th, 1973.
Chapters 1,2,5,8 and 9 were prepared by J. Ellis, Chapters
3,4,6,7 and 10 by R.L. Jaffe.

The notes are intended as a simple pedagogical intro-
duction to the main ideas of scale invariance at short
distances and near the light-~cone, and their application to
deep inelastic and other phenomena. The notes are not intended
as a critical review of the field. We apologize at the out-
set, to the initiate for ignoring work of which we may not
be aware and to the newcomer for leaving out due to limita-
tions of time some large bodies of material which should
perhaps be covered in introductory lectures. Among the latter
are: the formal theory of broken scale and conformal invar-
iance and renormalization group techniques. Excellent intro-
ductions to these subjects can be found in C. Callan in the
proceedings of the 1971 Les Houches Summer School and S.
Coleman in the proceedings of the 1971 International Summer
School of Physics "Ettore Majorana".

We would like to thank Mike Nauenberg for organizing the
Santa Cruz School, S8id Drell and SILAC for hospitality while
much of this work was done , and for bearing the publication
expenses and the secretaries at SLAC and the Center for

Theoretical Physics at M.I.T. where the lectures were typed.
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Finally we wish to thank the participants in the summer school

for many helpful comments, corrections and discussion.
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1 - Introduction

1.1 - (Introduction)2

It is an old idea that in high energy reactions masses and
other dimensional parameters might become irrelevant. In the
absence of such mass and length scales the reactions would
become scale invariant. This hope is clearly not realized in
high energy hadronic reactions, which seem to be controlled by

Regge singularities, which yield amplitudes of the form

o (t)
(5/5,)

with dimensional parameters a' and SO. However it has recently

been suggested theoreticallyl, and to some extent confirmed

experimentallyz, that deep inelastic lepton hadron processes

h

might be approximately scale invariant in the 1limit

q2 T, grp o, W= ‘Zg‘P fixed
g

The theoretical basis for this expectation is the observation
that the asymptotic behaviours of these processes are related
to singularities of current products J(x)J(0) at short distances
(X“ »> 0) and near the light cone3 (x2 + 0), and the fact that
in many model field theories these singularities are indepen-

dent of mass parameters (scale invariant).



In these lectures we will discuss these ideas of scale
invariance at short distances and near the light-cone, showing
how they can be used in the phenomenology of deep inelastic
processes, and other effects such as e e+ annihilation and
current algebra anomalies.4 Deep inelastic scattering
data will be used as crutches to support our theoretical
ideas, and are indeed the principal checks on them at the
present time. However we hope to make it clear that deep in-
elastic scattering is just one of several areas where
these ideas apply.

In this lecture we first discuss the relevance of short
distance and light-cone behaviour to various phenomena, and
then discuss model field thecries which are the basis for
the subsequent theoretical developments. The next lecture
will review the data on deep inelastic reactions, showing the
experimental evidence for scale invariance. Then a lecture on
the parton model will show how the model field theories can be
induced to be scale invariant. The rest of the lectures will
discuss scale invariance at short distances more formally.
There will be a "technological" lecture on singular functions
in field theory, fourier transforms, and so on. Then there will
be lectures on operator product expansions at short distances
and on the light cone, and the Bjorken-Johnson-Low limit.5
Finally there will be lectures on anomalies, other processes
where light-cone ideas apply, and on sum rules and fixed poles

in deep inelastic scattering.



1.2 ~ The Relevance of Short Distance and Light—-Cone Behaviour

In this section we will briefly review the kinematics of
a few processes and show how their behaviours are related to
short distance and light-cone structure. We also review the
Regge limit in x-space, showing that it is not in general

related to the light cone.

(a) e_e+ -+ hadrons

We consider the one-photon exchange contribution to this

process:
e. . | I
g }”’WCE% o« 2 [l
q - [ 4"
n o+

The cross section can be written as
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(1.1)
where g is the sum of the lepton momenta. We will be interested
in the behaviour of this cross section as q2 »> «, To analyze
the expression (1.1) we work in the centre of mass frame so that
g = (Q,0,0,0). Also we can replace the product JU(X)JU(O) in
Eg. (1.1) by the commutator [Ju(x),JU(O)] since in the region

Q>0

because of the spectrum properties. We then have
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The integrand can be written as a function of x. and x2-

0 X

LC‘»\ixo 7 2
(&XQ A?’x :EL i?ﬁal ® )

As Q » », contributions to the integral from finite non-zero
values of:ﬂ)will vanish because of the rapid phase oscillations
of the factor elQXO. Hence the asymptotic behaviour of the

integral will be controlled by the behaviour of
CHRRCR N ON o

as x5 = 0. But because it is the matrix element of a commutator,

it vanishes for x2 = xg - §i < 0. Thus the asymptotic behaviour

- + . . 4,5

of c(e e = v » hadrons) is controlled by the behaviour of

b <o) (3,00, T75)] 16>

L3
X, 0

Suppose this cross section were indeed scale invariant,
i.e. did not have any dependence on mass parameters, as q2 > o,
Since a cross section has the dimensions (length)2 or equiv-
alently (mass)—z, we must have

- . A 2
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if mass scales are not to control the limit. Since the kine-
matic factors outside the integral in (1.2) are mass independent

this means that

. -
b ol [T 00770 10>
Hu>O =

should be independent of any masses. Since currents have

dimensions (mass)3 (because charges [ d3§ JO(§,t) are dimen-
sionless), this means the vacuum expectation value should

diverge as x as xu > 0.

(b) - Commutators and the Bjorken-Johnson-~Low Limit

Equal-time commutators are also short-distance properties
of the field theory, because they are local. An example is

the arrent algebra commutator

A

o 5 b \j - [ (-~ N 41
So e, 300 = i3, S (6 7

o
&
"

(1.3)

which is transparently independent of masses. These commuta-
tors are mass independent (scale invariant) because they

are derived from the basic canonical field theory commutator

S(x0) Ecﬁé(z,xo), c;é{oﬂ = -0 SH0)

for scalar fields and anticommutator

/ + o 4
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»
i_# pOR | . »’/
{ J

for spin-1/2 fields, which are themselves mass independent.



Many applications have been made of the current algebra
commutators (1.3), and these are now generally accepted as
valid. If we want to probe the short distance structure of
hadrons further, then we must find ways of looking at other
equal-time commutators. One way was proposed by Bjorken,

Johnson, and LOWS. Consider the matrix element
IR BRI
dtx € H R o)) 14/ >

and where R(A(x)B(0)) = e(xo) [A(x),B(0)] is the retarded com-
mutator, H and H' are two hadronic systems - for convenience
we now take them to be identical single particle states of
momentum p. Take the limit dy i with g fixed: then by

partial integration

gO{ e V<l RIBOORIOY) B>

L:"- : FooNT - .,
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DX

The procedure can be repeated, the (l/qo)n term being related to

R 'anquf' '\) 5\ ~
‘m.Pi, B{?fo !: -'S“;Z—;\j ; B{O/’-j \P

Unfortunately the limit 9y i« is rather unphysical. However

we will see in a subsequent lecture how
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can be related via dispersion relations to moments of structure
functions in deep inelastic lepton-hadron scattering. Using
these relations, commutators of the currents and their time
derivatives can be probed, giving us ways of exploring short

distance behaviour.

(c) = Deep Inelastic Scattering

In electroproduction experiments the lepton scatters

off the nucleon target with the exchange of a virtual photon
with space-like momentum q2 < 0., In the next lecture the kine-
matics of this and related processes will be reviewed in detail.
For thé moment we Jjust consider the simplified case of a spin
zero current scattering off a spin-averaged target. The total
inelastic cross section

o o« Z BTl

wd

n (1.4)
Using the completeness of the intermediate states we can

rewrite (1.4) so that

r g
o o« ldtee U <pITE0TS) P>
I3 (1.5)

where g is the momentum of the current.* What we will now

argue3 is that in the 1limit

2 _ . - . .
___% , VoE C{% -y oC Lo = Zl‘ir%z M (1.6)

* We will always covariantly normalize states

plp'™ = (2m)® 2E §%{p - p")
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then the asymptotic behaviour of the cross section is controlled
by the behaviour of o

Lol THOTIS) >
near the light cone x2 v 0, The 1limit(l.6) is called the
Bjorken scaling limit. Depending on the strength of the light

cone singularity

s X
o~ (¢ Flw

in the scaling limit: this is called the scaling behaviour.
To make plausible light-cone dominance we work in the rest
frame of the target: p = (M,0,0,0). Then q = (%,0,0,/(%) -q?

~

v . . .. . .
= | M,O,O,%+%) in the scaling limit. We can rewrite (1.5) in

the form
v
Lo X {q«
) m=e _~tie 2 >,
o & ;{0{%9&3_{2 = € T, Mo )
b
(1.7)
where |§| = r and we have expressed the matrix element in
(1.5) as

Now if we perform the angular integrations in (1.7) we find

rob o0 r
H i s -
: ™ L c o, YA P rAE Y *
o o doto ol ™ S"Mr:)%’yﬁi"il =+ (v, Mo ) 1.8
T ¥ v ’ (1.8)
Lo "o *’é\‘ﬁ\\f 1

Now we consider the phase variation of the integrand in (1.8);

we can write
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in the scaling limit.
in (1.8) will only get contributions
(1.9)

where the phase variations are

term in (1.9) this means

As before we argue that the integration

from values of x0 and r

not large. For the first

el = O(E) Wl = O(H)
for the second term

or] = o8, Irh= O
In both cases

el = ba-el = OfR)

gso that in the scaling limit (1.6) w

cone behaviour of the matrix element

!

%) J{0o) |

o)

ey

S,
P>
In electroproduction we measure

‘g

giﬁw €ft

X

W,

e are probing the light-
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In the next lecture the kinematics will be discussed in detail:
here we just note that experiments strongly suggest that Wuv
becomes scale invariant (independent of mass parameters) in the

scaling limit qz, g*p + © with w fixed. This means that
-t -
<Pl T, 60T 00) 1B

has the same type of singularity as found in simple field theory
models, which always have mass~independent singularities. (You
are not asked to understand these comments now, just asked to
accept them - we hope to make things clearer later on!)

It is sometimes convenient to re-express vectors au in

terms of light-cone variables

a, = f(a_,ajsay, a))
where a, = 1/V2 (a0 * a3). Scalar products take the form
_). [
a*b = ab +ab - a b where a = (al,az). We then see

that q2 = 2q+q_ and v = a,p_ + a_p,- In the scaling limit

2 X g - =
1, = Mmoo -7 TR
while
q’.‘. o

L X -

remains fixed. Examining the exponential in equation (1.5)

we see that e % = el(q—x+ + q+x_) and the standard phase
variation arguments tell us that regions of space with x -0
control the scaling behaviours. This point will be taken up

later in discussing the parton model.
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{d) The Regge Limit

So far we have given examples of processes which are
connected with short distance and light-cone behaviour. Just
to reassure you that we are not trying to take over the world,
we now give an example of a process clearly unrelated to

either XU ~ 0 or x2 ~ 0. Consider the same cross section
(4. _iax 7 \
o dte T Lpl THOT(0 1>
o4

discussed in the previous section, but now consider the limit
2 .
q fixed, qg<p » «

normally assumed to Regge dominated like hadron-hadron scattering.
Going through the phase-variation argument as before we find
the dminant contributions come from |x2| = O(l/qz), which

does not tend to zero in the Regge limit q2

fixed, g*p > «,
so we do not get any closer to the light cone in the limit.
The weak constraint Ile = O(l/qz) means that hadronic mass

parameters may well control the asymptotic behaviour, as is

true of conventional Regge asymptotic formulae (S/So)d.

(e) - Anomalies

All the previous instances where we showed short-distance
and light-cone effects were important involved processes at
large momenta, where it is intuitively plausible that such
effects might turn up. However short-distance effects also
occur in processes at small momenta. Examples are current

algebra low energy theorems, which tell us a lot about pion
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interactions at low momenta, and come from equal-time current
commutators, which are indeed short-distance effects. There
are more interesting and model-dependent effects at low momenta
connected with short-distance behavior - the current algebra
anomalies.4 The best-known example is that6 in the Ward

identity relating
) o 0 T E o T T RO 19
T 14 (\P'k}g CR%XOL 3 4 <\O§ N n) 9y, ) ot i
to

7 r Lpwsee -
T (b) = {abedtye e o T( 1260 T S R ) 16

The naive Ward identity is

R { o T LN
R LuelpR) = T (pk)
(1.10)
which can be used to argue that if PCAC is used to relate Tuv(p’k)

to the ﬂo

+ 2y decay amplitude, then the latter should vanish.
This conclusion is unsound experimentally, and in fact the Ward
identity (1.10) is untrue in field theory models. In general

an extra term

Yy \ o

L€ b k

pveo P (1.11)
should be added to the right-hand side of (1.10). The ﬂo+2Y
amplitude is then proportional to A in the PCAC approximation.

The anomaly (1.11) arises in perturbation theory because
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in order to prove (1.10) it is necessary to make illegal
changes of variable in the integration for the lowest order

fermion loop contributions

Enn
300 3, (o)

/
/ o T

&

AN
P)e{';'))

These operations are illegal because the loop is divergent at
large values of the loop momentum. This reason suggests that
maybe the anomaly is connected with short-distance behaviour.
This suggestion is confirmed by careful studies4 of (1.10)

in configuration space, which show that the partial integration

required to derive it may break down if

has an 8_9 singularity when x ~y ~€ »0. Since the currents
each have dimension (mass)3, this is indeed the strength of
singularity expected if mass parameters become irrelevant

at short distances (scale invariance). Therefore the anomaly

e}

and the ™ > 27 decay rate should be taken into account when

constructing models for short-distance behaviour.

1.3 - Model Field Theories

After seeing that short-distance and light cone effects
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are relevant in a number of processes, the next step is to
construct models for behaviour in these limits. Because they
are the only fully consistent models of currents available, we
examine simple field theories, as was done in the proposal and
development of current algebra.7 As remarked earlier, the

current algebra commutators

a - , s
g {7(0) [jo (!,7(/0\}/ jrhgo\) % - I - e "3’{- {0) (84\{)(:}

(1.12)

o
Iy
X
9.
T
T
Q =
{
b
S.
I
3 G
=
ol
H
-
§?ﬁ
|
~
9‘\
+
X

! Jjalt urj I

are themselves already statements about short-distance
behaviour.
Two models are often used in motivating current algebra:

one is the familiar quark model

.

&
. — %, ;
\;0 _ L 5’5 ' ;‘”Z, 'é /}%Z - é il o igz o ,-"”!cuf
{A S i ol 9

o

p——

(1.13)
where the a's are SU3 triplet indices. The vector and axial

currents

4 - ~7 / (J" N T Y 1
RNCERGOLA-SAE 6o = Lot 2

obey the SU3 X SU3 current algebra. This is true even though

the masses m, break SU3 X SU3 gsymmetry (the currents are not
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conserved). This is an example of a mass parameter not affect-
ing behaviour at short distances. Interactions can be added to
;i: the most popular one is to add an SU3 singlet vector meson

j'w\), -3 ;‘XKM %X E/A

( "gluon " )

I

7

which also has no effect on the current algebra.

Another possible model has basic octets of spin zero

fields:

-

(2

AR~

T -3 s%“rm,ma + ‘6”‘%‘6/,?% — {[ﬁm’; N M, + S BF

where the M, and P_ are scalar and pseudoscalar fields respec-

tively. Again SU3 X SU, currents

3
€« . <
I 6o o MGG 2, Mbo ~ PEAY PLO
\Jr\‘ kW /‘,;.,
<
A, 00 < PLO ML

can be constructed, which obey current algebra despite the
scale (and SU3 bie SU3) symmetry breaking mass terms.

Models like (1.13) and (1.14) are generally mass independent
(scale invariant) at short distances and near the light cone.

For example the free fermion propagator

¢
~ 8% as AT O
('xzf‘

and the free boson propagator -~ l/x2 as x2 + 0 in a free field
theory. We will see later how the mass independence (scale

invariance) of these basic singularities suggest the scale

invariance of products of currents also.



-16-

Connected with the mass independence of the short distance
and light-cone singularities is the fact that they generally
respect whatever symmetries (SU3, chirality, etc.) are violated
by the mass terms in the theory.

Models like (1.13) and (1.14) can be used to specify
commutators other than the current algebra ones: examples

include the commutators between space components of currents:

7 \,,' r o i‘r ,h—_?
b} | T (2axe), I (0

i
-

and the commutator of a current with its time derivative:

The structure of these commutators is model dependent.

A main burden of these lectures will be to argue that a
slightly modified version of the model (1.13), with three
identical triplets of quark fields is in good agreement with
what is presently known from experiment about short distance
and light-cone effects, while also making plenty of predictions
yet to be tested.8 We should point out that if model field
theories are calculated in perturbation theory, then the scale
invariant behaviour found in free field theory, or by manip-
ulations of interacting field theories using canonical commuta-
tion relations, gets changed. Scaling gets modified by log-
arithmic factors, or the power of singularities in x2 may get
altered. There is no evidence from deep inelastic electro-

production experiments that scale invariance is broken, however.
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Therefore in these lectures we will generally use canonical

field theory results8 and ignore perturbation theory.
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2 - KINEMATICS, SCALING AND COMPARISON WITH EXPERIMENTS

2.1 - Introduction

In this lecture we review the kinematics of inelastic elec-
troproduction (et + N - eir + hadrons, ui + N » ui + hadrons)
and neutrinoproduction (v + N - (8=1 + hadrons, v + N - {gi} + hadrons¥*) .
The crossing properties, analyticity, q2 + 0 limit, positivity
and Regge behaviors of the inclusive structure functions are
discussed. Also we review the scaling laws expectedl for the
various structure functions, and some consequences of these laws,
particularly in neutrinoproduction. Finally we discuss the
qualitative features of the data on scaling in electroproduction2’3,

45,6 and electron-positron annihilation7.

neutr inoproduction
We outline the extent to which scaling ideas have been checked,

and give sources where the data may be found,

*Experiments at CERN8 and NAL9 also have events which have not

so far been explained away as not being of the type v + N »~ v +

hadrons.
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2
and it will be useful to introduce the variables, ¢ = %b’
h
w = g = 2%, which remain fixed in the scaling limit’and the
0

variable y = v/ME. See figure 2 for the kinematic range in
any experiment: l<w<w, 0<f, v<l.

B - Electroproduction

In the case of electroproduction the graph in figure 1
is proportional to:

A = W) ¥ uk) XIS P> (2.1)
where u and U' are lepton spinors. We then have the differen-
tial inelastic cross-section:

o 2 18 @) &4 (q+p-py) (2.2)
where the sum is over all final hadronic states X. Substituting

(2.1) into (2.2) we find the cross-section is proportional to:

&f"" W)A\/ (2.3)
where L , '-;‘,Tr {'K/XPKXV\) - ZCQ'PkV-*\QMEN‘“ %Mrh,\zD (2.4)

(we assume that the lepton beam is unpolarized) and

W,, = e zx<p\3,:*co>lx><x\S;dwxzm‘*'s*(qﬁ:—m (2.5)

The electromagnetic current is hermitian, but we have written

Ju+ in (2.5) so as to make a closer connection with neutrino-

production, where the hadronic weak current is not hermitian.
We can rewrite Wuv replacing the § function by an integral and

translating Ju+:

_ 1 4 iax +
W, =gy Jdxe <p|3," (x)T (0)[p>

Further, we can replace the product Ju+(x>Jv(0) by the commutator
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+(x), Jv(O)] because the product Jv(O)Ju+(X) does not con-

tribute for a, > 0. Wuv is simply related to the absorptive

part of the forward amplitude for virtual photon-hadron scattering:

W = BT+ T = e VR 00> (200

Tuv has the usual analyticity properties, and in particular dis-
persion relations for it can be written. We will consider the
case where the hadron target is unpolarized: then Tuv depends
on just the two momenta g and p, and Lorentz covariance, parity
and current conservation decree that it can be written:

-Tf:\)/{‘( P) = *(6 v -ﬁ?'-“ /T )V)* (‘Pp\ X"y ")73,(‘( )V> (2.7)

and Wuv can be SLmllarly expressed in terms of two structure functions:
\NHZ (%QIVD = ijfr\‘”“\m»’&(”tz)“) (2.8)
In the limit q2 + 0 the diagonal components give the total
photon-nucleon crmss-section, and so should be non-singular. This

means that Wb(qz,v) = O(qz) as q2 + 0 and that

2 2
Vi, (%) + qfw (@®v) = 0((@®?) as ¢ > 0.

Knowing these constraints, it is possible to introduce kinematic
singularity free amplitudes; this will be done in later lectures.
It is often convenient to introduce cross-sections for the absorp-
tion of transverse and longitudinal photons:

ox (¢,v)= % Wi (29v)

G (11)") = 41(%( ['W - W ( ﬁ%ﬁ)j
In the limit q2 -+ 0, VW, is 51mply related to the total photo-

2
production cross-section:

(2.9)

lim —sz(qz,v)

= o)

2 —_———— tot
2

g =+ 0 M2q2



-24-

Kk = v + q2/2 is a conventional flux factor, equal to the equiva-
lent real photon momentum. The diagonal elements of Wuv must be
positive semi-definite, and the off-diagonal elements must obey

Schwartz inequalities. This requires:

y"ﬂ)
O W £ (( yroms W, (2.10)
which imply the expected positivity of 1, and Op. From equations

(2.3), (2.4), (2.7) and (2.8) it follows that the differential

cross-section can be written:

e _ _ X
o&Eﬁ/ ”4—M515«;:‘e( SW; + 25012 W, ) (2.11)

C - Neutrinoproduction

In the case of neutrinOproductionlO the graph in figure 1 is
proportional to:
p(kz')Tf"‘ =W, (k) <x| T > (2.12)
where we have assumed the conventional V-A charged current-current
theory. An amplitude of the form (2.12) yields a cross-section
proportional to:
Etﬁ; W (2.13)
where t’:,; - %(hwkv*hkkhf"af’”\q.\e’_&Le)‘*vxp h!ukﬁ)
and W,,W = E'LTT g-o("fx QLQ~>‘<P\ CT;CX7,TV(O)—3 \\F> as before.
The Lorentz decomposition of Wuv is now more complicated, because
the weak currents are not conserved, and have both vector and axial

components:

W,AV (Q‘P) =T (5MV %{y)w{ )V\) M ﬁ_:\i(-bﬂ”v%tqﬁxpk‘%?-?r>wzﬁzlb>
-t Mﬁgﬂ’sws(qz,v) -+ i{CTK W+ (qz, 2;) (2.14)
S (Be Tt Bl Wy (43,0
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(We have assumed T-invariance to eliminate a possible term

= (p,a, = p,g,) W (qz,v).) The forward current amplitude
2M2 SR VEEAY VU 6 :
. _ 1
Tuv has a similar structure to (2.14) and as before Wuv = 5= ImTuv'

The cross-section formula for neutrinoproduction is corres-
pondingly more complicated; however, the contributions of W4 and
W5 can usually be neglected at present. This is because they

appear in (2.14) multiplied by qu {and/or qv) and

- [ - = - - 1 _

G, (KOF-vu, (0 = mmy Gy (kD) (1mv,) uy ()
so that the contributions of W4 and W5 to the cross—-gsection are
proportional to lepton masses.¥* Wl, W2 and W3 obev the positi-

vity constraints:

L 2M1_,IV1 (\f\2 IW\ \ X ( M’“ﬂz>w (2.15)
Retaining just the contributions of Wy W2 and W3 we have
(neglecting lepton masses) the following differential cross-

section for neutrinoproduction:

2 v, 2 vy LV YV
o G [.2{—\;\}\ +(4E(E~v)-qu)\/\lz’ + P QE- )W, ](2.16)
M

w—-—

2 %
ckfwiv EM°TTE
On changing from neutrino scattering to anti-neutrinos, the W3
term changes sign because of the different leptonic coupling.

Data on neutrino scattering often are presented in terms of the

differential cross-section with respect to g ==—q2/2v and y=v/E
KN 2 - =]
loale ME} =2 vV by ((2.17)
_.gl:.,...,... - 6...__- ‘3 ?)W‘ +(\—'!$ )PWz '-FY.S(\ \5) VW3 J
AZdy ™

*In the absence of lepton polarization measurements, only three

different combinations of structure functions can be separated.
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D - Scaling hypotheses and some consequences

Naive scale invariance demands that the cross-sections (2.11)
and (2.17) just be functions of the invariant energies in the
Bjorken limit:

._0'2—>00 Vv > o w—.].'.-—-_,z_z
4 —g— 2

ped r
a
This is immediately seen to implv the Bjorkenl scaling hvpotheses:*

W\ (Ql) V) — EY)
oW,y () = £ (3 (2.18)
W) >k ®
We should note that in many models’
RG) = 23R[FE) (2.19)

8]
so that (as can be seen from eguation (2.9)) EE vanishes in
T
the scaling limit. Evidence on the scaling behavior of the
structure functions, and the behavior of OL/OT, will be discussed

in section (2.3).
Data on neutrinoproduction are often presented in integrated
forms, because of the low statistics available in experiments

up to now. If Wl' vwz and VW, scale as in (2.18), then in

3

neutrinoproduction:

i’fj = CEM (agr by o) (2.20

*The naive scaling laws for Vi, and W5 would be vW4,

vWS +~ functions of £. These are not generally realized in models:

for example in the guark model with interactions v2W4(q2

vzws(qzr\)) > Fg(8) At

V) F4(£),
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(3R (3= 3R7()

where a =
L= [ 4% (- v {%} TIR 'V(‘)) (2.21)
c = &.;0(2 th.,»(?g

If we assume the Callan-Gross relation (2.18) and introduce the

parameter |
- - —g Li)
& fd 3% _Qo’;SF:(%) (2.22)

(constrained by (2.15) to have |B] < 1) then

%,%’)7 - :ME_J O@Fv V(%)[l l?B)(ﬁ’j;}] (2.23)

and - tME v \[ 53 (2.24)
o, ; = AME(AR"R)[3
Note that, as expected from the scale invariance of the inter-
actions apart from the dimensional coupling constant G, the cross-
sections rise linearly with E. Note also that since Q2 =3tv =LyEM
that we should expect:

> = (2.25)

in the scaling region.

E - Properties of structure functions

Before looking at the data on scaling, we will just note

some more properties of the structure functions W (qz,v). First

1
their crossing properties
W(').(Q‘)" \.'z ( )
N (2.26)
\/\Jh ,3 4({/1/)“ - 111,(% )/) v\/ (q V> W; (,Ct

which may be derived by the substitution g + -g in the definitions
(2.14). We would expect Regge behavior for the structure functions
when qz is kept fixed, and v » »,. If we assume exchange of a

leading factorizable Regge pole with intercept o, then
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2 o=\

[ ol
! L
W~ Y/ , We o~ , W vy

(2.27)
\ < o\
If the leading Regge poles were to contribute in the scaling limitlB,
then the residues Bi(qz) would have to behave as:
X PR rDulet
5\ w(q) )ﬁzm(ci) , Ig&,v @) ek (2.28)
in the limit q2 + «, They would then dominate the behavior of the
structure functions in the limit & = % + 0, vielding:
N - - ~ O
R~ 777, RO~ 3%  REA~ T e (2:29)
The leading Regge poles which might contribute are:
Wl’ WZ: Pomeron with o = 1
1

3¢ w;,A, with o = >

.
W 2

Hence it is expected that:

E_(?,) = consboak as 30O (2.30)
. ep en .
The difference F2 T - FZ should be dominated by the A2 meson
Regge trajectory with o = %, vielding:
ep e 2
o) - RT3) ~ ¥ as 10 (2.31)

Finally we note that the analyticity, crossing and Regge pro-

perties enable dispersion relations to be written down for the

Ti(qz, Vv): examples are: 00

ev , Vb, 8N o \
T;_N(q;?)l/‘> 451@20\)#),\/\,1 (‘C)V);Tg:*‘;i

\N)vN“’FN

T M= 4 [ TR 5

tl

(2.32)

3 \‘ l”l" V?—
There could also be real polvnomials on the right hand sides of

equations (2.32), which would not contribute to the absorptive
parts W of the T;. The equations (2.32) will be essential later

on when we write sum rules which test models for Bjorken scaling.



-29-~

2.3 - Qualitative Features of Data on Scaling

In this section we briefly discuss the experimental evidence
on scaling in electroproduction, neutrinoproduction and electron-
positron annihilation, referring to sources where the data may
be found.

A -~ Electroproduction

Experiments, principally those by a SLAC-MIT collaboration,
seem to have established the following facts about electroproduction.
a) The structure functions Wl andw?W2 seem to scalez, for both
neutrons and protons, for 1 or 2 < Q2 £ 10 GeV2.
b) For both neutrons and protons, the ratio UL/cT seems3 to

be small, as expected from the Callan-Gross relation, and a

scaling behavior of the type v OL/oT + £(&) is not ruled out by

the data.
c) The structure function Qwié < ngp in the observed range2’3,
the ratio lying between 0.3 and 0.9 approximately.

3 en

d) The data are consistentz’ with qu < ngp approaching the
same limit as £ - 0, as expected if the structure functions are

dominated by the Pomeron in this limit.

B - Neutrinoproduction

As remarked earlier, the low statistics of data on neutrino-
production mean that they are usually plotted in an integrated
form, and detailed checks of the scaling behaviors of the structure
functions are not yet possible. Also, data are so far only available
from nuclear targets which are almost equal mixtures of neutrons

and protons. However, various consequences of the scaling hypotheses
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discussed in the previous section have been tested experimentally.

a) Data from CERN (gargam.elle)4 are consistent with a, and
o5 rising linearly with E for E%d GeV.

b) The ratio GG/GV seems to be roughly constant at around 0.4
for 2 < E £ 50 GeV4’5. As FEN + FEP = FgN + ng by charge sym-
metry, examination of formula (2.24) shows that UG/GV = % would
correspond to B=l, or maximal V-A interference. Thus the data
suggest that V-A interference is quite large. This is confirmed
by data on the y distributions4’6 in neutrino and anti-neutrino
reactions below 50 GeV which are close to %%z ¢:(l—y)2, %%2 = constant,
as expected from equation (2.23) if Bnl.

c) Data from NAL6 are consistent with <Q2> rising linearly
with E in neutrino reactions up to 150 GeV.

Thus data on neutrinoproduction are nicely consistent with
scaling, although it should be emphasized that many of the CERN

data have Q2<l Gevz, and so are really only shallow inelastic.

C - Electron—-positron Annihilation

As discussed in Lecture 1, the simple scaling prediction is

that G(e—e+ + Yy - hadrons) & Lz— as q2 + ©, Since c:(e--e+ + Y > u_u+)
g

should also ~ lﬁ by QED, this means we should observe
g

o (e et — ¥ _fadwous)
Cleet — ¥ — '2;4LVMA4)

— canhrnt on a*f——)oo
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Data from energies below q2=25GeV2 so far show little sign
of this limiting behaviour setting in7. Indeed the CEA data at
q2=l6 and 25 suggest that the hadron-muon ratio rises in this
energy range. However, in view of the large error bars on the
data, probably no firm conclusions about scaling should be drawn

until more accurate data are available. SPEAR should provide some

very soon.
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FIGURE CAPTIONS

1. Kinematics of inelastic lepton scattering.

2. Kinematic range of inelastic lepton scattering.
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3 - Parton Model

3.1 Introduction

The parton model was originally introduced by Feynmanl
to account for the systematics of high energy hadron-hadron
collisions. Soon after the SLAC-MIT inelastic electroproduc-
tion experiments were performed, it was observed2 that the
parton model provides a natural explanation for the observed
Bjorken scaling. Unfortunately, in its early (and simplest)
formulations3 the model suffers from several diseases e.g.,
it is not Lorentz covariant, and it is sufficiently poorly
defined to make it difficult to determine which of the model's
predictions are reliable and which are not.

Light-cone and short-distance expansions were developed
independently and are not afflicted with these diseases.
However, it was apparent almost from the beginning that light-
cone expansions and algebra are in some sense equivalent to
the more general features of parton models. This equivalence
has been worked out in detail4, and the parton model has been
cured of several of its diseases by Landshoff, Polkinghorne,
and Short5 in a formulation which is in many ways a momentum
space representation of light-cone expanéions.

Despite subsequent developments, the naive parton model
remains the simplest approach to the derivation of the funda-
mental results of short distance and light-cone expansions.
Hence the inclusion of this lecture 1s a series primarily

dedicated to light-cone and short distance physics. It should
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be kept in mind that the rather awkward assumptions made in
parton models have analogs in the coordinate space approach.
It is important to resist being seduced by the elegance of
that approach into the misapprehension that it involves no
unconventional assumptions.

The outline of this lecture is as follows: First, we
introduce light-cone coordinates which will simplify our
subsequent work; second, we give a brief derivation of the
parton model in electroproduction; third, we derive a selec-
tion of sum rules and other relations in a quark-parton model;
fourth, we discuss briefly the parton model of the ete” total
annihilation cross section; fifth, we outline a hierarchy
for the generality of parton model results; lastly, we
enumerate some other processes to which parton models have
been applied, both those which can also be treated with light-

cone or short distance methods and those which can't.

3.2 - Light-cone variables

It will be convenient to introduce the coordinates6

A A
Op = (0=, 0, a,, Q)
{

Qe = = \0.%as,)

for any four vector au (likewise for any tensor £

B...).

We reserve the notation au for the usual coordinate repre-

sentation aU = (ao,al,az,a3). In terms of a, we find
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a2 = 2a a_—glz (a, is the Euclidean vector [al,a2]) which
may be summarized in terms of a metric tensor @Uv with
§+_ = §_+ =1, gii = -1 for i = 1,2 and all other entries
zero. Then a2 = éuévﬁuv.*

An entire canonical formalism for field theory may be
developed in these coordinates.7 The usual association of

the Hamiltonian, H, with propagation in time is replaced by

the identification of P = ! (p -P.) with propagation in
- V2 o 3 5 3
X, =T. The mass shell equation; P_ = igéﬁiM~L is reminiscent
+

of nonrelativistic dynamics with P_<> Energy; P+<amass. This

analogy is developed fully by Kogut and Soper.7

3.3 - Derivation of the Parton Model

Derivations of the parton model tend to be unsatisfying.
Since we intend to use the model only heuristically and as a
mnemonic for light-cone calculations, this need not overly
concern us. A more satisfactory derivation is possible,5
though the physics is the same as presented here. Our
derivation parallels that of Drell, Levy, and Yan3’8 except
that we prefer light-cone variables to the infinite momentum

frame.

*This notation has the rather unfortunate side effect that

a = a_. However, we will be careful to use only covariant
+
(as opposed to contravariant) vectors and avoid this complexity.
+_

Note that §+_ = @_+ = § = 1.
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We begin with the usual expression for W

Wy

pv’

o B
Cd ¥ e Lq {p! ’J/;(Y) I, o) | P>

i

(3.1)
where Ju and |P> are in the Heisenberg picture. Now . intro-

duce the operator:

Wie) = \exp —'L} de' (1)

(3.2)

(remember T = 1/V/2 (xO + x3) ) which transforms from the
Heisenberg to interaction picture in light-cone coordinates.

[The T development is determined by the "Hamiltonian":

£ ) = € + P

where 633 is the non-interacting part. tj signifies t-ordering,
analogous to time ordering]. LL(T) converts JU(X) to the

free current ju(x):

Jp. &) = WD) et W)

(3.3)

So Eg. (3.1) becomes

, v{QT +qu %o -G %) , L
Wy = Z‘G f o (Pl 00 LUTML'(O)JV(O)LUOHP? iy
(3.4)

As John Ellis described in the introductory lecture, we may

take the Bjorken limit by letting g -« with all other momenta
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fixed (£ = —q2/2P-q = —q+/P+, etc.). As Ellis discussed
g_—+~ implies T + 0. Let us suppose then that T may be set
to zero in the matrix element of Eg. (3.4) (we shall return
to this guestion) :
( 1q-X
Wy = 2= jol‘*x et CUpl i, 00 ) ) up?
(3.5)

where |UP> = U(t = 0)|P>

Eq. (3.5) is the parton model for inelastic electro-

production. To see this consider |UP>:

5 > @56y | Py
n jlk?)”?l(w)

L5 IR BT Myl ] £ (0) 1P
TR - P R - o)

(3.6)

i

Wo)ipy =72, { P>+

Here I' indicates a sum over all states except |P>. This is
"old-fashioned" perturbation theory* in light-cone variables,
in particular: EL,P+ and mass are conserved at each vertex
while P_ is not. Also, the states |n> (and |m>) are free

(multi-) particle states, i.e., eigenstates of§3j. In a

* See Drell and Yan, Refs. 3 and 8 for a reminder of the

rules of old fashioned perturbation theory.



simplified notation:

Wlo)1P) = 7, A in

(3.7)

s
with z:n_s(lw\ = i . The free currents in Eg. (3.5) can
only scatter off a free particle in the state |n>, which may

be illustrated as follows:

},.J

(Fig. 1)

Note there is no form factor at the photon vertex and no
final state interaction. This is the essence of the parton
model: The elastic and incoherent scattering off of consti-
tuents in the Bjorken limit. Scaling will be seen to follow
directly from a reading of Figure 1.

The essential dynamical ingredient of the model is the
replacement u(n)u ) + 1 as g_+*. It is not clear that
this replacement may be interchanged with the implied sum
over intermediate states in Eg. (3.4), and in fact, in renorm-
alizable theories it can't. Consider for example,

<n[U(T)U_l(0)|P> with |P> a single particle state of momentum

{ MZ A

A 3
?:‘: (2“1;;)())0) P+}
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Using Eq. (3.2): i{¥)&w)“F)(Pﬂ't

QIR W) P> = nlp) —+

O (P PY + .. |

(3.8)
Let |n> be a collection of particles with momenta
2 22
A ' W\-‘ -+ ’P — )
o= | . x: P \
i \ &LX 1) 50 1 +—)
[Momentum conservation demands % X, = 1, % gii =0 1].

~

The fqrm of Pi guarantees 3-momentum and mass conservation.
As g _+» T ~ 1/g_, but the interaction dependent terms in
Eqg. (3.8) vanish only if (P_(n) - P_(P)) is finite for all

states |[n>

) w2 _:2 2
)b =L M
t QY1P+ :{P—P

(3.9)
One way to enforce this (due originally to Drell, Levy, and
Yan3) is to introduce ad hoc a transverse momentum cutoff
. NI 2
into <a|y¢ 2 (0)|P>. Then Py, never becomes large and Eg. (3.8)
reduces to <n|P> as desired. A covariant formulation of
the same (ad hoc) dynamical supression was introduced by

Landshoff, Polkinghorne, and Short.5 From here on we shall
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realize the parton model by the simple expedient of assuming
a transverse momentum cutoff, i.e., by assuming all particles
in the state |n> in Eq. (3.7) have momentum 1P;i| Py
relative to the incident proton.

P_(n)-P_(P) also grows large as xi+0. Disposal of this
region and the proof that l>xi>0 in most models may be con-
structed following Drell, Levy and Yan.3

In renormalizable perturbation theory without the
introduction of ad hoc cutoffs the interaction dependent
terms in Eq. (3.8) remain important in the Bjorken limit
and neither a parton model nor scaling is obtained.

Combining Eg's. (3.5) and (3.7) with the transverse

momentum cutoff we may demonstrate Bjorken scaling:
’ :
i ; !l+ qu S 1] ' . ot N
! I L N {
\Nw = ,L{_ 36)(8 l !QV\} {\\/\vg\rhii}l\i\) K)}%V‘L>
i / n J v

where the state |n> consists of a collection of particles with

limited transverse momentum:

5 - 2
A Twmie R, T \
Po= =y Tie, BB
;ZX;¥?+ ’
(3.10)
—
*
( Z;ixi,=§‘7§z11%L=(3 Y. Terms with ay an cannot occur on
account of the transverse momentum cutoff and absence of

final state interactions. By virtue of this ju(x)jv(O)

is a single particle operator:



(Fig. 2)
- < &Y‘Y\.v o
»J Vv 1amj Zq w y?‘ Q
F n A SRR &
(3.11)
Born . .
where Wuv is the structure function for the Born graph

et N

/ N

(Fig. 3)

for scattering off of parton i. Consider (e.g.) a spin 1/2

parton
EOY)"» ‘2-——1'- ’ . 1, \ e ~§
A'J‘frv = !QL {?L \{ip» {/ﬁ,@i)\ﬁvi 51‘1_;\?',*%}2"‘\"/\:21:}
2 \ / \
- QF 5(qF+ 27 q) R (Req),

(3.12)

The S§-function is the imaginary part of the parton propagator
in Figure 3, Qi is the parton's charge.

From here on we consider the laboratory frame:

> _ 2 2 2 2
g, =P, =0; g = 29,9, P =M = 2P+P_, v = P+q_ + P_q,
and the Bjorken limit: q_~+ =, £ = -%+ fixed (0 <& <1).

Py



Z ‘G_w O‘»gu)(m) is the probability per unit phase

space to find a parton with momentum P+i = £P+ in a proton.

In light-cone variables:

d1 = c>)4{><c3\‘\>~ 2) “‘d‘idpi :C_%dz?x

] 2-"[
so *% E:,gzﬂlw‘ é%%w%ﬁ} is the parton probability density

per unit df. A more convenient notation is
1 2 ! ’
e L 1an*85-x) = 2 Wals)
oY a
where ua(g) is the probability of finding a parton of species

"a" with momentum EP+. Finally then

F‘ {%\) = LL\%,: \v\i1{Q2)\)\) = J:—Z-z’_ Lbo.{g\)Q: (3.13)

Analogously
[ — : v 5’2 V= ) \Z
T‘z‘\%.} = Lng» ;“zWQ%QN) = Z{Z \Laﬁf@& (3.14)
i o
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thereby establishing Bjorken scaling.

3.4 Sum Rules and Spectrum Relations in the Quark Model

To illustrate the convenience of the parton model, we
shall quickly derive a series of sum rules and spectrum re-
lations which will be explored in more detail later. For the
present we confine ourselves to the guark model and return to

the question of generality later. From the electromagnetic:*

and weak

I = oosde Wl i)l + st Y i) s

currents of the model and Eg. (3.14) and its neutrino analog

the following table may be constructed:

o1&
O
~
Ml
+
Q.
o~
+

(3.17b)

* We use Gell-Mann's notation u,d,s for the conventional
p,n, 2 quark triplet with charges 2/3 -1/3,-1/3 and strange-
ness 0,0,-1 respectively. u(g), 4d(g), s(g&)
denote the probability densities for the quarks as partons.
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(3.17¢)

v ‘ vn c |
= ?(‘E,\' = F, (5) = wlg) +a () (3.174)

w il
<
7
[l
R
it
w1
<}
&
-
N
it
)
Fﬂ
Y
N
H
&
Q.
Rery
S

(3.17e)
(3.17%)

3
Here é%é has been set to zero9 and charge symmetry has been

used: - ol

i -
Py =2 2D

Lw=¢ “Tiwe

2
9

Expressions for FZ(E) are not given since as we have already
seen for electroproduction: FZ(E) = 2£Fl(£). The quark
density distributions u, d, s, etc. are non-zero only for

0<€<.

A. Callan-Gross Relation:lO

As already remarked F, (&) = 2£Fl(€) for ep, en, vp, or

2
vn scattering. This is a consequence of the spin structure
of a spin-1/2 current. Had quarkskspin—O,Fl(E) = 0 would
have been obtained. As discussed in lecture 2, experiments
support the spin-1/2 assignment although the evidence is not

at all conclusive.ll’12

B. Adler-Sum Rule:13
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This is the simplest but least precise derivation of
Adler's Sum Rule: From Egs. (3.17¢c) and £3.174):
1

%“ |
i

kY v % . - 3
d¢ 17 "Ry - Pe = | o5 fulte) -dig) +d (6)-mlg)]
| i

/
o] o
=1

because the integral just measures twice the proton’'s third

. .

(3.18)

component of isospin. Note we have had to use the fact that

all partons have X between zero and one.

C. Gross-Llewellyn Smith Sum Rule:14

From (3.17e) and (3.17f):

! {
r VP: - \ { \ AR \
gé%%ﬁ; 5+ £ = -2 ) 38 [wig)eale) o f)-d1e

i
3

o W
Oy
e a

= -, BIP)+2S(P) = -6
(3.19)

where B(P) and S(P) are the baryon number and strangeness of

the proton.

D. "Duality" Sum Rule:15

From Eg. (3.17a) and (3.17b):
|
: {

1 ! enie) A
(a2 [FP0-Ferte] = 5[

o

AL
f)-"d ii}_‘,

[ acamann
&
N
v
$
-
o
\
o

Now if the only u and d quarks in the proton and neutron reside

in some isospin symmetric "sea" of qq pairs denoted by c(x)

then:
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u (&)
a(g)
w(g) = d(&) = c(x)

i

u () + c(x)

it

do(E) + ¢ (x)

The integral is just proportional to the proton's

o (3.20)

E. Nachtmann relation:16

From Eg. (3.17a) and (3.17b) it follows immediately that
e
E P(%)/pew = ¢

Current data show @2 % 1/3 near & = 1.

F. Llewellyn Smith relation:l7

Egs. (3.17) involve 6 independent structure functions,
but s (&) and s (%) occur only in the combination s (&) + s (&)

from which it follows:

FIPs)- B = i [FE) -F o)

(3.21)
18
G. Momentum Sum Rules:
Momentum conservation reguires AE Z E Wa ci = i
Uncharged "gluons" also contribute to this sum rule although
they do not participate in lepton scattering and their

distributions cannon be directly measured. We may separate

their contribution:

\-¢ :3 35 7§ wals) (3.22)
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where the sum now ranges only over charged constituents
and € is the fraction of the proton's momentum carried by

the gluons. From Eg. (3.22) we obtain the ineqguality
!
{ EP' N\ ~ €A -
Sodili (5 +E" 5] ¢ %4

(which follows from the observation u(&),u(£)..s(£)>0, as

required by positivity discussed in the previous lecture).

£ itself may be measured using neutrino structure functions:
{ —-
( 3 Vp+vp q v eEp+en, .1
e =1+ JE IR - TR

(3.23)

which may be evaluated from present data:19

£ = 0.4, £0.21

Gluons seem to be required, which is not unexpected since
they presumably supply the forces which bind quarks together.
Finally, let me list a series of results which may be

regarded as exercises for the impassioned reader:

(1)

[y

FRe £ ¢ 22 [Forig) B9

§

(2) In the vector gluon model, where 3 Ju+ = 2im uy.d
| o u '5

(mu md is the mass of the u-guark, and we have set

ec = 0), calculate divergence-proton "inelastic

scattering" and show20

{ ! o™ s
R 8- 23 IR = e v (3.25)

£
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This practically unobservable result shows that the bare
gquark mass (mu) is in principle observable and finite in the
parton model.

Before returning to discuss the generality of these
results, we discuss briefly application of the parton model

+ - v .
to e e annihilation.

3.5 e+e_ > -+ hadrons

The same analysis which led us to the parton model for

electroproduction leads to the following picture of e+e_

annihilation:21

\€+ e

(Fig. 4)

Briefly: the virtual photon decays into a parton-antiparton
pair which subsequently develop into hadrons without substantial

interaction. The vanishing of interaction terms such as

is in analogy with the vanishing of vertex corrections in the

parton graphs for electroproduction. Consequently:
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b O lE7€ “‘*%J(M“‘()) = EQZ glete — aZu

Q>
- 4wt 5 2
O——— /"\
3@2 ?. N o (3.26)

(for spin-1/2 partons)
a result which we will see to be very fundamental from a

coordinate space point of view.

3.6 A Hierarchy of Parton Model Results

The time has come to discuss the generality of the
various results we have derived in the parton model. Much
insight into the reliability of the parton model comes from
experience with light-cone and Bjorken-Johnson-Low techniques
and will be obvious later on.

The first class of results are scaling laws. These are
shared by all approaches in which interactions are negligible
near the light-cone. Although they are all violated in lowest
order of perturbation theory in renormalizable theories, never-
theless all technigues which predict scaling produce the same
scaling laws.*

Sum rules are far more variable. Those which depend

solely on the relation between parton distribution functions

*This is not the case for the structure functions which violate
chiral symmetry (W [g?,v]). These depend non-trivially on
the interactions whidh violate the symmetry. See Ref. 20 for
a discussion.
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and conserved quantities such as I3, S and B may be abstracted
from the algebra of current commutators near the light-cone.
Examples of these are the Adler and Gross-Llewellyn Smith

sum rules. The correct algebraic derivations of these sum
rules are quite different. The Adler sum rule depends only

on the isospin algebra of the weak currents and is valid in
all reasonable models which scale. Moreover, it is actually
the Bjorken limit of a fixed—q2 sum rule and thereby acquires
a rather different significance than the G-LS sum rule which
doesn't have a fixed—q2 analog. The G-LS sum rule is a
sensitive test of the fractional baryon number which distin-
guishes the quark model: For example, in the Sakata model the
right-hand side is -2 rather than =-6.

Sum rules which rely upon "intuition" regarding the
parton distribution of hadrons should be kept distinct from
the "algebraic" sum rules discussed above. Whether they
follow from the absence of exotic exchanges in the t-—channel22
(as does the "duality" sum rule) or from more elaborate hypo-
theses (as, for example, the "mean-square charge” sum rule of
Bjorken and Paschos)23, these results are a step removed from
those which rely solely on the algebra.

Spectrum relations may be classified similarly. All of
the ones discussed in the previous section have been shown
to follow from the algebraic properties of the currents.

(The Callan-Gross relation follows from the Dirac algebra
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rather than an internal symmetry.) The momentum sum rule
ig rather complex and will be discussed in a later lecture
more carefully.

Finally we note that the parton model predictions for

e'e = X are actually consequences only of scale invariance at short
distances. The scaling law and proportionality to ZQ; are
a

shared by all reasonable models which have Bjorken scaling.

3.7 Other Parton Processes

Since its development in the regime of electroproduction,
the parton model has been applied a wide variety of processes
augmented with various additional assumptions. A few of
these (numbers 1,2, and 4 below) will be discussed later in
John Ellis' lectures. For the sake of completeness, I list
a selection of these determined purely on the basis of personal
taste. They are listed more or less in order of increasing
numbers of additional assumptions, in all cases the model is

applied in a particular scaling limit:

Process References
1. e+e_ + h + anything 25
2. ep » eh + anything 26
3. PP -+ u+u— + anything 27
YP - u+u_ + anything 28
4, ep ~ ye + anything 29

5. Connections between form factors and

ep + e + anything 30
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Process References
6. ab »+ cd at wide angles 31
7. ab =+ ¢ + anything when PC is large 32

1

Many of the predictions of the parton model follow
from its operator structure near the light-cone and at short
distances. Nevertheless the model is more predictive than
is its short-distance and light-cone structure alone. It is
important to remember this although we have introduced the
model merely as an expedient. Ellis will discuss the distinc-

tion between partons and the light-cone in some detail later.
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4. - Singular Functions and Fourier Transforms

4,1 Introduction

Practical use of short-distance and light-cone expansions
requires facility with the Fourier transformation of various
singular functions. Derivations of the necessary formulae
are usually rather technical and too frequently non-experts
are put off by this technology. 1In this lecture we attempt
to introduce the required formulae without referring to the
Bateman manuscript or other sources of arcana. First we study
the general properties of the singular functions which are
expected to occur in operator product expansions. Second we
discuss the propagator functions of free scalar field theory in
some detail and quote an explicit expression. From this we
derive a formula for the Fourier transform (F.T.) of simple
(integer power) light-cone singularities. Lastly we extend
this, via analytic continuation, in d - the dimension of the
singularity - to the general case. Use of analytic continuation
allows us to circumvent a lot of algebra but is open to the
criticism that the F.T. may not be analytic in 4. We may be
assured of the correctness of the proceedure by its agreement
with the often quoted result of the more tedious analysis.

The casual reader may wish to skip this lecture. He must
do so at the price of accepting Egs. (4.15), (4.16), (4.17)

and (4.21) on faith.
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4.2 General Properties

The singular functions which occur in operator product
expansions are generally of the form (l/x2)d plus some boundary
conditions which tell us how to treat the singularity at x2=0.
The boundary conditions are conveniently included in the
singular expression itself by addition of a small imaginary
part (ig) to x2. For general operator products the determin-
ation of the proper ie-prescription may be a delicate matter.l
We will frequently encounter three different prescriptions:

First that appropriate to a simple product:

g~ (] 90 Pro) |3

N,

(et ™ Gramgt ~ Cllemgulie>

and third, that appropriate to a time-ordered product:

!

oy~ Lol T @) o>

(x2- e )’

The equivalence to the commutator, T—pfoduct or ordinary product
is to be understood as follows: for a free, massless, scalar
field, calculation of the matrix element on the right will

yield the singular function of the left with'd = 1. For integer

values of d the second singular function reduces to either*
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th)(xz)e(xo) or (x2)Me(x2?) e(x,) according to whether d is
positive or negative. The explicit formulae are derived

below (see Eg's. (4.19) and (4.20)).

4.3 Free Field Propagator Functions

The Feynman propagator for a free scalar field is familiar
in momentum space:
! ~4
MY = (e > aie)
Atk = (R —mT +1€
F“k, \ 7 (4.1)
The ic-prescription is determined by the boundary conditions,
in this case that AF propagate particles forward and anti-
particles backward in time. The coordinate space propagator

is defined as follows:

13 - —'4 . ";' ! -1
A m) B () )d ke L -+ Lé)
(4.2)
! 13 T, o -vlex k%
= =L 1ldx3h {_ééyo}e +@§“Xﬂ}€ :\
JIC N (4.3)
where w, = (k2+ mz)l/z. AF(x,mZ) is the usual two point
function:

L M

Aelxwt) = = I T(9m) o) (4.4)

w5 (™) (1) = aP/ats (t) and is defined by [Tdt & ™ (£)£ (¢)

= (—l)nf(n)(o) for a suitable test function f(t). Also

e (x)= 1 for x>0
“{-1 for x<0°
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The equivalence of Eg's. (4.2) and (4.4) may be verified by

substituting the plane-wave decomposition of ¢ (x) and using
2,3

the canonical commutation relations.

Often we will require the free field commutator function:

A w) =1 ol [, grellfe>

(4.5)
=~ 2¢4,) Lm 2 Aplx,m)
e {(4.6)
§ t L ‘X I Y, ! h
= . 3. d4k‘ € égsalvmziéilieo}
§2ﬁ> v (4.7)

#11 of which may be verified by taking the imaginary parts
of Eg's. (4.2), (4.3) and (4.4).

Other propagator functions appropriate to retarded or
advanced propagation, free field anticommutators and the
like are defined by suitable iec-prescriptions and may be
found in appendices to any reputable field theory text.2'3
Generally the T-product, simple product and commutator suf-

fice for our purposes. For future reference note that the

singular function of Eg. (4.7) may be rewritten as follows:

. 4
2 2 ! (2 ? -~i—~w»~ e o “l
_ ¢ - ; . - i
i 5 (k M } (fo) cQ,/ [~ k?‘.q.m?,;_ L€ %?o — k,z-s—‘m.?'-» LE gﬁo_j
(4.8)

We enumerate some properties of A_ (x,m?) and Alx,m?):
+
I. A(x,m?) vanishes for x? < 0. This is required

by locality (see Eg. (4.5)): ¢(x) should commute
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with itself at spacelike separation. We shall not

verify this explicitly.+

II. A(x,m?) = -A(-x,m?), directly from Eg. (4.6) or (4.7).
2 -
A (x,m )|XU=0 = 0.
III. A(x,m?) = A+(x,m2) + A (x,m?), and AF(x,mz) =
6(x,) AV (x,m?) = 8(-x,)07 (x,m?)
where

i, 3 ' 4 ka Ay
Atn®) = % s, 1% e Glak ) § 6w

’ L1
=[5 ()]

(4.9)

To learn more we must construct an explicit representation
in terms of familiar functions. It is sufficient to consider
* . 2 .
only A” (x,m?). PFirst” perform the energy and angular integrals

of Eq. (4.9):

dyre
(4.10)
with
oQ v A}
AR b loeX. 4 e )
Prot = 1 2 Sﬁ% gi ( eho /
VoQw ) We
e (4.11)
-I»

From property II and Lorentz invariance it is not hard to

see A(x,m?) = 0 for all x? <O0.
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where k = |k| and Wy = (k2 + m2)1/2. Already from Eqg's. (4.10)
and (4.11) we see that A+(x,m2) is singular when x =r: the
derivative (9/9r) of the integral in Eg. (4.11) diverges at
its limits.

For a complete evaluation of the integral of Eg. (4.11)
we refer to Bogoliwbov and Shirkov.2 Before quoting their
result we can at least motivate the appearance of Bessel

functions. Define

Xk = m sinh 8
w, = m cosh 0O
-2
X, = Yx*cosh 8,
r = v/x? sinh 9,

and consider (eg.) X < r. Substitution into Eqg. (4.11) yields:

o0
Cix) = l:r a6 exp {_iwﬁ?’- ces!:\,{@.,_go}}

5O

which is a familiar representation of a Bessel function4:
' A\ . ! .
’ oo} W 1 ) oy
-g—e\}(} = -3 J, imVxz) - ) Y, PM-‘JX'Z)

Other regions of coordinate space are treated analagously, and
one finds discontinuities across the light cone, X, = ir. When
the required r-differentiation is performed the discontinuities
become light-cone singularities.

Without further ado we quote the result of this calculation2
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Note that the most singular term is independent of mass: the
leading light-cone or short-distance singularity of free field
theory is just what would be expected only the basis of scale

invariance.

4.4 Integer Power Singularities

From the definition (Eg. (4.7)) and the explicit form
(Eq. (4.12)) of A(x,m?) we may recover the Fourier transform
of all singularities of the form:

{n}
8 E (V)

or

COMCIOIAN
As mentioned earlier these are the singularities appropriate
to commutator functions. The treatment of other ie-prescrip-
tions is entirely analagous.

From Eg. (4.6) note that

e (n)
34k e SR ¢ (k)

(4.13)
We are finished as soon as we can learn how to differentiate
Eq. (4.12) with respect to mass. For this we employ the

. . . . 4
Taylor expansion to be found in any treatice on Bessel functions:

Paane ¥
-

‘:T; E T
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It is then a matter of algebra to verify:

o™t
d )ﬂ ! I \“— \}: i: ¢ , )
= 23| = [V s €%, OixY)
noA (é‘mf' A(X'%!iw\gco VA o (n-t)t °
I P f' . z 4 A
n=0  Alwm/ = 2 E(x.) S(x)
w=o i (4.14)
Comparing Eg's. (4.13) and (4.14) we conclude:
4 ."k.x 2\ A 2 t 2 I! !
dtxe  Shielt,) = darti Sk elks) 15

. A=A -1
Ll X 1129 RN (Q, 2. 2‘«,“ ’ TR
gd“fxe & (VEMo) = Ty T LK) Cldlelk) (
[

4.16)

and by inversion:

~,

2y e lie, )

!

{ k. , N an ‘ V)
} a% c’:’,1 xé.}«'ﬁfs“@i’xl}é(x,,} = & n“%mé

(4.17)

Aside from the numerical factors these results could have

been anticipated on the basis of dimensional analysis (to
guess the powers), symmetry (to guess the e(k,)) and locality
(to guess the 6(k?)). These three equations are the funda-
mental tools for light-cone and short-distance calculations.
It is instructive and useful to generalize them to the case of

non-integer singularities.
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4.5 General Power Singularities

We wish to find the Fourier transforms of generalized

functions of the form:

(4.18)
Generalization to time ordered, retarded or other products is
a matter of i-epsilonics and is left to the reader.

Qur strategy is to relate Ed(x) to §~functions or
9-functions for integer d, rewrite Egs. (4.16) and (4.17) in
terms of Ed(x) and then analytically continue the result to
non-integer d. We will not justify this analytic continuation
but note that it agrees with the result of direct and more
tedious integration.

Consider first Eg. (4.8), replace the dummy variable k

by x, differentiate n-times with respect to m2 and set m2=0:

. -1}
n oy -Om i

Li=X2+LEX,) — (—%*-Lexo }i T Tt O (x¥)€lXa)

N .

(4.19)

Second, consider Eq. (4.18) for positive d:

5 - \«ﬁ ¢ ‘{ ’ 2 . o N
~X*+1e¥,) = expid \O% Y LE X,

Define the logarithm with its branch cut running from 0 to

- along the negative real axis, so
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' . k ‘ . -
“e(}%_ E\*}{zité%o} = ‘;c:zc{L %2 X€o
: N
= 5% I leiTel,) w0
Then
d
2 . )
Eq(x) = (%2 24 smewd (e,
For positive integer d, Ed(x) = 0 as expected. For any d>0

we obtain:

d ! — \
Lo WAV for — - o
i.XQJ éf(>‘\2§€i\fla) - Q.’"g’. Td Lg { %/

LSl

(4.20)

Let us now substitute Eq's. (4.19) and (4.20) into Eqg.

(4.16) (and also use (n-1)! = T'(n) to facilitate the contin-
uation) :
<
) KXo, 2 - ~i-| I .2 . it
{d"‘xfi Lexteiews)  =[x%iexo) |
Q"QV\. . -
= ;L Trsl, T2 . | -t 2. Y !1
ib /,A [ s k !
"R AHLER, ] - =R —LERs] |

T )T (nd) Sl

Finally use the identity:

TR T 4-n) = 17T cgc Tt
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Now we forget that d is an integer and let Eq. (4.21) define
the F.T. of Eq for any d. The assumption is that the F.T. of
Eq is an analytic function, which I will not attempt to prove
here. Eq. (4.21) agrees with the result of the conventional

calculation qguoted, for example, by Frishman.5



-69-

REFERENCES

See, for example, J. Ellis and Y. Frishman, Phys. Rev.
Letters 31, 135 (1973).

N. N. Bogoliubov and D. V. Shirkov, Introduction to the

Theory of Quantized Fields, (Interscience, New York, 1959).

See, for example, J. D. Bjorken and S. D. Drell, Relativistic

Quantum Fields, (McGraw-Hill, New York, 1964).

See, for example, M. Abramowitz and I. Stegun, Handbook of

Mathematical Functions (National Bureau of Standards,

Washington, 1964).

Y. Frishman, Annals of Physics 66, 373 (1971).



-70-

5 - OPERATOR PRODUCT EXPANSIONS

5.1 - Introduction

We saw in the first lecture how various processes probe
the short distance and light-cone singularity structure of
hadrons. Also we have seen in the parton model how model field
theories micht be used in describing the data. In this lecture
we extend the formal discussion of the previous lecture to
discuss the general structure in field theories of operator
products at short distances and near the light cone, which is
the basis for the rest of the lectures.

It turns out that in simple model field theoriesl operator
products at short distances (or near the light conez) can be
expanded as a series of other operators multiplied by

successively less singular c-number functions

ARG ~ & GO (5.1)
XF%O 1

/‘ o~ ’ / ) (5.2)
ARG By o 2 C () O (o)
’ K O v
Some significant features of Egs. (5.1) and (5.2) include:
(2) The singularities are c-numbers, not operators. It

should be emphasized that this property has not been checked
experimentally. It would require for example seeing whether
the Bjorken scaling behaviour of virtual Compton scattering

away from the forward direction was the same as that of the
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imaginary part in the forward direction, as measured in deep
inelastic scattering.
(b) The operators appearing in the short distance
expansion (5.1) are local and generally include familiar
objects measurable directly, such as currents. The expansions
therefore give connections between two current processes
(in certain limits) with one current processes, which are
the bases for deriving sum rules in deep inelastic scattering.
(c) The bilocal operators Oi(xlo) appearing in the light -

cone expansion (5.2) are analytic as X, + o and the first

terms in their expansion are given by the leading terms in
the short distance expansion (5.1).

In this lecture we will seek to make plausible the
postulation of such operator prodﬁction expansions for
hadrons, discussing how they occur in the canonical mani-
pulations of free and interacting field theories, and how one
might try to investigate their existence in renormalizable
field theories. We discuss the connections between short
distance and light-cone expansions. Also we examine the form
expected for the short distance expansions of pairs of
hadronic currents, and finish by relating the c-number term
in the product of two electromagnetic currents to the asym-

. . - 4+
ptotic cross section o(e e » y - hadrons).

5.2 - OPERATOR PRODUCT EXPANSIONS IN FREE-FIELD THEORY

As a first example of how operator product expansions
like (5.1) and (5.2) occur in field theoryl, we consider the
simplest case of a free scalar field. We are interested in

composite operators made out of products of the constituent



-72-

fields: objects like 8(x) = ¢(x) ¢{x). Actually, as written
©(x) 1is not a sensible definition because it has a non-zero
(and in fact infinite) vacuum expectation value. This is
because the negative frequency parts of ¢(x) contain creation
operators a+(k) which do not annihilate the vacuum. To

remove this problem we must redefine 0(x) (and indeed all other
composite field operators) so that the positive frequency

parts of ¢ (x)

vﬁbx
f) _ P alpye
O (= fzm j A

always stand to the right of the negative frequency parts.

Thus we redefine

!

4 & &) v Y,
O60 = :hogho: = G lagT + 28%0p ) + 5%6a¢ )

This procedure is called normal ordering. Consider now the

product
! N £y N ﬁ’,ﬁf . H (',‘}"p‘ " £, .
Ohooi = PP PP

Clearly the complete four field product is not normal ordered,
and so will become infinite when xVv0O. To see what the
singularity is, we rewrite 0(x)©(0), using the canonical
commutation relations of free field theoxry to interchange

positive and negative frequency parts of ¢ (x) and ¢(0):
5’)/ & A (44, o Ola 7S la S A £ !
@ o d\ 24 k,"f_,q‘ M_,iq*m 7 = 7 LA] X M
\; CF{) { ‘i} {;27‘()3 L\} R &=L / 5 ;

in the notation of lecture 4. We get:

i

F P, % = - s P
O o = —2[0706w5) - 4087w dhagio:

. i e ™ 4 N el £ (5- 3)
v PO BO)E(0)
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The normal ordered products on the right-hand side of

(5.3) are non-singular as xu+0: all the singularities have

been absorbed into the quantities A (x,M?) which

i 7

~ :ﬁ. as K30
4-{1-7. ;(2-'&67(9
We can expand :¢(x)¢(0): about the limit x = 0:

2

: 635% el

: ‘ 95{'0795{:;) it Hop ﬂa'“éf’a) BoYy + -

i

i

~

so that introducing
¢ ™ A “
J.00 = 2 F) #6o

we have in the limit xu+0 an expansion:

O 06) B0 =w

! i (o) ;QMTWM&Q
P— [P, . e ——————————————— 2t —— ..3(.. oo ®
4 [t -iexg)t T (- iexo) T Gt -iexe) (5.4)

Note that the expansions (5.3) and (5.4) are of the form
promised in the introduction: they contain c-number singular
functions multiplying operators. The short distance expansion
(5.4) contains local operators, and the bilocal operator
:¢(x) ¢ (0): appearing in (5.3) (the prototype of a light-cone
expansion) is analytic as xu+0, with the first terms in its

expansion given by the leading terms in the short distance

expansion.
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Two comments are in order. The first is that expansions
analogous to (5.3) and (5.4) will also hold for other current
products, such as time-ordered products and commutators.

They are readily obtained by just taking the relevant combina-
tions of expansions of simple products. The singular functions
then get changed to 1/x?-ie for time ordered products, and
e(xo)é(xz) for commutators. The second comment is that
operator product expansions similar to (5.3) and (5.4) can
easily be derived in free fermion field theories. A—(X:Mz) is

now replaced by the fermion singular function

S lam) = = [1FFem) AT 0m)

and there are complications of spinology, but the idea is

the same.
Consider the physically interesting case of two SU3
vector currents made up of fundamental free fermion fields

VY (x) belonging to a triplet representation3(quarks!)
- o ’
T = AR LS
% ’ i 2!

Manipulations similar to those carried out earlier in the
section give an expansion resembling (5.3). The analogue

of the :¢(x)¢(0): term in (5.3) has pieces proportional to
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For the moment we will only be interested in this object at

short distances, where it is proportional to

and

this can be re-expressed in terms of the vector current and

the axial current
OG0 = L%, N
¢ = P & Yoy

Adding all the pieces together one finishes up with

I T~ %o (G ~2%%)
X?0 AT (x*-¢ exo)4

+ dm G/v\wx{s x"- HE: (O)
PA S (zz,gexgl

+ Tale x® (a/t«e Ve erg ﬂﬁur ” 3Mv3€o->j—:zo)
2t (27 —C€xne)*

l T (5.6)
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where the dots indicate less singular terms. The short distance
expansion for the product of two axial currents is exactly the
same as for the product of vector currents. The expansion for

the product of an axial current with a vector current has the

form
& r
-S/A (0 ply (0) 92:90 A ate e/wx,s >3 (o)
am*

(> -iexe)”

-+ gm x¢ e e %VP?SW" ) 3”“’ %f":} HZLO)
21> (r* —ex)*

+ L . (5-7)

For time ordered products we just replace (xz—iexo) in
(5.6) and (5.7) by (x?-ie).
We could go on to consider more complicated products of

operators. For example the short distance singularities of

the triple product
T (3,607, (0 Beled)

could be studied. In a subsequent lecture we will be concerned
with the c-number part in an expansion of this product, as it

is connected with anomalies in current algebra low energy
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theorems. 1In a free fermion field theory it will be proportional

to

T [ %, Se (x,ml)vys,,(ﬁ,mz) ¥, s SF('K":),MZ)]

Tr ?§#b<x 7, ¥Y ¥ T (x-v)
v

[ (i) (2 -ce) (o™ e

X

at short distances.

5.3 - OPERATOR PRODUCT EXPANSIONS FOR TWO CURRENTS

In the previous section we discussed the form taken
by the operator product expansions of pairs of currents in
the canonical quark model. We should ask ourselves what
happens in other models and how to parametrize the operator
product expansion (5.6), (5.7) so as to accommodate more
general possibilities.

First we examine what happens in theories with more

triplets of quarks4, where the current takes the form
= :-' XK >\ .
I, 69 § Fe OV faife 0

and the sum over c¢ indicates a sum over a new internal index

"colour". The operator parts of the expansion will be
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unaffected: replacing eq.(5.5), where one pair of fermions

has been reduced, will be something proportional to
- a - .
PPN AT RS LU TS) R CrRey
c ¢

yielding
) ~ Q.-
-t o€ £ . O LT, A A %c (0):
212 (53~ tep)* <

at short distances, which gives the same currents in the

same combinations as in the single triplet model. However,
when the second pair of fermions is reduced in to get the
c-number part, there will be a sum over the colour index,

and the c-number will be multiplied by the number of colours.*¥
Since the c-number is SU3 symmetric, if we assume the usual
SU3 assignment for the electromagnetic current, then the
coefficient of the c-number term in (5.6) is proportional to
the sum of the squares of the charges of the fundamental spin

1/2 fields

v

_S; (% ’Sf (o) ~ Sog Bt (3,2~ 26 '

2y, >0 2T (2 - Lexe)?

where

i

S, ER- el

4
u) 2

5

(SAA is defined analogously, and in general equals Sy7- )

*The same will be true of the c-number parts of other expansions.
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In a theory made up from fundamental spin zero fields,
both the first and second terms in (5.6) are altered: the
first term now has a coefficient

3 Q"

<

and the second term vanishes (why?). Accordingly, we allow
the axial current term in (5.6) to have an arbitrary coefficient
KJJ in general, and define KAA and KJA analogously. (In fact

there are arguments why the K's should be equal.s)

The coefficient of the term

:&ﬂm x,. T, (9)

in (5.6) 1s determined by current algebra. It contributes to

135 (x) ,JS(O)] a term

'g‘m X, -SC(O) _-m—»«m*'- = ‘

¢, kS
T (x -LGXO) ()c +i€%0)
The square bracket is Jjust* -2ﬂie(x0)6'(x2) which at Xy =z 0
2 s
gives Zg—i 63(§), and hence the current algebra equal time
0
commutator. The

*Recall from Lecture 4 that

(- exo)—‘ ~ (> +Le>co)" = 2T €06) B(**)

and that fm‘ n=12,-..

_v\w -Vl-\

(* —iexs) - (x"ﬂex.o) = (:_'.}.%Er} € (o) Sm(x”}
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S % (369w =9, 360) T2 00)

terms do not concern us, and we will not discuss them further.
Notice that the second term in (5.6) appears in the

commutator of two space components of the currents*:

[ She0, 3@~ 7S Sabe Cyho (RN c 0 16
w

(where the letters i,j,k etc. are 3-space indices)

Near XO 0

. o R 3
~ UKz d'alrc %ho (Xhﬁcio) 'X°9C (ﬂ) C%(;:)

so that the space-space commutator contains a term

(37, T@] = € Kpdy, Ao )

(5.8)

*See footnote on preceding page
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For reference we also quote the c-number part of the

commutator of two SU3 currents:

[-SC;A ('K«)) _S‘:: (O)K X’V - S’S":y ga,b- %py%?'.—z J(#X,») E(Xo) gm(xz>
#%O é;n3

so that

[‘S’A . (x)’-SVeM(O)] xNo ’%7%3 (3,272, € () 8"
rﬁ

where

R = %SZS'S = ng.‘. *?1-"2@:

5.4 - OPERATOR PRODUCT EXPANSIONS IN THEORIES WITH INTERACTIONS

In this section we briefly discuss what happens to
operator product expansions when interactions are switched on.
One way of studying this question is to use the canonical
commutation relations of a theory with interactions to study
its short distance and light-cone singularities.

Consider for example a quark theory with the vector

gluon interaction

L. 6o

W

g 0O, - (0) B (50)
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In their studies of this model Gross and Treiman6 found that

in order to extract the leading singularities it was sufficient

to treat the gluon as an external c-number field. (We refer
to their paper6 for details.) They then showed that the only
effect of a c-number gluon field on the singular functions

on the light cone was to multiply them by a phase. For x2 ~

SCw) - QJOP(- ‘»3&%&"{’5}) S0 me)

where the integral is along a straight light-1like path from
0 to x.

The short distance expansions are therefore unaffected
because they come from the tip of the light cone where the
phase is zero. Away from short distances along the light
cone, the phase does not affect the Lorentz or internal
symmetry structure of the bilocal operator, but it does
means that the bilocal operator is not simply expressible
in terms of quark fields alone.

Another method of studying operator product expansions
in an interacting field theory is to use perturbation theory.7
It has been shown that in general operator product expansions
of the type (5.1) or (5.2) remain valid, but that their form
changes from that in free field theory. Let us sketch what
happens. Consider an object T(J(x)J(0)) where J is a product

of two constituent fields, which we take for convenience to
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be scalar J(x) = :¢{(x)¢(0):. Then the matrix element of
T(J(x)J(0)) between any pair of hadronic states H and H'

can be written as a sum of graphs with interactions at the
points Yy ¥y, and particles propagating between the
interactions, the points x and 0, and the external particles,
each integrated over VAR A This sum of graphs can be
divided into two classes, in one of which a particle propa-
gates freely between X and 0, and in the other not.

Figuratively speaking:

TCo o) T(x) J(o)

Y ITEOTN IS = y +

where the shaded areas indicate interaction regions. The

first class of diagrams looks like
D (06) Ly | T(B60 BlD) IW'>

and so gives to the operator product expansion a term like

that in the free field case except that <H|T(¢(x)¢(0))|H'>

may, and in general does, become divergent8 as x2?>0. What
about diagrams in the second class? It is apparent that

before the integrations over the interactions Yi-+-¥Yy the
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diagrams will not have any 1/x? singularities. However, the
integrations over y, ...y, can in general yield 1/x? singu-
larities, or even stronger ones. If all the integrations
were convergent, there would be no problem, and the second
class of diagrams would not be singular on the light cone;
this is what happens in super-renormalizable field theories,
like ¢°. 1In renormalizable field theories, including for
example ¢* and the quark-vector gluon theory, the integrals
are in general divergent and must be renormalized. The
singularities at short distances and near the light cone
are then modified by logarithmic factors in each order of
perturbation theory. 1If all orders of perturbation theory
could be summed, these logarithms might well exponentiate

to powers. 1In a vector gluon theory problems come from

graphs looking like

J60) Jto)

H H'
where the % 's are vector gluons. The canonical manipulations

discussed earlier, which just modified the light-cone singu-

larity by a phase, are completely false in perturbation

theory.
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Happily, the data on deep inelastic scattering are
consistent with canonical light-cone singularities, and give
no evidence for logarithms, though no one really understands
how this is possible. In all that follows we will assume that
the perturbation theory calculations are inapplicable, and
that operator product expansions for hadronic currents in
fact have a canonical structure*. This and time are the
reasons we have not discussed expansions in interacting theories

in more detail.

5.5 -~ APPLICATION TO e e -y->HADRONS

In Section 5.3 we saw how in canonical manipulations of
field theories, the c~number part of the commutator of two

electromagnetic currents at short distances is

[SM(’Q)SV {o}] ~ %1%3 (%M,XZ—ZX,AX,,)Q(XG‘)S”’(xz).+‘..

X0 (5.8)

where R is a model-dependent parameter (2/3 for fractionally

*Recently9 it has been discovered that non-Abelian gauge theories
have canonical short distance singularities, while violating

Bjorken scaling in electroproduction by inverse powers of

logarithms.10
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charged uncoloured quarks, 2 for coloured quarks, etc.).

We have

o = (e o'y o
e e 5¥> horons) = %zédxe 20| (3,00, 3"} 15>

so that the short distance contribution is

. T ‘0 "
KR (1, (T 2 e )
MG

Q

_" 2. f‘ “' . h
_ -U6R« 22 b e T emn s " (x?)
amrEns °t Tt

Q

Now we use an identity given in Lecture 4:

(dte 2 T ety 317060

2-2

n ne\
= Z_ TT) 96 E(t0)

L e

-t

(5.9)

which in the case n=3 implies

X { e 3 2 .
(e a5 - LT o) )
2

(5.10)
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2

For g* = « with g 0, this gives

_ [ FlERIN/ITEND B (g
< U gyt >( 28 > TR
. aTRCL
3 q* (5.11)

It is apparent from (5.9) and (5.10) that if we considered
a weaker short distance singularity than (5.8) then its contri-
bution to the cross section would fall off more rapidly than

1/92.

Hence, as asserted earlier, the asymptotic behaviour of the
cross section is determined by the leading short distance
singularity. The parton model resultll for the cross section

is identical with (5.10) because the model diagram

has a canonical singularity of the form (5.8). At large g2,
the cross section for e_e+ >y > u—u+ is also determined by
a leading short distance singularity, which is canonical when
we work to leading order in a. It is of the form (5.8) with

R=1. Hence the expectation is that
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Cle et ¥ =5 hodmws)
= R

cleersr> ) (5.12)

as g? » =,

As was emphasized in the second lecture, there is as
vet no overwhelming experimental evidence in favour of this
behaviour. We regard it as a fundamental test of the ideas
of broken scale invariance, perhaps even more basic than
Bjorken scaling in electroproduction. In all field theory
models studied, (5.12) holds if Bjorken scaling works. Also
renormalizable gauge theories9 have the property (5.12), but

10

Bjorken scaling fails by inverse powers of logarithms™ . We

will keep our fingers crossed.
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6. Light-Cone Expansions and the Quark Light-Cone Algebra

6.1 Introduction

We have already argued that the light cone dominates the
Bjorken limit of inelastic lepton scattering. Also we have
shown that in free field theory and in interacting theories
treated canonically (but not in lowest order perturbation
theory) operator products have a rather simple expansion about
the light cone. Applied to inelastic lepton scattering these
ideas have an immediate, striking consequence: the experi-
mentally observed (Bjorken) scaling requires that the product
of electromagnetic currents behave like a product of free
currents near the light cone. Here we will show how this comes
about, explore its consequences regarding bilocal operators,
discuss light-cone current algebra and relate all this to the

parton model.

6.2 Measuring Light-Cone Singularities and Bilocal Operators

We suppose that in the vicinity of the light cone the
commutator of two currents may be expressed as a sum of c-number
functions singular on the light cone multiplying bilocal oper-

ators, regular at (x—y)2 = O.l

2 1]
Ty, Ty = C )
LT, Ty (7 (x 41 O " (xy)

(6.1)

For simplicity we will consider scalar currents until further
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notice. The sum on [a] covers Lorentz indices (if any), internal
symmetry labels and strength of singularity. From Eg. (6.1) we

construct the current correlation function

Fxp) = PHTW, TEIR> = Z Gy ) PIO Fixio) ey

(6.2)

= 7, Egy 6 F P(x2p)

(gl (6.3)

By assumption F(0,x*p) is finite*.
We can now show a) that the scaling laws determine the
light-cone singularity of E[B] and b) that scaling structure

(8]

functions measure the Fourier transform of F (0,x*p).
Although this may be done for an arbitrary singularity using
the Fourier transform relation derived at the end of Lecture 4,
we prefer to use the more physical example of singularities
which are integer powers of x2. Locality and crossing require

the following of Eg. (6.3):

1. Q}(Xz,x°p) = 0 for x2 <0 Locality

2. ﬁ}(xz,x'p) = — 3%x ,—X°*p) Crossing

* gince we will only consider a single matrix element of this
expansion, it is impossible to conclude that the singularity
is actually a c-number. In the models we discuss this will
be the case.
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Suppose now the most singular term in Eg. (6.3) were
4 2 \
o O(EN-P) Flxp) [Fv = FEN)

The contribution of such a term to the structure function

determined by :}(Xz,x'p),

N\

. L \
{V(Gf, ELJS qk?x,x.p)/}

V (QZ)»)) = ;;j; ;J‘X qulyéfxz)ééx.p) F(X.P)
! L2

(6.4)
Substituting for F(x+p) its Fourier transform:
_\ (w LA X P
Flop) = de € ()
(6.5)
we obtain
‘\/1 (&%) = ) dow { (o A{D(PJ,Q()Q)
, ®©
:jda L) S (14 Qo9 = Q) € (M4 y)
0o
(6.6)

having used the definition of the free causal propagator and
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the fact that A(x,0) = (27)

Vv
oy = ——, F V2+Qz
M T2

which in the Bjorken limit reduce to:

~ o Y

and yield:

Lo (=22 W)
Lim Y, (Q5v) = 52‘?)(%%)“?0&»4 )

Bl
(6.7)

As discussed in Lecture 2, V(Qz,v) should vanish bhelow
threshold, i.e. for |2v|<0Q® Eqg. (6.7) fulfills this require-
ment if f(a) = 0 for |a| > 1. Whatever dynamics generates
the dominant light cone singularity must also respect this
spectral conditionz, and we therefore assume f(a) = 0 for
oo > 1 henceforth. Eg. (6.7) reduces to %U £ (g).

The result of this brief calculation could have been

guessed on dimensional grounds alone: V (Qz,v) has dimension

1
[mass]—2 (see Eg. (6.4)) which we expect to be supplied by an
inverse factor of v or Q2 in the Bjorken limit.

Suppose, now, that we consider a term in :}(xz,x~p) with

one power weaker a light-cone singularity:
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73?? M2 @02 e (x.p) G x.p)

2 . . .
where the constant, M~ (dimension [mass]z), is necessary to
preserve the dimension of T}(xz,x-p). This contributes to

V(Qz,v) a term of the form:
2 0. X i
V(&) = iy jo”xeLq &ix2)(xp) & %p)

(6.8)
This may be evaluated by inserting the Fourier transform of

G(x+p) and using the observation from an earlier lecture that

d A = --5‘—5 BOGJE (Ko)
w

dwm?* 2_
YV'\,"‘D (6.9)
From which we obtain
Lo V(G2 v) = ME o7 ()
MB- 2{. ) “'“\'3—2% 5?]
d
(6.10)

where g'(g) is the derivative of the Fourier transform of G(x-p)
[Eq. (6.10) could also have been guessed from dimensional
analysis].

The relation, apparent in Egs. (6.7) and (6.10) between
the light-cone singularity of a term in :}(xz,x.p) and the power of
Vv or q2 in the ensuing scaling law is completely general.
[The reader is invited to derive the result for an arbitrary

singularity from the technology of Lecture 4.1] Moreover,
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the scaling structure function measures, as promised, the Fourier
transform of the matrix element of the bilocal operator along
the light cone.

What is remarkable about the SLAC-MIT experiments is that
scaling for W, and VW, is what would be expected if the electro-

1 2

magnetic currents were constructed from free fields: i.e., the

singular functions obtained from commuting two currents construc-
ted of free fields determine that Wl and vW2 scale, provided

one assumes the bilocal operators tc be smooth near the light-
cone. Jackiw, van Royen and West3 constructed an explicit form
for the leading light-cone singularity of the electromagnetic

current correlation function consistant with the scaling of Wl

and szz

KT ), T, ()] 1P> = %% (%}WD ~8,\89) [6(x2)é,(s<.p)

|
® g 645/ CoS §X-p F&§;+... + Q"[ Sppva

&7, & (S0t p) f 4 gi"f;; *PE(g)+]

where omitted terms are less singular on the light-cone.*

(6.11)

S is defined as follows:
upvo

*Actually Eg. (6.11) differs from Ref. 3 in the second term. The
reason we have chosen the form shown will become clear when the
quark model light-cone algebra is explored. The second term of
Eq. (6.11) is current conserving only to leading order on the
light-cone (which is all that need concern us here) in contrast
to Ref. 3.
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8‘;«.(3\)6‘ = '}1( Tr {_KPX{J‘K\, Kc-g

= eeQve +QpoQup =~ G p Qe

- 1
and FL(E) = Fl(g) “53 Fz(g)-

(6.12)

The first integral in Eg. (6.11) would appear linearly
divergent if FL(E) has the Regge behavior expected of it (see
Lecture 2). The understanding and removal of this sort of
divergence will be discussed at length later. First we intro-

duce the Fritzsch-Gell-Mann light-cone algebra.

6.3 The Quark Model Light-Cone Algebra

The observation that Bjorken scaling is equivalent to
free-field light-cone singularities suggests that symmetry
relations known to be violated by interactions might neverthe-
less be valid to leading order on the light cone. The prime
candidate for such a symmetry is Gell-Mann's SU(3) and indeed,
Fritzsch and Gell-Mann have proposed4 that the leading light-
cone structure of current commutators be abstracted from the
free quark model. As something of a bonus, they found that
the bilocal operators which are generated by commuting two
currents form an algebra among themselves. Here we deveiop the
quark model light-cone algebra and apply it to the derivation
of sum rules.

The strategy is to suppose that the electromagnetic

and weak currents may be constructed from currents of the form:
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* S\ i - Y ’
o) = 5 \% (0 A X ‘7L(X>
J# 2 I

J},:: (X} = {14’ }\a\( }55\1’
(6.13)

where ¥ (x) is a free, three component quark spinor field and

Aa are the usual U(3) matrices* normalized to Tr A; = 2(a=0...

Using the free field anti-commutator

[Wi0F0} =Cw = [prm) Abyws) = -

DS
0}

SO)elo) + ...

where only the leading singularity is of interest, we find:+

: ‘ fe, o 20 N c
g.jpa()f),\‘wk(f)}?% - —g;ﬁ'g\f’ \é(xZ)é(xo}}{gﬁw. dave A (¥i0)
' : 507,

+ ;Lg'u'ﬂ\)d‘ ‘?abc, g:(ﬂl)\} - LéH:y*a dabc gc i)ﬂo)

S
+ Eppvo Tabe Ag (110) }

(6.14)
where
Ase(x10) = 5 [T00¥ M bio) =T lo) Yode Hu))
See (Xl0) = = [$6) Yo he Hioy+F0) Xohe Voo
A (o) = 5 [0 Me) = Lo A ]
o (¥10) = 5 [T X AHo) +HO o shobiw] g 1)
and

‘U\a,%b} = abc, )\c,

Fy . S
‘i.)\cu)\b} = QL??OBL Me

*PThe SU(3) algebra is not closed though the U(3) algebra is.

+ \
The identity YquYv = Supvcyc ie LpVG OYS has been used.
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For completeness we note that the vector-axial vector commutator
is obtained from Eg. (6.14) by the substitutions:

(x]o) <> Aic (x|o)

S O(x]o) > Sig (x|o)

ACU

and that the axial-axial commutator is identical to the vector-
vector.

Note that the bilocal operators in these expansions are
the bilocal generalizations of the local currents thémselves.
Fritzsch and Gell-Mann4 showed that the bilocals generate a

closed algebra. For example:

[:XM t@ \\\;3, }"C ’LB &8&(% UL)Xéld (:Lo\)]

. ' . ) - SE \
® {QHNU (dagcfi{-abc} Jg(Xi\i‘} = Weupvs (da\%H abc\;%\gc (XN‘}}
+0 18 {v-x)2 e (a-xo)]

@{_Q}LP\JO" Jabe ~ L":o,bc) \SC U.“j +'L€ch5“\do.bcf"wa C.)J(‘ (Us‘j 5
where ;}cm{’&): I AXTF (y) and j(xa%%)xx@r Yy

Testing the bilocal algebra is a difficult undertaking since

it requires a four current process in which all spatial separa-
tions may be forced to be light-like. The processes ep+e(u+u_)
+ X; e+e—+u+u— + X and e+e_+e e + X have been proposed as
candidatesS. However, the likelihood that these experiments
will be performed in the required kinematic regime is negligible
for the forseeable future. Unless we have overlooked some

application, it seems we must content ourselves with the algebra
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of local currents for the time being.

Before proceeding to the derivation of sum rules, we note
that Eq. (6.14) motivated the choice of tensor structure in
Eg. (6.11). The reader should verify for himself that Eqg. (6.14)
generates the correct scaling behavior for Fz(E) in electro-

production.

6.4 Sum Rules From the Quark Light-Cone Algebra

Here we derive several of the sum rules previously derived
from the parton model and also hopefully learn why others can-

not be derived.

1. Callan-Gross Relation

Eq. (6.14) contains no term proportional to (gﬁvﬂ—auav )
and by comparison with Eq. (6.11) necessitates FL(E) = 0 which
is the Callan-Gross relation. Note, no statement about the

detailed nature of the proton has been made.

2. Adler Sum Rule

Consider the term in wuﬁp symmetric in H >V
y JP vp _ ,g&fwy { 4 qu e e .;'s{(P SG(XQG) b
E(WM+WVI”> e }d g e U af [Six)eiv) 1L PIS, (o) {P)

+ 413—: (PIAS iXlo) +V2 A:(MMW}

(6.16)

and define *

*
The terms involving Ai will drop out of the sum rule since they

vanish at XU = 0. For expediency we drop them henceforth.



~-100-

> N vo S v, v 2
(P1Sq (xi0) Ip> = P 3@3 (X-pyx2) + ¥7G(XP) XY

(6.17)

In the Bjorken limit only f3s(x'p,0) will contribute to W,.

2
Define

S ! LY ?)9
¢ \
(X.po)=1| dx @ o
j(3 pioJ Ta( J
-1
(6.18)
the limits being set by spectral requirements. Combining Egs.

*
(6.16-6.18) and isolating the coefficient of Pqu we obtain:

P, A ,
Lo, (g9) = -L ¢ L)

or

Now refer to Eg. (6.18) and note:

°3

oy
5 é‘g F:?ig‘ﬁ = "“CS{C’)O> = -1

ag

S ( 3

£

0,0) is two since S, (0]0) = 2jg(0) whose proton matrix

3

element is

PLS IRy = AP Ty (protan) = P7

Finally the usual form of the sum rule follow from the observation

that crossing requires ng(g) = ng(-g).

*Factors of two and 7 are formidable in this calculation. Among
the pitfalls are

1) 2 from the vector-vector and axial-axial commutators

2) Jro ()= ieMM=id (g): tizsiX) = Ui (X)

3) ¢P|P'> = (27m)° 2E §° (P-P') which implies <p|j‘;m(o) |p> = 2p
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Several remarks are in order. First, the parton model derivation
is easier. Second, it is clear we have assumed nothing specific
to the proton except its isospin. Third, the derivation still
has flaws, e.g., how do we know that Fz(E)/E does not contain

a term proportional to §(§), necessary to validate the sum

rule, but unobservable in neutrino scattering, or that the

strong assumption of the existence of the bilocal operators is

really necessary? We will return to these later.

3. Bjorken's Spin Dependent Sum Rule6

5(0|O)|P> vanishes between spin

The matrix element <P|Sa(j

averaged proton states. If we do not spin average (and choose

for example a = 3):

{ps| Q35 (010) 178> = Qa,8s
(6.19)
where Ia 2 1.2 is the axial weak charge, Equation (6.19) may
be exploited to derive a sum rule analogous to Adler's Consider

*
the spin dependent terms in electron scattering:

‘ ’\ A V E ~
%(Ww-%r‘} = et %8@{ O{ J ‘fﬁgé:'?_ (9]

+ '?,6»;7—&\)0(16 Dec%ﬁ CVS G, (Ci—z;\)}

mM# (6.20)

*That is, we define W as before except that the spin of the
proton is not averaqga In that case two additional structure
functions appear, both antisymmetric in u <+ v. For an intro-
duction to spin dependent effects and a parton model derivation
of Bjorken's sum rule see Kuti and Weisskopf. 7
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From Eg. (6.14) we obtain:
11 ie Vel ¢, 21X nd \
LWy ~Wop) = 28k Adoe™ 5% S elve)
5y ! 5 { ‘}
0) +— + -
® (HE Spxi0)+4 S (i) + = S2 (1) [P,
If we take the proton neutron difference only the SB3(X|O) term
survives [XS and XO are invariant under isospin rotations]}. Fixing
our attention on the coefficient of ¢

Bjorken limit:8

o
uquq SB we obtain in the

{
|t [l -q, (6] = B,

C
where
LL ""ﬂ_i v, 2q, %)
M M2 %,,; %!ﬁz‘
This sum rule may also be derived in the parton model7’lO al-

though the treatment of spin is probably simpler in the light-

cone approach.

4, Other Sum Rules and Spectral Relations

Most of the sum rules and spectral relations discussed in
Lecture 3 may be derived in much the same manner as the Callan-
Gross relation and Adler sum rule were derived. The obvious
exception is the duality sum rule. If we imitate the derivation

of the Adler sum rule for ng - an , we find:

A

B g)= $5806)
where

s A \
PLAT (i) 19> = b7 L2 rp, 1) + X795 (p, 1)
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{ : AN
and {A {)(‘P,O) = ; Ozoi.etdx.P.gA(oO
2 3
CJE /2 FQP ew%)
crossing (fAB(O,O) = 0). On the other hand the integral:
g
| 9% (R0 R i)

O
is some integral along the light-cone whose value is unknown.

If we attempt a sum rule ) we get zero by

The parton model result which depended upon the proton's composi-

tion cannot be derived.

6.5 Regge Behavior and Bilocal Operatorsll’ 12

We return now to the question of how to interpret

1
% wegvp FIE)

s} (6.19)

Folxp) =

l

in the event FL(E) has the Regge behavior (v 1/& as & - 0)
expected of it. Such questions are important in understanding
BJL techniques and the sum rules they generate. Clearly if

Eg. (6.19) diverges,the Fourier transform does not exist in the
usual sense but may be understood as a generalized function.

To display F (x*p) in a finite form proceed as follows:

Let fR(E) = I yv(a) )1£]7% (£) be the sum of all Regge terms
o>o
which would cause a divergence in Eg. (6.19). Define

FL(E) = FL(E) - £(8)
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and add and subtract from Eg. (6.19) the guantity

wc‘i . [ gy
[ -{-é—COQfY.PTK(g;)

o]
(! ~ -
Elcp) = | %—gwssx.? RO~ | Leosgxplol)
2 y 3
+ }( 9% cosgxp L, ¥(a) [5]7°
o %30
Note now*
% !-5(-! { ‘: --—--—i-—-—— - -—-""L:"“'WD{_;!-';
%) = Qismrrw | [-§+ie il £ -1e) J

for £>0. For £<0, the gquantity in the brackets vanishes. Then

A6 ocmixplEl ™' X P e sy b
Ju} i P\(u QidSQM'Troc_;_oog M% :Pi !\—§+ié)

1
g -1e )M]
_ . Xp j dg;/%,oc o, gx.F
O

el

% .
= = P (1o ) cos Tt

[—

ol 2

Finally, we obtain:

I N~ . r \
FLlxp) = }oci’i,/i cosgx-p HI{§) — jzdi,/i COS Y. P Q&(g;

v hepl® :
- 2, ¥ix) '-’-b—g—' TH1-o ) cos ™A,
®>o
which is finite. 1In particular FL(O) = féggF () - ¢ ¥ (o)
&L a>o ¢

. . . Y- 2 1
*Proof is direct from: (»%:tte} — CM£>£{d—§)é



~105~

The seemingly exceptional values 0=0 and 1 may be easily
12,13

disposed of\
It may seem that the generalized function prescription is
somewhat arbitrary. However, momentum space techniques13 make
it abundantly clear thatthis is the proper way to interpret
these integrals: That the bilocal operators' matrix elements

are finite and well-defined when the relevant structure functions

scale. Actually it is clear from Eg. 6.11 that they are analytic

. 12
in x°'p.

6.6 Partons and the Light Cone

It is instructive to return briefly to the parton model
and search out the elements which it shares with the light cone:14

(1) The free-field singularity which yields Bjorken

scaling is generated by the free propagation of the

scattered parton into the final state. Remember the

"0 L0

b
%-
L ¥

_E

diagram:

_J

PRI S 315 W% 3 A

In coordinate space, the propagator

*

o

o

— -

is A(x) ~ %F é(xz)e(xo) near the light cone.
(2) An algebra of currents corresponds to a symmetry

among partons.
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If these are kept in mind, it is always possible to
determine which parton model results are consequences of the

model's light-cone structure alone.

6.7 Abstraction from Free-Field Theory

Finally, I would like to comment briefly on the abstraction
of singularity structure from free field theory. Gell—Mann4
speculated that abstraction must stop when the abstracted results
would be invalid in interacting theory treated canonically (by
which I mean ignoring the divergences of perturbation theory).
All the results of this lecture satisfy this criterion.15 Indeed
we have not gone as far as we could: Mandula16 showed
%r WL(qz,v) scales in the canonical quark gluon model (as it
would in free quark theory). Recently, however, Broadhurst,
Gunion, and Il7 showed that in the quark, vector gluon model
the leading chiral symmetry violating structure, F5(x), is
explicitly proportional to the quark-gluon coupling, g. Abstrac-
tion from free field theory implies FS(X) = 0 and this by a
series of arguments implies a rather trivial theory. This
supports Gell-Mann's suggestion on the limits of free field

theory.
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7. - BJL Limit

7.1 Introduction

Bjorken's original investigationl of deep inelastic electro-
production employed neither light-cone nor parton model techniques.
Rather it was based on a momentum space realization of the short
distance expansion developed some years earlier by Bjorken2 and
independently by Johnson and Low3, and known as the BJL limit.
This momentum space approach turns out to be a straightforward
way to expose the assumptions which underly the sum rules we
have been discussing and consequently to be a useful framework
to explore possible violations of canonical scaling results.

We proceed as follows:

First we discuss the BJL limit for the simple case of scalar
currents. Then following Wilson4 we relate the commutators which
occur in the BJL limit to the short distance expansion. We will
then discuss BJL limit sum rules and their validity in perturba-
tion theory. Finally we discuss the "light cone" BJL limit

and the derivation of fixed-—q2 sum rules including Adler's.

7.2 Derivation of the Limit

Consider the amplitude for scalar-current, proton forward
scattering

i atx eMF cplrr (g(x) go)) P >

<
Il

i 7 a%x &YX v (3(x) J(0))|P > + Polynomials in v,q°

i atx 1IE P|6(x,) [T (x),T(0)]]P> +Polynomials

(7.1)
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where T denotes time ordering. We have allowed for the possibil-
ity that J(x) J(0) is so singular near x = 0 that the time
ordered product is not covariant.5 The covariantizing terms are,
however, polynomials in qu and pu. Also we have converted the
time ordered product to a retarded commutator - allowable pro-
vided the state |p> is stable. Consider now the limit dg ico
with 3 = 0 and (for the moment) pu fixed, and repeatedly

partially integrate Eqg. (7.1):

o0 .
\ - \ o« Vv ﬂ-! -
Lim ﬂ}'ﬁw =1, (i\) <? E T, T (o)} 1PY
L e L =
S X,=o
(7.2)
Crossing [T(qz,v) = T(qz, -v)] eliminated the terms in Eq. (7.2)

proportional to an odd power of 95+

dq, ~ i» ig a rather unphysical limit but may be related
to observables via fixed—q2 dispersion relations for T(qz,v).
Immediately the question of subtractions arises: T(qz,v) is
determined by its imaginary part along the real axis only up to

a real polynomial in v:

o
2y — OV V,\V\l{q;‘dj ‘\f‘? \;'.?,VL PR
Tigv) =% W + L, V7 Bl

LR

-.‘if;/iz (7.3)

(we have used the fact that T(qz,v) is even in v and have defined
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W(qz,v) = %ﬁ Im T(q2,v) ). If the integral is not convergent
the polynomial may be used to provide subtractions in the usual
fashion.* The dispersion integral may or may not need sub-

traction depending upon the (measureable) asymptotic behavior of

W(qz,v) for large v. Nevertheless one cannot rule out a priori

the presence of a real polynomial regardless of the behavior of W.

I belabor this point because results obtained from BJL
techniques depend sensitively upon assumptions about subtraction.
For the moment we will assume no subtraction is necessary and
no polynomial is present. Later the effect of a polynomial will
be made apparent in a specific example. In any practical appli-
cation the reader is forwarned to explore the sensitivity of his
analysis to subtraction hypotheses.

To proceed, rewrite Eq. (7.3) (without the polynomial) in
terms of the variable w = 2\)/-—q2 = 2p0/q0:

o0
‘ o Sw' W' Wghw']
T ?‘w) = Y4 12 _ 0%
i \%J Jy w w

and take dg ico, a = 0, P, fixed (whence w -+ 0). As w ~» 0 the

*Suppose, for example, the integral is barely divergent, then
formally write:
o0
a, éu\_)..’\ 2 ! 4 2
T{\Cf,@) = “%‘} v! W (Q‘i‘) ) -+ “%Qgc\;)

2
Q’ l/;]_,

and subtract from Eq. (7.3):

0@ !

oC
dv L IA2 ? "1“‘3 {42

e - 4 . e omi———————— % (g ] ; \) x‘r\‘-\;}
T o= QC%?;G; ~t L‘;’,,v?- V'g\l‘z-\)z) WAV n= e

kq}) Vi
_.q}/L
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denominator may be expanded:

o
o0 QY&:

. ’ , b ] %ig"o\ { v oawe-ly o

Lo HGhw) = b b \3, ) duo' W W %C{.,w')

RIL Qy = Lo W=0 j;

(7.4)

We would like to derive sum rules for moments of W(qz,w) by

equating powers of l/qo in Egq's. (7.2) and (7.4). To do so we

must assume something about the behavior of W(qz,uD as q2+ -

We study here only the simple case when W(qz,u» scales:¥*

Lim W(q® ,0) = F(w
q2—>—oo

More complex situations in which the limit q2+- - » cannot be
taken underneath the integral are of considerable interest6 but

are beyond this simple presentation. Comparing Eq's. (7.2) and

(7.4) we obtain (n=0):

(= o |
4 5! d"bws Flw) = idu,;\__tdo{?sizjmmxajs)

and for n 2 1:

farel
[ Q“_‘
--:ZV\."'.S Q.VL»“ ""5
jg Sww” Flw) = % (;_t};a} ségx {ﬂgg‘o T, Tlo) 1Py
¥o=0

These equations are the fundamental results of the BJL

*1f, for example, VW(qz,w) scaled (as is the case for W2) the

only modification is a realignment of which moments are identified

with which commutators.
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analysis. However the observant reader will realize he has been
swindled. Although W(qz,w) may scale to F(®) there are surely
corrections to the scaling law which would enter all lower

order sum rules. For example suppose

A
Lime W(gHhw) = Flw) + —H—z(;(w)
q}-o—oa q“

then the above equation for n=1 should be corrected to read:

»

[>2]
(w) , MG - O T
]dw {E;“%-t- 6“”] = T | dN P T, Tl

2 R
) L"P@UJ (9 (=] XQ.‘_‘O

where the new term arises from inserting the correction in the
n=0 relation. To rid ourselves of these unwanted terms we now

take Py > =

4|78 ) = Lo (Lo (D))

! Fomm 00 1 qpmr00 (7.5)
and for n > 1:
d 73"“;: Vo= [ o2 f'i-\gw(,ﬁ SRR N,
W ST eume TP, ljkx(&pﬂa géx;}wogsa;;
| Po—c0 X
(7.6)

Our assumptions (no subtractions, W scales) require the right
hand side of Eg. (7.5) to exist. Scaling also requires that for

every n, the commutator of Eg. {7.6)exist and contain a finite
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term7 proportional to p02n. * In this language scaling seems
guite miraculous - requiring the existance of an infinite tower
of high spin (to obtain increasing powers of po) operators.

A simple example is in order. Consider a free massless

spinor theory:
T =10 bm:

Dimensional analyses leads us to expect W(qz,w) to scale. To

calculate the n = 1 term we need
(bt Hio} = 5%

)= = XXV YN

and

A brief calculation yields

CllTm, T G;}EP)\ -':‘%@%@x)i\ﬂ’?%x}é?}»é%?}

XOZO

This is the spin-2 part of the stress—energy tensor: 6 N
u

i@\(_11 va - guv L where L is the free spinor Lagrangian. &

Hi

uv
is conserved and normalized:
< § yva> ‘Q?%
Eq. (7.6) with n = 1 reads:
“4
w . 7 17
[ 92 Flur = Lim [an>« L] =Y
; W q_pa
d Pp—>
*The commutator of Eq. (7.6) grows no faster than pozn———Zn—l

2n-1

powers come from 3, and one from fd3x = [fd%x 6(x0).
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This is correct: since only the Born graph exists in this

theory:
oy 1 iT 2 -Lg’ ...})
AN LN G V'V VRN b P(?-&-ﬂ’) é(2v+q,) =y glw
—qEy > e |

On the other hand, consider a free massless scalar theory:

Jx)= 1 Plx)dx):

Dimensional analysis predicts ﬁ? W(qz,w) to scale so F(y) =0

and we expect to get zero by computing the right hand side of

Eq. (7.6) for n = 1. Using

[c@'(x},c{}%o}ﬁ = O [@{X),@{g;ﬁ = -2 (x)
Xo:'-"O ¢ ixcr.Q
we obtain:
- —— ! ‘ R s
L‘I{Xl’"d(o}jz“( = - 2d (X ) Ploidio)
a=0

Since the matrix element <p|¢(0)¢(0)]p> has no term proportional

2 .
to P, we find: o0

;C¢

&2 Fl =0

Lo

L—

}
as expected. To obtain non-trivial results in a scalar theory
assume vW(qz,v) to scale and repeat the analysis.

In the realistic case of vector and/or axial vector
currents, this sort of calculation yvields sum rules like that

of Gross and Llewellyn Smith if the commutators are calculated
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canonically* (as we Jjust did) and if it is assumed that dis-
persion relations have no more subtractions than they need.**

In models where scaling is violated (e.g. order by order
in renormalizeable perturbation theory) commutators become
anomalous8 and gratuitous subtraction constants appear.9
Although the naive (and useful) form of the sum rules is lost,
nevertheless the BJL theorem - which is actually little more
than a definition of an equal time commutator as the coefficient

of 1/(q)H™

useful.lO We will encounter a specific example later. For the

in the expansion of an amplitude - remains valid and

rest of this lecture we assume, where required, that the com-

mutators which appear in the BJL expansion are canonical.

7.3 Relation to Short Distance Expansion

Wilson4 showed the relation between his short distance
expansion and equal time commutators. Consider the short

distance expansion:

r.
[To0, Tio)} = L Ewlx) Oato)
.
(7.7)
with
-dw "‘d\/\
- .z . z .
{1«{}“:‘ @m{{"x -H.éxo) - ("’X “Léxo) }
(7.8)
valid near X = 0.
*That is: using canonical commutation relations of the fields

and the naive (unrenormalized) equations of motion

**This may be weakened, see lecture 10.
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At small XO’

En(x) is equivalent to a sum of d~-functions.
Consider

4

AN %) = ) Bl X) viE)d%

(7.9)
for some smooth function v(%).

Since E =0 if |§| > x, it makes
sense to Taylor expand v(z).

ViX)= vio)+ X-Dvio) +...

A ! oo 3 @ \ -4( g
AV\,‘\[VJ}}‘DE = Fr\_gxa}v{oi ~ FA. (Xo)i 'V'\f{o) o

(7.10)

m

e X)X

5 Enft,, X))V A3, el

O
where L’L (o) = /
*
12

e,
-]
p——a

ot

Since by definition:

o)

]V%’?} V& (0)6% = -Vvio) , ehe

(7.10) allows us to rewrite Eqg.

W T
gv(x)é{xic@x = (o)

Eg. (7.9) as:

\ o i3 o <
A ) = §d’°’>< LFexs) 80 - F, 16)-7 800\ vy

So the guantity in brackets is to be identified with En(x0,§).
Finally note from

dimensional analysis and from the observation
that Eqg's.

(7.7) and (7.8) are odd in X, that:

. o , ' !"Qd"\+3
o ix}(a\’ = A’fu 633{:0\? 1 %ol

—p
A

. E—de\,'{"
RO = AL e 1]

P
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where the constants Ag, Xi,... require further analysis to

determine.* So we conclude:

. -'2&&-,‘-3 fs] 3,9
€§%¢}%Xc% ﬁ\n é {Y }

. - 1o, o =3
+ €0 X, dntt INERY/ ISt

\ g - | \ 3.3
3 €t B (ML), 79l EF)
4o | (7.11)

|

Eaix)

Since Eg. (7.11) is odd in X, the equal time commutator of
Eq. (7.7) vanishes as it should. The first time derivative is
non-vanishing at equal times. From Eg's. (7.8) and (7.11) it
is clear that the spatial integral of the equal time commutator
of j(x) with J(0) measures the most singular term in the
expansion and that it is
0 if Zdn -2 <0
finite if 2dn -2=20

v if 2d_ - 2 > 0
n

If dn < 1 for the most singular term, then after some number
of time derivatives it will become finite or infinite at x0=0.
We conclude that the first non-vanishing moment integral in

the BJL expansion is given by the leading short distance

*Actually a rather pleasant exercize in complex analysis yields:

.
oy

Yu 'L 4 e
T {nj

while Xi = 0 by rotational symmetry.

- 3/, .
o A2 1Tda THin=34)
A e , -
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singularity. Higher moment integrals determine lower singu-

larities in a way the reader may work out for himself.

7.4 BJL Limit Sum Rules

1. Gross-Llewellyn Smith Sum~Rule:

To exemplify BJL techniques we return to this (by now familiar)

sum rule and expose more clearly its structure. Consider the

amplitude Tuv in neutrin® production with u=x, v=y and both

+ + . . .

g and p in the z-direction

"1ewﬂo%
Mz

Take the sum of vp and Vp amplitudes and write a dispersion

.ATX% — {POC\»E _ ?-z qu} T, {C{?“,\;‘}

relation for T3:

v vy VY g )
\}+\’ —-—-—-——.....—-.——-»‘L 3 !ﬂ‘-z \; ! 4’ P "
o (v =4 ) Trouz Ny (vt Loowiqy) J
Q2 n=o
C%‘/Q)

We have explicitly allowed for a polynomial in v2 even though
the dispersion integral (without subtraction) converges in
Regge theory. Taking the limit dp i (with a = 0) and de~-
fining ';)71'2' W3(q2,\)) = F3(q2,w) we obtain:

o0
{dm .
H

Sy (Ghw) + B2

_HiPs
o LA
q-ﬂ C‘Z._;._m

1 13 I+ - - ]
= =L el el < T, Tlle

On the left hand side only the term proportional to pz/qO has
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been written, while on the right only the l/qO term is written.
%0 is a possible l/q2 term in fo(q2) as q2 »- —o_ All the ignored
terms must be separately equal unless there are the sorts of

anomalies mentioned earlier. The commutator in Eg. (7.12) may

be calculated in a canonical quark field theory:*

+{ vﬂ,r . \ 3 N 4 1 ] . _%Z\‘
T = Vot - i) W= 500l
using b o a
i f—r ; 1} - S0
R ,x,)sg o {x)
Xg"‘O

A T e b 2

} osan |
X
<

[

1
oy
(o]
Oigant

| S
+
gy
c
R
-
b3
g
A
o
u-ﬂ“’-'. +
o
i
E e )
it

*1%)

= e {ili%e - 41S, {xfj &

where BU(X) and SU(X) are the baryon and strangeness currents

in the model. Since
IS, talPy =0 oud. (PIBLMOIP) = 2P,

we obtain finally:

! _—
. [~ VPTUP £
T
i

(7.14)

*This commutator may be extracted directly from the short distance
expansion (cf. Eg. (5.8)).
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Eqg. (7.14) reduces to the Gross-Llewellyn Smith sum rule

provided:
a. The constant fo is absent. Like the J = 0 fixed poles to
be discussed in Lecture 10, fo(qz) should be a polynomial in

2

q2 and therefore not contain a term (fo) proportional to 1/qg
b. Our canonical evaluation of the commutator is correct. Per-
turbation theory is plagued by anomalous commutators.8 For
this sum rule 6 is replaced by 6 - 3g2/2ﬂ2 in second order
in the wvector gluon model.ll
c. F3(€,q2) scales so that the limit may be taken underneath
the integral sign. If not, the sum rule may make sense as

the limit of the integral but the implied non-uniformity makes

its experimental significance dubious.

It is appropriate to emphasize that neither a,b, or c is
obtained in perturbation theory. But, for that matter, neither
is Bjorken scaling for Fl and F2 found in perturbation theory.

2., Cornwall-Norton Sum Rules:12

These are the moment sum rules for Wl and W2 generated by exactly
the method we applied to the commutator of scalar currents. In
canonical quark theories these sum rules will contain the Callan-
Gross relation (moment by moment) so we need only write the sum
rules for (say) W2. To isolate W, consider T - T in a

ZZ XX

+ A . * > * v k) *
frame where g is in the ¥ direction and p is in the 2 direction:
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Now take 9y ~ io, set a to zero and subsequently let Py~ ¥

. C\u} . - 2w
Q L\,Wu f TIn42 F q,Jw) L\,va {QP(;} 2

q}z—-)-—o:‘ 1 Po —= 00

N ATy
Lo
= (%]
(N

L[ )™ " 3, 0, T )]19) ]

0™ T, Teelie]

=7 (715
Since the equal time commutators of Eg. (7.15) are determined
by the short distance expansion, these sum rules are useful
if the short distance behavior of a theory is understood. Re-
cently it has been discovered that this is the case for some
non-Abelian Yang-Mills theories.13 Although the structure func-
tions cannot themselves be computed in these theories, their
moment integrals in principle can.14 For a discussion of other
applications of these sum rules see for example Frishman's NAL
Rapporteur's Talk.6 As an example of ah‘application we follow
Llewellyn Smith15 to derive the parton model momentum sum rule
from the n = 0 Cornwall-Norton Sum Rule.
15

'3, Momentum Sum Rule:

For n=0, Eg. (7.15) reduces to (assuming scaling):

To proceed one must make a model for the currents (eg. canonical

gluon model, perturbation theory, etc.). We will consider only
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the free guark model except to quote results which may be found
in Llewellyn Smith's Hamburg Summer School Lecture.16 Explicit

calculation of the commutator yields:

®UT 0, T30

i

(7.17)
Were it not for the factor Qz this operator would be the spin 2

part of the stress-energy tensor. Suppose we had begun with
currents proportional to baryon number rather than charge. Since

B2 = %I in the guark model we would obtain:

Y

B — B o {s “"_”“i, 3r'§\/ ?‘-r' ’ - A VAR NN l! >,
FUT 0, T @lied = - g ST P00~ K0) ¥ 1PD
Yo=0
Now use euv = i@yuavw - guvL (L is the Lagrangian) and the

normalization <p]9uvlp > = 2pupv to reduce the right hand side

to - 4/9 i 63(§) (ZpO2 - 2pi2) + terms lower order in E. It
is easy to show that:
!s r3 repron VELVA 1
dElERTTD - TR )]

a
(7.18)

reproduces the baryon number and therefore the stress energy
tensor. Combining Eg. (7.16) with (7.17) and taking the appro-

priate combination of structure functions:

!
r3 repstm,,,  q VPrvn, 4
[91 [F R0 -5 BT i9) = 4

LS TR S
o

-
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In an interacting theory uncharged gluons also contribute
to epv but not to the structure functions. Let € be the frac-

tion of proton's momentum residing in the glue:

H]
LAgwns

Glow P> = ARde

The sum rule now reads:

Llewellyn Smith15 showed 1-¢ > 0 from the positivity of baryon-
current, nucleon deep inelastic scattering. It has not so far
been possible to prove € > 0 in general15 so the full parton

model result is not obtained.

7.5 Light Cone BJL Limit and Fixed Mass Sum Rules

Jackiw and Cornwall17 modified the BJL limit to make use
of the light-cone formulation of field theories developed in
recent years. Specifically they considered the limit gq_ = i«
with q, = 0 and 31 fixed (E-a = 0). In terms of invariants
we find:

Q",z = QQA-Q—-"‘Q-LZ -'-’*Q_f {'{:;Ke&‘}
vV o= 21P+$- — OO

To exemplify the applications of this limit we derive the Adler

sum rule. Consider T,y for neutrino scattering:

""—V'P P+p+ TVFIQ Yo 14 J;q;x LT 1; 3 7‘!"‘
e = o 1 Gy =y faxE 4?%&3"'”{34»"”%J*-*O“%:?)w.w)
LA
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We have used the light-cone formulation of field theory (assumed
equivalent to the equal time formulation) to write the amplitude
as an x+—retarded commutator. Writing a dispersion relation for

T, allowing for Regge behavior and a real polynomial:

i y VPP ! oo Ny
AT 2 ¢ VA s,
{ v dv N’Q {C‘_)\,)} av'’ \Nz ?(c{f) v
+ AV

Ta (@) = 2)

2 12 & Fa
- LAY | ~2 N I N
/g_, Wk%/o{b v Y

+ Z ;C,,b(q,z) v"
N

{(7.20)
Combining Eg. (7.19) and (7.20) and taking g_ to i«:

)
VPV : ‘ oy
-2 { dv W, g -‘rf?f(""z) + 7, QVL{CLQ} (?ﬁ,;
P ), TR
-4
4
3 ! r .-
= - !/% j OX. dlxl@’ﬂf}f{x),m(o;]\ﬁL .o
- L=
, Ly
+ ?0&3 womanris {J& %;zj

IS dx ax, 1]t - ;)
~1' v\*g gq})‘d /o= 5 X_ O %X, \g '3;. {x), 3; {0}] “)/}g
Vg, | X4 =0

this commutator may be calculated using the canonical light-
cone anti-commutator of P (x) with its adjoint.17 Suffice it

to say that if the commutator is canonical then the Adler

sum rule at fixed-q2 is obtained:

w —on
] , VP-oVP ,
—. ] OV \f\ja‘ {(’%‘2}3)) =2
Y

‘2
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Note, unlike Gross-Llewellyn Smith Sum Rule, Adler's sum rule
exists at every q2 < 0. If one tried to derive a fixed—q2
analog of the G-LS sum rule one encounters a light-cone commuta-
tor which involves interactions in a non-trivial way. Adler's
is unique among the sum rules we have discussed in possessing

a fixed—q2 form. Note also that the "canonicity" of the light-
cone commutator above is sufficient to derive the sum rule,
there are no real constants to be contended with. Indeed one
can show that even in second order perturbation theory in the
vector gluon model - in which vWZ doesn't scale - the sum rule
is nevertheless valid.7 We refer to Dicus, Jackiw, and Teplit218

for the application of this technique to the derivation of sev-

eral fixed-mass sum rules.
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8 — ANOMALIES

8.1 - Introduction

The experimental value of the 19 » 2y life-time is
(0.84 + 0.10) x 10"16 sec. Current algebra and PCAC can be
used to calculate the decay amplitude; they imply that it van-
ishes.1 To accommodate the experimental decay rate, one must
believe either that the PCAC extrapolation is badly wrong, or that
the current algebra low energyv theorem is wrong, or both.

It has been known since 1949 that if the 70 - 2y decav rate
is calculated in lowest order perturbation theory using a fermion
loop, then the rate is non—zero.2 A calculation using the usual
fractionally charged guarks comes out about a factor of three
wrong in the amplitude (an order of magnitude in the decay rate) .*
It was Wilson3 who first clearly pointed out how the result of
perturbation theory4 could be understood as a short distance
effect, caused by the breakdown of naive current algebra calcu-
lations due to the strong singularity of the Green's function
<OlT(Ju(x)Jv(0)Ap(y))[0> when x“ n yu ~ 0. This anomaly arises
not because the current algebra commutators are incorrect, but
because the delicate manipulations reguired to drive the Ward
identity from the commutators break down if current Green's

functions are as singular as suggested by scale invariance argu-

ments.

*A calculation using an elementary nucleon loor would give about

the right decay rate.
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That the anomaly is indeed a short distance effect is made plau-
sible by the following argument. As we have seen in previous
lectures, graphs which have no strong interaction vertices, and
hence are zeroth order in the strong interactions, give an accu-
rate representation of the conjectured canonical short distance
behavior of hadrons. In perturbation theory the anomaly arises

because the triangle graph

which is zeroth order in the strong interactions, is highly di-
vergent at large momenta (i.e. short distances) which can be
shown to invalidate naive manipulations. Hence this anomaly
arises in theories with canonical short distance behavior, and
we mav call it a canonical anomaly, to distinguish it from the
Callan-Symanzik anomalies5 which result from the logarithmic
modifications of short distance behavior found in higher orders
of perturbation theory.

Tn this lecture we first review the simple current algebra
low energy theorem for T° - 2y decay which suggests that it
should vanish.l We then discuss the perturbation theory cal-

14

culation, and then the Wilson analysis3 showing how short

distance effects can cause an anomaly. Finally we use the analy-

sis of Crewther6

to show how the singularities of two current
products <0|T(Ju(x>Jv(0))|0> and <O|T(Ag(y)Ap(O))|O> are related

to the singularity of <0]T(Ju(x)JV(0)Ap(y))[O> which is responsible
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for the anomaly. This gives model-independent relations between
the n° - 2y decav rate, c(e_e++y+hadrons) and the Bjorker{7 sum

rule for polarization effects in deep inelastic electroproduction.

8.2 -~ The Current Algebra Low Energy Theorem

The ﬂo

+ 2y decav amplitude is proportional to:

fatxe P <ol (7, ()3, (0)) |7 (k) >
and hence, using the axial divergence as an interpolating field
for the plon,8 to:

e (" ) ety CITITL T (0) DA ()10 o™

where f 1s defined bv <0 Au (0) [7m(k)> = ik f... The straightfor-
T g

h?:“h%'(B-l)

ward way of estimating the 70 - 2y decay amplitude would be to
use a current algebra Ward identity and PCAC. Defining:

T gy (BrK) 2 fatxatyetPXe IR (g (3, ()3, (0) 2, 1)) | 0>
and Tuv(p,k)

fd4xd4yelpxe lky<0|T(Ju(X)Jv(0)3 AA(Y))]0>
we first observe that:

<o\T(tY EOT AWM = <KO\T{TutOT, (D) Bala)) o>
(8
~+ (4o 7)<\ T(Mo(y), TV T, ) + Sy oKo TR b ol T >

According to the egual-time current algebra, the last two terms

.2)

in (8.2) should vanish. Fourier transforming (8.2), partially
integrating with respect to y, and discarding the integral of a
total derivative, we get the naive Ward identity:

Lk> —T;A_)/A (Prhv = .T/:w (V’I\K} (8.3)

If we now define the form factor ﬁ(kz,pz,(k—p)z):

T \)(pfk) = '_1;—'2—— uvuspu’kBT (k ID2I (k—p)z)

-2
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then the physical 70 - 2y decay rate is given by:
. 2,2
l;m , (mTT k )T(k2,0,0)
k“+m 2
m™ f.m
i

The usual PCAC assumption is that this = T(0,0,0). Then the Ward
identity (8.3) requires that T(D,0,0) should vanish.l One way

to see this is to expand (8.3) in powers of the momenta, noting
that the invariant form factors in Tuvk may have no poles, as
there are no massless hadrons. Another way3to see this is to
observe that: "T'(O 0 O) = T— €,M,XF b, bbeT (h!q\)\

_h (o}
- -‘T 5. S Wi fyyP<AT(T#60 710" F};\(Lf,y);o>

(8.4)
and proceed as &ollows
If we define Fuvx(x,y) =z <0]T(Ju(x)JV(0)AA(y))]0>
there is the identity:
) = 2 \ ™
X,(\Aﬁ TS Eﬂvh (3(,%) - BB( \6;5 ["VA) - (bx;"%’g F/A)ng/) 5.5)

al bx ( %Vaﬁﬁ:) X (bi’,x %’\}E—"kﬁ /ﬂgv'g&x‘\F\wg

The first three terms in (8.5) are total derivatives, and so should
not contribute to (8.4), and the last two terms should vanish
identically because of the conservation of Ju and Jv‘ Hence
T(0,0,0) should vanish. The experimental m° - 2y decay rate
corresponds to ﬁ(mﬂz,0,0) %~ 0.5. We will see in the following
sections that this apparent conflict with PCAC and the current
algebra low energy theorem can be resolved, the reason being that

in general the Ward identity (8.3) is expected to be false, and

should have an extra anomalous term proportional to: Euvuepakg
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8.3 - The Anomaly in Perturbation Theoxry

In this section we discuss the Ward identity (8.3) and see
how it breaks down in the lowest order of perturbation theory.2
We do not attempt to discuss the anomaly in perturbation theory
thoroughly,4 merely to give a flavor of it and motivate the idea
that short distance singularities may be responsible for the anoma-
ly.
The lowest order nucleon loop contributions to Tuvkin per—
turbation theorv come from the graphs*:
b - A b=kop
%w ¥y (diagram with electromagnetic

r—F’ A

r+p currents interchanged)
k
The lowest order graphs for Tuv are identical, except that the
Vertexéyky5 is replaced by imys, where m is the mass of the

nucleon. Applyving the Feynman rules we find:
T° - J A LG premly, (Fom)y (- f ) 1T
hre Ky - B €3 R (e N (8.6a)
T - 7m A T LU Y, () U ) B
v )@ S et [ v [ p i€

where the superscript” signifies lowest order contributions.

(8.6Db)

Before we try to verify the Ward identity (8.3) we must first
make sense of the two integrals in (8.6), both of which are 1i-
nearly divergent for large values of the loop mementum r. For-

tunately both Touvk and Touv can be expressed in terms of convergent

*Here we use elementary nucleons in the loops - calculations with
any other fermions are similar.
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integrals, as follows. By parity and Lorentz invariance:

L0 . [+] -+ O S o ;
T = TiF€npun + TV € + T3 PP T g

© 15 T - £
1, ppte Corph + 15 PRP P T€qunn * 1 PRp Pvn (8.7)

with the T°'s Lorentz scalar functions of p and p'. The quantities

o

Tl and TZO are formally divergent, whereas the other T's are

finite. However, current conservation

’PPT:V)\ = .::.‘-P!‘/T;V)\ (8.8)

relates T.°., to T,° . Using also the symmetry property
1,2 3,4,5,6

O

u\)}\(p,p ) = 7° (p',p) it can be showns that

VUA

-]

T;vk :V[(PF)PrerpuX+fthﬁt€§TPX] T; ,
+ (p—F, p=v)

. 12 v . ! T e
+ [ €xpu + PypP 6ffr~"}T4 (8.9)

where Tg and TZ are finite:
3 ZIH(P'FI)
-———"o - ’.4 S ;
ly™ = —’“JL (pp') - Tio (p,p")]
where I_, (p,p') = Siaxs/L *ayx®y Ty (1-y) pP4x(1-x) p' Z42xyp-p' -n]

A similar analysis shows

T ° ! 2!t g
\Pn’ = g‘_;r‘f_T F,;F )'F‘F 6»{1.-,»\:
Comparison of these expression for Tﬁvk and Tiv yields

s o - | -
LKXT)’\.,AJ (Plk‘) = Tc\l (P;k) o2 A-P‘%k' 6{"‘)‘»‘)

s Q- (8.10)

The precise value of A is model-dependent; for a simple nucleon

loop it is 1/2, for a simple quark loop 1/6, and so on.
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Why is there the extra anomalous term in (8.10)? The per-
turbation theory explanation runs as follows: because the integrals
for Tﬁvk and Tiv are linearly divergent at large values of r, they
are ambiguous. To specify them, extra inputs such as in this case
current conservation, are necessary. Naive manipulations of the
integrands in (8.6) using the Dirac algebra and freely trans-
lating linearly divergent r integrals would have led to a "deri-
vation" of the false non-anomalous Ward identity (8.3). Trans-
lations of linearly divergent integrals are not generally valid,
and our calculation using current conservation to specify the
linearly divergent integrals shows that in this case the transla-
tions are invalid.

There are many technical guestions about the perturbation
theory calculation, and we refer to the review of Adler4 for a
detailed discussion. Let us assume for now that there is an
anomaly of the form (8.10) and discuss its implications.

(1) In contrast with the argument of section (8.2) we now
find T(0,0,0) = A, so that we have a smooth extrapolation from
the zero momentum point to the 70 - 2y decay point k2 = mi if
we choose a model with A = 1/2.

(2) Ccan we understand the anomaly from a short distance
point of view?3 The lowest order graphs calculated in this sec-
tion have the canonical free field singularity structure at
short distances. For large momentum the integrand in (8.5a)

is just the fourier transform of the canonical c-number ninth
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order singularitv in the expansion of T(Ju(x)Jv(O)AX(y))
discussed in section (5.2). As discussed above, the anomaly
arises in perturbation theory because of the divergence of the
integrand in (8.6a) at large momenta. Hence, in general a

theory of hadrons which has the canonical ninth order singularity

structure for <0]T(Ju(x)J (O)Ak(y))[0> will have an anomaly like

v
{8.10). For this reason we mav call it a canonical anomaly.
We should perhaps reemphasize that we have not abandoned
our previous disbelief in perturbation theory as a reliable
guide to the short distance behavior of hadrons. The triangle
graph has no hadronic insertions; it is zeroth order in the
strong interactions. From our point of view, considerations

of higher order graphs involving hadronic corrections to the

simple loop graphs are irrelevant.

8.4 - The Wilson Argument

We have seen that in perturbation theorv the simple argu-
ment of section (8.2) leading to the Ward identity (8.3) breaks
down, and that this mav well be a result of short distance effects.
Accordingly we now go through the analvsis of section (8.2) again,3
this time taking more care with short distance singularities. We
will examine the representation (8.4) for T(0,0,0). First we
make a Wick rotation of the X and Yo integrals and go over to an
0(4) metric. Then we exclude the regions |xo]<e, ]yo|<s' and
]xo—yol<e" from the integrations in (8.4), thereby excluding

the short distance singularities. We will subseguently take the
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limits ¢, ¢

and £€"+0; the integral is absolutely convergent, so
that it is independent of the order in which these limits are taken.

Comparing (8.4) and (8.5) we see that:

——

2
T(0,0,0) = T (T+TaK)
where o '2

T=.g»MpIJ&JHEXW(u%pEWJnﬂg\

\&;(>e,l10\>eﬁ\xwm&A>é'(8 -11)
and J and ¥ are similarly related to the second and third terms in
equation (8.5). The integral over y in I can be expressed in terms
of surface integrals at yo=ie', xote". Consider the contribution

of the surface integral:

1

1= €”V“ﬁf‘f"34:) [8tre - Stqe-en] wrgp B

pvo \|x01>é, 510,%0\7e,

There are singularities in x and y-x in FU O(x,y), and these can

v
cause a non-cancellation of the two surface terms in Il unless
|x_[>>e'. This we can assume if we take the limit e+0 after the

limit e'+0. Similarly, we can assume that the other surface inte-

grals in I, namely

T,=¢ P"”‘FJJ‘*X (1/41 [S4e-xote") = Sly-xo-c" )] X p E,\,,O(X;‘;}) YRR
cancel if we take the limit e+0 after the limit e€"»0. Hence wéx¥fﬁa>é
that I vanishes if we take the limit €»0 last. Similar analyses of
J and ¥ show that they will vanish if we take " or ¢'»0 last,
respectively.

Unfortunately, in equation (8.11) only one of the limits
g, €', €">0 can be taken last, hence only one of I, J and K can
be guaranteed to vanish. Suppose we take e'+0 last, so that ¥
vanishes. Then it easy to see that in a world which is scale in-

variant at short distance I cannot be assumed to vanish. Consider

for example Il: when xvwyne' Fu\))\(x,y)'\/(z-:')”9 if it is scale
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invariant (mass-independent) at short distances,

Consider for example I, which in the limit e, e"-+0 can be written
f

. [y “&D N

‘6@:'67/
Scale invariance at short distance say that as the currents have
dimensions (mass)3, ’r“u\)>\(x,§/)'\z(s:')_9 for x&ywe'wo, so that

XY Fuvo(x,y)m(e')_7. As the region of integration over this
singularity has a volume (s')7, I, could very well be non-zero
in the limit €'-+0. Similar arguments apply to Iz, and to the
contributions to J.

We conclude that in a world where Fqu(X’Y) has a scale
invariant ninth order singularity as xwn0, T(0,0,0) may be non-zero,
or equivalently there may be an extra anomalous term in the Ward

identity (8.3), as in equation (8.10).

8.5 - The Crewther Relation

The Wilson argument only indicates that an anomaly is pos-
sible; precise evaluation of the anomaly requires a model for
short distance behavior. If the chosen model is the canonical
behavior of a model field theory, one method of evaluation is to
calculate the lowest order of perturbation theory loop. As the
anomaly only depends on a multiple short distance behavior, this
would give the same result as an analysis in configuration space.9
However, there is one relation involving the anomaly which is
independent of the specific model for short distance behavior,

which was derived by Crewther.6

It relates the anomaly to sin-
gularities in products of pairs of currents, which can be mea-

sured in other processes.
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The idea is as follows: censider some triple current pro-

duct with operator product expansion:

N\
T( REOBIO) C(0))  ueo = 008 O (0) (8.12)
where the On(O) are local operators, and the Fn(x,y) singular
c-number functions. We also have the simpler expansion:
~J E.GOO 8.13
TRGAR(O)) 2, % m GO O, (0) (8.13)
(where the Em(x) are c-number singular functions} which means that:
TRCOB(O) C)) ~ SE60T(0(0) Clu)) (8.14)
when xv0 and v, v-x>>x. There are also expansions:
,,/ -
'T"\OMCO) C(uﬂ) \SVMO éEM(tﬁ) On(o) (8.15)
Substituting (8.15) into (8.14) we find that
T(RGOBO) Clu)) ~ 2o Eml) Ennly) OL(0) (8.16)
when both x and v are small, but x<<v, y-x. Comparing (8.12)
and (8.16) we see that there is a consistency condition on Fn(x.y)
in terms of the E  and F
Faly)  ~ 2 B9 Emaly) (8.17)
£ 20 .
when x<<y, y-X.
We now apply this relation between the singularities in two
and three current products to the expansion
{ (8.18)
T(Tb0T () g, o O o +
The c-number function Auvk(x’y) has a ninth order singularity
as x, vv0, and is responsible for the anomalv, as argued in the

previous section. First we take Ky, y-x in eguation (8.18),

using:

5
T(Tp(x)fyloﬂ ~ &= - S ™ xRy, (8.19)
3 (x"—té)
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where we have used eguation (5.5) with the ie~prescription for
time-ordered products, taken the value of the dabc appropriate
for our combination of currents, allowed for the model-dependent
factor KJJ discussed in section (5.3), and the dots in (8.19)

stand for terms which are less singular or have different guan-

tum numbers. Hence:

TGO TP (4)) v T €prag o T(AFO Bl (2-20

xn0 BT

Now we use (2 ~t€52
She  (Dpad e |
T(ﬁg(o) AL l9) Yo __2_%% BAQ@%@)‘« -+ (8.21)

which comes from the axial current analogue of equation (5.6),

with the model-dependent factor S discussed in section (5.3).

AA
Substituting (8.21) into (8.20) and comparing with (8.18) we get
an eguation analogous to (8.17):
“ B
ﬂlm\(x,‘& ~ K"SSM ékﬂﬁ '/3 \3)‘55*\ (8.22)
i QL~L6> (a -yt

valid in the limit x<<y, v-x.

Hence Auvl(x’y) is determined by two-current singularities
in the region x<<y. To determine the anomaly it is necessary to

know Auvk(x’y) for all small x and y. Fortunately it can be

argued that A (x,v) has a unicue form in the short distance

HVA

region. In spin zero model field theories Auvk is zero; in spin

1/2 theories its SU4 generalization is (as argued in section (5.2)):

alre (¢ -
a,un(“'%) ~ Tm"\ Ti% Xz.xafx.gz{az{sx(x W) 5.23)

myro gt (R (e (e e
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where NJJA is a model-dependent constant (NJJA = 1 in the quark
model, 3 in the three-colored quark model, etc.) Furthermore,

. . s . 1
it can be proved using conformal 1nvar1ance,O

which is expected
to be a good symmetrv at short distances, that the form (8.23)
is unique.

Taking the limit x<<y, y-x of (8.23) and comparing it with

{8.21) we deduce:

Noga = Koo She (8.24)
To get from the relation (8.24) to experimental quantities, cer-
tain steps are necessary. In all models, SAA = SJJ.
Also, in all models with the usual SU3 assign-
. em _ -3 1 8
ment for the electromagnetic current JU = Ju + -—:—-Ju we have
V3

R =2/3 SJJ Explicit integration of Auvk to get the anomaly (or
equivalently a lowest order perturbation theory calculation) yields:
NJJA = 6T7(0,0,0). Hence we eventually conclude that:

—— . __‘.

T(0,0,0) = =z Ky R (8.25)
The Crewther technigue can be applied to deduce relations involving

other parameters in the short distance expansions of section (5.3).

For example, by considering the limit y<<x, x—y®0 one obtains:

NJJA = Kan SJJ (8.26)
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By considering the Crewther argument applied to
<O|T(Ap(x)Av(O)Ak(y))IO> one deduces {in an obvious notation):

NAAA = KAA SAA (8.27)
NAAA is related to the anomaly in the Ward identity for the three
axial- current Green's function. By current algebra this is

10

related to the 7 = 2y anomaly, such that:

N =N (8.28)
Combining (8.24), (8.26), (8.27) and (8.28) we see that:

KJJ = KJA = KAA (8.29)

which is a useful restriction on the multiplicity of parameters

in the expansions of Chapter 5.

8.6 — Implications for Models of Short Distance Behavior

Let us now consider the implications of the Wilson analysis3
and the Crewther relation6 for building models of short distance

behavior. As mentioned earlier, the experimental value of

2 o}

T(mv,0,0), deduced from the 7~ - 2y decay rate, is about three

times larger than its quark model value. In the guark model,

T(0,0,0) = % and KJJ =1, R = %. If we believe PCAC so that

f(mi,0,0) ~« T(0,0,0), then equation (8.24) tells us that the
quark model for either or both KJJ or R should be modified. As
mentioned in Lecture 5, R is measurable in principle:

o(e”et+y>hadrons) —

o (e e ryruTuT) gZre

R

The other parameter K is the coefficient of the axial current

JJ

in the product of two vector currents at short distances, and
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as the coefficient in the Bjorken7 sum rule for spin-dependence

in deep inelastic electroproduction:

1 ep—~en_ gA
2 fodﬁgl(i) = ¢ K33 (8.30)

This sum rule was derived and notation defined in Lecture 6, using

the quark light-cone algebra in which KJJ = 1. It could also be

derived using the BJL techniques of Lecture 7. Unfortunately,
polarized deuterium data are necessary for testing (8.30), but
will not be available for some time. However, using reasonable
additional pafton model assumptions, a sum rule can be written
down for scattering off polarized protons alone, which should

enable the quark model prediction KJJ = 1 to be checked.12

In all models with fundamental spin zero fields, KJJ = 0 and

there is no anomaly. In models with spin % fields, K is always

JJ
1. This suggests it is likely that the quark model prediction

R = % should be modified by a factor of 3. This is what happens

in the quark model of many colors. In this case T(0,0,0) = %
KJJ = 1 and R = %C, where C is the number of colors. Because of

the ©° - 2y decay rate, C = 3 is fashionable,g’13

yielding
R = 2, but as discussed in Lecture 2, there is as yet no over-

whelming experimental evidence in favor of this value.
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9 - FURTHER APPLICATIONS OF LIGHT-CONE ANALYSIS

9.1 - Introduction

So far our applications of light-cone ideas have just been
to the total deep inelastic cross sections. In this lecture we
will discuss how these ideas can be applied to other processes.

We will discuss e + et -~ hadron + anything first, then

L + p~>L+ hadron + anything, then p + p > (u~ + u+) + anything,
and finally list some other processes and make some philosophical
comments.

Even in the most favourable case of e + e+ -+ hadron + any-
thing the light-cone analysis is not nearly as predictive as in
deep inelastic scattering. There are no sum rules, so that the
fundamental structures of the field theory underlying hadrons is
not being probed as deeply. Also there are many cases where the
parton model can be applied but not the light cone. Thus the
limitations of the light cone become apparent, and it becomes
important to understand better what properties of the parton model

give it its power and can be safely abstracted.

9.2 - e"e’ » Hadron + Anything

Many people have pointed out the kinematic similaritiesl’z’3

between deep inelastic scattering

L+b = L+ ambua i\(
P n

and one particle inclusive annihilation
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b
e +e" > Hadmm =+ amt§%wﬁ3 : :>-“Cé;:;

The former process is (apart from lepton kinematics)

2 b | T.10) |5 |3, (9 15> 8 (aeh-bD

n

and the latter
é <O\TM(O> ‘F»“><P,'L\va°ﬂo> g¢(‘i“?"\°0 (9.2)

and one sees that what is different is that the hadron line has
been crossed from the initial to the final state. Another way of
looking at the similarity is in the style of Mueller4. Electro-
production is the total discontinuity of the forward off-shell
Compton amplitude for q2 < 0. However, the annihilation process
is just one of the terms in the discontinuity of the forward off-
shell Compton amplitude for q2 > 0. This can be represented

graphically:

Disc m

¢* 50

il

St v D=L
Cre
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The first term is the discontinuity in (g + p)z,b the second and
third are discontinuities in q2, and the last term is the inclu-
sive annihilation cross section, a discontinuity in (g - p)2

very analogous to the Mueller diagram for inclusive hadronic pro-

cesses.

The annihilation process has been treated many times in the
parton model™, can we treat it using light-cone dominance? First
let us do some kinematics. We can rewrite (9.2), replacing the

§ function by an x integration:
jd‘?x e VLol 00 lpr><pn |5, (0) 10> (9.3)

which we can express in terms of two gauge invariant tensors (p

is the momentum of the observed hadron H, and v = p-q)

i~

e (. ST - (50RO

We note that Wl and WZ are very analogous to the deep inelastic

structure functions. Including the lepton kinematics, the cross

section for e e’ - vy > hadron + anything (neglecting terms of

order l/(q2)2 is

d%o _ o Te®
A1 d (cc=0) :

+ ?ﬁ_{twmze‘)} 5.5)

where we have introduced the longitudinal and transverse "cross

sections”
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Cr (ne) = £ W, (ue?)

6—\__ (,V\ C(7’> = ‘%7_ (\7\—/‘ (y, 0(7—> + _2_}4:._32 __l)wz (V, q2)>

where M is the mass of the observed hadron and the variable
£ = q2/2q-p which has the kinematic range (for large qz)
1 <¢g< /§2/2M. We see immediately that the naive scaling hypo-

thesis is that

W‘ -> :;\ (2) , vW, > ‘E_ (%) (9.6)

W

in the limit q2, g'p + », § fixed,

so that the right-hand side would feature no dimensional constants.

2 —
Integrating (9.5) over 6, getting %% = 4ma (20, + o.) 1in the

limit gq~, g+p>>~, & fixed, and then over & we get an expres-

sion for the multiplicity

) im
— T | (25 + B
n@)c @) = i"éi S5 S 5+ %) (9.7)

t
If we weight do/df with the energy of the observed particle, and
then integrate we get (assuming there is just one type of observed
particle) the total energy. We can write the final sum rule in

the form

&ﬁ&m
1L Ot (@ = j‘ d3 bo-%%-
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In the lepton centre of mass frame, Py = q°/2§, SO

&%ém 2 (Im
I fyme e
Cueld) = | BHE = T | b5l 3) oo

\ 1
From Eg. (9.8) we see again that if o £ " l/qz, then it is

to
natural that Wl’ VWZ also scale as in (9.6). Also it is apparent

from (9.7) that in order for n : log qz, -analogously to the present

fashion for hadronic multiplicities, we should have
— - 2
cf‘ (25 + OL) ~ T as § >0

To see if the light-cone is relevant2 in the limit q2,
q+pr~,f fixed we use the standard phase variation arguments.
Neglecting Lorentz indices for the moment as they are

irrelevant to this argument, we can write (9.3) as

Vg 2
gd*x et QC(X >F"f> (9.9)
working in the rest frame of the observed hadron, so that

t): (M,0,0,0) , i: (%)O,o)ﬁ_’ﬂz)

(9.9) becomes

% CHa _iqx
dx,, d}EeLM e ‘“&(x}—&z, N\u)

=~

Performing the angular integration we get (where ]51 Z r)



-150-

o0 00

. X
dxo | direte e’ " g E‘ﬁ)z~¢5 - 3({%§—r’; M>x,,)
Gr-¢

The phases of the terms coming from the two exponentials in

-0 o

1\/(%)2—q2 can be written in leading order as v,q%auo with

l\_)_(XO'H’.') _.
m e+lErm

fixed: e and as usual the dominant contributions

come from

| %=r] = O(B) = 0(a%)

= bl o= be-d

y
O
——
2
~./

so that the light cone between the two currents in (9.3) is indeed
being probed.

'As suggested by our analysis of the discontinuity, this is
not the light-cone singularity of a simple operator product. We

can reduce in the hadron H appearing in (9.3), getting2
2 ;(d“x d%"\q'?; e iQ'xe‘»P‘(%":D <O\T(3;(X> S*’(‘fy );’{>
n
¥ <n|T(3,00)52) o>

10)

B | . _ .
= gdd«x dfyd*z e e A %)40!“1’(’5# pOSTOYT (T, (0)SE) o> ’

where T and T stand for time-(anti-time-) ordered products,
and the hadronic sources are represented by S+(y), s(z).
What light-cone singularity for (9.10) is required to give

scaling of the form (9.6), and what form is expected in various
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different models? It is convenient5 to introduce the structure

functions Vl and VZ:

(30, 2"+ 9,2 )Vl a)+ (O LR -BbT-4, )V 0447)

Quantities V; and V, analogous to Vl and VZ can be defined
for electroproduction. It is suggested by the data that as
expected in models using fundamental fermion fields, (5; and
hence Vl vanish in the scaling limit. We will make the analogous

assumption for Vl in the annihilation process. Comparing the above

equation and (9.5) we see that the canonical scaling expectation

Vo, 2) = fonckion o 3

We can represent Vz in the form

for V2 is

\/7_ ~ \(0(4—76 < »'q-xg C; (x>§; (P"’)

where the Ci(x) are the leading c-number singular functions,
and fi(p-x) are analogous to (but more complicated than) the
matrix elements of the bilocal operator in electroproduction.
Then dimensional arguments suggest that the Ci(x) be singular
functions of order zero.

Because Ju(x) is always to the left of Jv(O) in the
expression (9.3), it, and hence the singular function, should be
analytic in the lower complex x

0 plane. This suggests that the

leading singularity is of the form
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kh’ ﬁf(wx?~+éexo> | (9.11)

where W is some mass parameter. Singularities of the form (9.11)
*
do indeed occur in free field theory and super-renormalizable

field theory modelsG. Thus we have

T -~ .x . ‘—'

V, ~ gd."x e 1™ /uz (-x+ texo) &(P-&)
Introducing the fourier transform

3 [lp) P (p

!

3 (=)
we get

V, o~ \(dx@‘% T, P (- iexo) F (o)

o (A 3 Ofgomepe) S (b))

« YV ?3" (3

(9.12)

Thus we have recovered the desired scaling law for this

process: notice that at this level g'(f) is completely arbitrary

(except that it must vanish for & < 1 in order to respect the

spectrum condition). In particular we can choose E'(E)‘N SZ as

*

It is clear that carrying through the free field theory aaalysis
of Lecture 5 will always yield a singular function of (-x“+iexq)
in current products where J(x) appears to the left of J(0).
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g+o, so that the multiplicity integral (9.7) diverges as §¥%,
giving a logarithmic increase in hadronic multiplicity.

If 5'(5)%62, then E(E)%£3 as &+o and _'f(p-x)—4 as
(p-x)>0. At first sight this seems rather strange7. The matrix
element of the bilocal operator in deep inelastic electroproduction
is analytic as (p+-x)>0, and one might have expected E(p-x) to
be similar. 1In fact there is no reason known why f(p-x) should
not be singular as (p+x)30, and in general it is singular in
models. For example the analogous guantity in a super-renormaliz-—
able ¢3—type theory which scales has a log(p-+x) singularity in
lowest order perturbation theory6. A singularity is possible
because there is no simple representation for the operator product
(9.10) controlling the annihilation cross section, and in models
this complexity is reflected in the expression for f(p-x) which

has a structure like
f&‘*ﬂa‘*;,. e P LI TS ) T (o) SEM D (9.13)

where ¢ is a fundamental constituent field. The integrations
over y and =z in the expression (9.13) can give singularities
in (p+x), because they involve integrating over singularities
in (x-y), (x-z), y and z. Brandt and N98 have demonstrated
explicitly how these integrations over singularities can give rise
to singularities in (p-x).

We have shown that the light cone is relevant to e_e++y+
hadron + anything, and that a canonical singularity gives rise to
canonical scaling analogous to that in deep inelastic scattering.

Immediately the question arises whether any interesting predictions
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can be made from the light cone. 1In deep inelastic we obtained
two classes of results: sum rules (Adler, Gross-Llewellyn Smith

etc.) and spectrum relations
eN,
AN Y
$ e
*TRTE

In annihilation it is not possible to derive sum rules and this

ca } ‘2<E9P-F\eu>_: F;P" stu e

~ )

can be seen in two ways:

a) 1In deriving sum rules we used dispersion relations to

connect the real part (given by a canonical commutator) with

the absorptive part (proportional to the structure function).

When q2>0, the annihilation cross section is only a portion

of the full absorptive part of the amplitude, so that the

connection breaks down.

b) The sum rules related moments of deep inelastic structure

functions to matrix elements of local operators which were

terms in the expansion of the bilocal operator around

(x-p)=0. In annihilation the analogue of the bilocal operator

is not in general analytic at (x-p)=0, and is not closely

related to local operators.

However it is possible to derive spectrum relations in the
annihilation region, since these just depend on the internal sym-
metry properties of the leading light-cone singularity and do not
require any analyticity properties. Suppose we write cross section

for e—e++yﬁhadron + anything in the form:
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(9.14)

Then the SU3 representations in the current-current channel
indicated by the arrow will be restricted by the choice of the
fundamental fields which the current is formed. This is because

the diagram (9.14) can be written (literally in the parton model,

figuratively in a more general light-cone analysis) as:

S

(9.15)

If the fundamental fields just belong to isospin singlets

and doublets (or SU3 triplets) then only 1I=0,1 (or SU singlets

3
and octets) will appear in the current-current channel; This gives
a number of predictions: consider for example e_e++ﬂ0+ anything.

Then

El_.‘?f )y - 29&9‘(‘{(0} -+ EQE:[TT’) (9.16)
o =51 4%

corresponds to I=2 exchange in the cross channel

Ghr'( + _ EEZ - |
= () a1z (&) b L=l (9.17)
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- (9.18)
.@.&:‘(v*} + AT (oY)« SQ_E{Tr) w T=0
A% A3 A3

Our assumption on the quantum numbers of the constituents deter-
mines that the combination (9.16) is zero. Charge conjugation

requires that (9.17) be zero. Hence

dr () = 45 = do (- (9.19)
EF O = F e = F

This prediction gives a precise check of our ideas about the quantum
numbers of constituent fields, and should be relatively easy to

test at e e’ colliding rings, pions being the most copiously
produced particles. Predictions analogous to (9.19) can be made

for other multiplets.lO

9.3 - L + p > L + Hadron + Anything

A similar analysis to the previous one can be made for this
processz’lO (for simplicity we will restrict ourselves to spin
zero currents composed of products of spin zero fields). The cross

section for L + p =+ L + H + anything is then
« & Xo\"xe‘%@ 136 Ri><k nlT0) |p> (9.20)

where the target hadron has momentum p = (M,0,0,0), and the

observed hadron has momentum k. As before this could be rewritten
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o quxoﬁ:joﬁ% ec({'xeck'&'g’(p\T(T{x)s*(g))‘? (SOYSEHIE>  (9.21)

The light-cone singularity again has the (—x2 + iexo) structure:
in this case it will be (—x2 + iexo)_l because of our choice of
scalar currents and spin zero fundamental fields.

The expression (9.20) or (9.21) can then be written

X (d”(

e o e A terms  non-Loding N\
—H—e;o g(XP) e PR> v (m the U@Wrcm)

Introducing
i CXP\) (.K(Q\),./
G pe) = g A P i pi)

we get

go\ddﬁ %C“ﬁ,Ph}gf’H’x ‘{ “f fgk)x

+ L€ %o

Sdo( OQ,‘S 3(0(; F/F"Q)@(V—O( M- ﬁho)% ( (Q”dP~/ek)z> (9.22)

Introducing w'= 2q-k/—q2 and = 2{1)/—q2 we find the argument

of the § function becomes
% ( C{ZO— ® WO ~= ﬁw' —»cxfzx) + c><"M1+(32M1>
\

In the limit q2+—oo with w,0' and k fixed Egq. (9.22) becomes
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ol Pdﬁ (g, pR) O w-p3) 3 [1-aw-put xpx)

It is evident that if p-:k 1is kept fixed as q2, g-p, g-kr> (k>0)
then there is a fair possibility that the (--x2 + ie:xo)"l light-
cone singularity will dominate. However, if we also take p-k»o
the leading light-cone singularity will not in general dominate.
Non-leading singularities will in general have extra powers of
l/q2 associated with them, but the kernels analogous to g(o,B8,p-k)
might well blow up as (p+k)»>= in such a way as to cancel out the
powers of l/qz.

This situation is precisely what is féund in parton models

5,11

of this process for (p-x) finite in the scaling limit,

parton model diagrams like

. 4

C{

R 3

dominate, and scaling is given by the leading light-cone singularity

However when (p-+k)>» with « fixed # 0, then graphs like
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dominate. This graph clearly has no singularity on the light cone.
In terms of the five regions introduced by Bjorken12 in discussing
final states in electroproduction, the light cone dominates in
the target fragmentation region and plateau, the hole fragmentation
region and any finite part of the current plateaulz. But it does
not dominate in the central region of the current plateau, or in
the parton fragmentation region near the high momentum boundary
of phase space.

Consequences of applying light cone ideas to the final
particle distribution in electroproduction have been pursued by

several authors.z’lO’13

The scaling laws obtained agree with the
parton model and a Mueller-Regge analysis, and interesting
testable predictions of spectrum relations can be made. As in the

case of annihilation, no sum rules can be obtained.

9.4 - p + p > (u + u+) + Anything

The differential cross section for producing a up-pair of
mass = /&2 from two incident protons p,p' with total centre of

mass energy Vs is (for large qz,s)
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d ) )

s - W/ [g®

—— 2 S

where (9.23)

W(qss) = (a0, hL 1T p>

We are interested in the scaling limit q2, s+» with TEqZ/S
fixed.

It is difficult14 to see how dominance of this process by
the leading light cone singularity of <pR;!Ju(y)JU(O)IPR:> can
be made plausible except under extra assumptions. Consider a
term in <pp&|Ju(y)Ju(O)|ppi> which behaves like (y2—iey0)n

near the light cone, being of the form

(‘;’51 ._.L'eﬂ.,)h 35 (\3'3, \’"tj ) S=QE+P‘)2) (9.24)

Suppose for example that f(p-y, p'-y, s) were of the form

—

§ (by, piy) s

for some exponent m. Then in the scaling limit q2, s+  with

T=q2/s fixed:
goi‘*g, 4,8 (§ e Floy pyg) = @ 300

for some exponent n' which depends on n. Hence (9.24) would

give to (9.23) a contribution

* .
The factor of £3+(y,q2) in (9.23) comes from the lepton kinematics.
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!
n
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Clearly the possible dependence on s in the matrix element
allows non-leading light-cone singularities to contribute or even
dominate in the scaling limit.

This is exactly what happens in the parton modells, where a
term nonsingular on the light cone controls the scaling behavior.

In the parton model we must consider two classes of diagrams

Bremsstrahlung:
- and Parton-anti-parton P
Annihilation ot
/‘A
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It can be argued that the bremsstrahlung diagrams do not contribute
in the scaling limit. Let us work in the centre of mass frame
using light-cone variables and consider a parton from proton p

with momentum

( m>+ Fi ‘DJ | x \F+\>

2xp, T

which emits a photon of momentum
%. - (Fz-') i!~L Y ?:P 4

leaving behind a positive energy on mass-shell parton with momentum

R =

( mT+ \Q_i

N
R,
2&_* )= +/"}

Since q2=0(s), both g, are 0(¥/s). But k+>0 because the

parton is physical (!) so by energy momentum conservation

2 2 L%
M+ Ps = 9 + MR, = O(ﬁ)
2xp, 2R,

This condition cannot be satisfied because p, is- 0(/s), |EL!
is cut-off and wee partons (x+0) can be argued away. Hence the
bremsstrahlung diagram is suppressed,

The surviving annihilation diagrams have no light-cone
singularity, because they have no parton propagating between vy

and 0, in contrast with electroproduction
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it

W (4%, )

b

Working in the centre of mass frame, the off-shell photon is pro-
duced by a parton from proton p of type a with momentum xp +
(finite part) annihilating with an antiparton from proton p'
with momentum x'p' + (finite part). The probability of finding
a parton of type a with momentum v xp is (from Lecture 3)
ua(x) (and similarly for the antiparton ug(x')). We have the

restriction (xp + x'p')zz;f Q2 = xx' = 1. Hence
' | <
W(Q?,S\, = g o\x( dx/g(%x’~’t>§ ua(x)vka(x’)Qa (9.25)
7o o Jo a

To obtain the coordinate space structure of (9.25) we use15

L“"\*’PL\)'\B

% : | = 2L & -

&&\\j A+(‘$»C{ >€ = g S{xexz -C.?) (9.26)
where Py and p, are momenta such that

!\‘\9\*33_&)?’ = %x,/5 + (terms vanishing as S,q2*°°)

Possible choices are (in conventional coordinates)



~164-

( WM, x@

( SX,ZE.*_M-L ) ’7‘,-\°—>

pg
]

1l

P,

where p = (fp2+m2, p) . Substituting (9.26) into (9.25) we find

<pp, 1Ty TV PPl

! 1 . .
< ’E. Dl}r S‘oo{xl‘e:(\’n*\o’-) &5§ b{q_("é Uz (x.) @3

21 v©O (9.27)

+ (terms not conkAdrabing to UJ!:C(?,S)\;‘;

which is non-singular on the light cone unless u, and ug are

very bizarre. From (9.23) and (9.25) we see that

Ao 1\ 2
:&t N o {L) = (‘i /S>

in the parton model in the scaling limit. From (9.27) we see that

this scaling law is not given by the leading light-cone singularity.

9.5 - Comments

There are other processes where light-cone ideas can be

applied, for example to two photon processes in colliding rings

& * * &

eT 4 27 > e+ e + Hadows
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diagrammatically X
+
e~
—
+
€ "
e

where the virtual photons are a long way off their mass shell.

The hadronic state produced may have finite mass -- for example

a 'ﬂ'o.

Also there is a class of processes16 which probe the com-

mutators of pairs of light-cone commutators. Examples are

(a) e et v ,b\"r* + Halros

where the (e e'), (u"17) and hadronic systems all have large

masses,
(b) L+ b s Le (D + Hadrons

in the deep inelastic region with the (u—u+) pair having a large

mass

X *
(c) ei-»e*_:;e*e + Hadons

where both the virtual photons are a long way off mass shell and

the hadrons have large mass.
At the moment we feel that the most interesting problem is
to understand the parton model better, particularly in configuration

space. Just what are the basic assumptions and properties of the
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model which make it applicable outside the regions of light-
dominance? If we had such a formulation, then we might understand
better how seriously to take these other predictions of the parton

model. After equal—-time commutators, short distance behaviour and

the light cone, where next in x—spacé?
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10. J =0 Fixed Poles

10.1 Introduction

Up to now we have applied operator product expansions to
lepton scattering only at asymptotically large momentum transfer.
At finite q2 all terms in the expansions will in general contri-
bute and there is no particular advantage in this approach.

J = 0 fixed poles are an exception: There is good reason to
believe that their residues are (simple) polynomials in qz.

This may be used to establish enticing though difficult to test
correspondences between large and small (even zero) q2 phenomena.
I wish to avoid detailed Regge theory (for lack of both
time and competence) and will use it only to provide a paramet-

rization of the large VvV behavior of Tllz(q2,v). Identical re-
sults are obtained whatever parametrization is used (provided it
possesses the usual analyticity and crossing symmetry). Since
Regge ideas are not a priori valid at asymptotic qz,l it is
comforting that this analysis is not tied to them.

I will proceed as follows: first to say what J = 0 fixed
poles are; next to show why they should not occur in purely
hadronic processes; third to argue that their residues might be
expected to be polynomials in q2; finally to apply these ideas
to the study of electroproduction, specifically in deriving the
Cornwall, Corrigan, Norton, Rajaraman, Rajasakharan2 sum rule
and the Schwinger term sum rule of Jackiw, van Royen and West3.

The latter provides a rich example of the unity of the techniques

developed in these lectures.
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10.2 Definitions

For our purposes a J = 0 fixed pole (hereafter F.P.) is any

purely real term in a scattering amplitude at infinite energy

with an energy dependence corresponding to an o = 0 Regge pole.
We will discuss only forward (t=0) scattering and therefore have
no experimental reassurance that J = 0 F.P. are indeed fixed
(independent of t), although theories which generate them inev-
itably generate no t dependence.

To be specific, a real term at infinite v, of the form

Cl(qz) in Tl(qz,v) (which Reggeizes like va), or of the form

2.0t 2 : . . a-2, . :
C2(q )37 in Tz(q ,V) (which Reggeizes like v ) is a J = 0 fixed

pole.*

For completeness we write out the Regge parametrization of

.g.) T,
(e.g.) Ty ‘
Vi,
ﬁ p— 2 ’3(‘ e» ‘1\_ y X
1% SR A\ e TS SV
i G = Wl el G : H
: ‘s%’;b-‘ 02.23 4&; (idt-—{, A BTN /

(10.1)

If, as we are assuming, the Regge terms scale, thenl

3

=X
1. ., %
Lime  Y-1x,q7) = {GY
GF -2 oo

Note the behavior of Eg. (10.1) for a = 0: If Re T?(qz,v) is

to remain finite for ¢ = 0 (which it must) then Y(O,qz) = 0

and Im T?(qz,v) =0 at o = 0. A J = 0 pole in Eg. (1) is purely

*For £t # 0 Cl and C. become functions of t.

2
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real. A more complex J-plane structure (e.g. a Regge cut or
dipole) can generate an ¢ = 0 term in Im T? and logarithms in
Re T?. We will stick to Eg. (10.1). More complex J-plane singu-

larities present no more than technical problems.4

10.3 Exclusion from Hadronic Processes

Fixed poles are forbidden in hadronic processes by unitarity
and hermitian analyticity. A simple proof is as followsS: con-
sider the t-channel partial wave unitarity equation below inelas-

tic threshold

AR N
3 (L Yoy i \,!*- 3 . 3
bl 4+ AR TR TPV NP VAT AL A S A S LA
e =0 i i’-,‘-}é - 2 [_‘j‘.a c‘,é (e is.‘-y _3_96'9
b i-) - 1‘(:/ L B ') %Q.’L.g_w\,“ -
:,»\e_ 741\#‘

(10.2)
By hermitian analyticity (b*(&8*,t+ie) = b(L,t-ie)) Eg. (10.2)

becomes:

7
! LN oy N\ e iif: | ] 13 . ‘\
r)(i;%*bé}”béfz,%wé; = ,@24_%1 bl t+e)bll, t-1e)

(10.3)

b(%,t) cannot have a pole at & = 20 independent of t, for then
the left-hand side of Eg. (10.3) would have a single pole while
the right-hand side would have a double pole, which is, of course,
a contradiction in the absence of essential singularities and
the like.

Current scattering processes such as electro- and neutrino-
production are immune to such arguments. They are calculated

to lowest order in electromagnetism or weak interactions only

and therefore do not obey non-linear unitarity equations like
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Eq. (10.2). Soon after Regge poles were introduced into particle
physics it was shown that a J = 1 fixed pole was necessary to
compensate the decoupling of the Pomeron in Compton scattering.6
Subsequently Creutz, Drell and Paschos7 called attention to the

possibility of a J = 0 fixed pole in Compton scattering.

10.4 q2 - Dependence of J = 0 Fixed Pole Residues

Light-cone expansions with leading free-field singularities
lead to the expectation that residues of J = 0 F.P. in kinematic
constraint free (KCF) amplitudes are (simple) polynomials in q2.
The restriction to KCF amplitudes is to prevent the introduction
of inverse powers of q2 into the F.P. residue by arbitrary
redefinition of the invariant amplitudes.

The best "physical" motivation for polynomial residues
comes from parton models.8 There the J = 0 fixed poles arise
from the real part of the diagrams whose imaginary part yields

scaling (we consider spin-1/2 partons for the moment) :

Figure 1

The fixed pole originates in the Born graphs:
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Figure 2

which are "glued" on to the parton-proton amplitude:

The born graphs (averaged over parton spin) vyield

Roen wﬁ*{?fwi?+ﬁﬁ¥a} '?%{?Vviﬁ+%}¥r}
M{;v < 2 * 2
' dpaq+q -2

with p+g = xP*q = xv. As v > o

T Born_w; const g + other terms
pv I8V

This constant is a J = 0 term in Tl with polynomial (in fact
constant) in q2 residue. It remains to be verified that this
term persists when the Born graph is grafted on to the rest of
the amplitude. To do this would be to duplicate the coordinate
space analysis which follows. Reference 8 treats the problem
in detail. Finally it is necessary to argue that no other

diagrams have J = 0 F.P. This is possible because all other

diagrams are of the form:
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Figure 3

It is argued that these are no more than particular contractions

of parton-proton 6-point functions:

- T

which are assumed to be strong interaction amplitudes and by
virtue of this to possess no fixed poles. In the coordinate
space approach an analogous assumption must be made. In any
case the consequence that fixed poles at J = 0 have polynomial
residues is testable (via the sum rule of Section 10.5). The
reader may either accept polynomial residues as an assumption
(with the above motivation) and proceed to Section 10.5 or read
on to discover the origins of J = 0 F.P. in coordinate space.

To proceed in coordinate space9 it is necessary first to
review the origins of Regge behavior1l in the light-cone forma-
lism. A treatment of the physical Compton amplitude, Tuv’ in-
volves too much unnecessary tensor algebra. We shall study
instead a hypothetical amplitude T(qz,v) with the following
properties:

1. Up to polynomials, T(qz,v) is the Fourier transform

of a scalar function of x2 and x-p with the boundary

conditions appropriate to a time ordered product:
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e X . \
Tﬁcﬁ‘*?‘ sq_jé“’xe ¥ C{XZ"LE.,X‘?}

+ polynomials

(10.4)
2. T(qz,v) Reggeizes like vl At fixed q2.
3. W(qz,v) = %? Im T(qz,v) is crossing odd:
W(g?,v) = -Wig?,-v).
4. T(qz,v) is analytic in the cut v-plane with cuts from

~-® tOo q2/2 and from —q2/2 to .

The strategy will be to show that a light-cone singularity
in C(xz-ie, X*p) generates a fixed pole at given J-value depen-
dent on the strength of singuiarity. The way we have concocted
C(xz—ie, x*p), a free-field singularity (ET%IE~) will generate
a J = 0 fixed pole. While other singularities may generate moving
poles at any J-value or fixed poles at other J # 0, only the
gq%zg-term generates a J = 0 fixed pole and it has polynomial
(in fact, constant) residue. It so happens that this is also
the case for (eg.) T2 in electroproduction (or neutrinoproduction):
a free field singularity in,<P|T(Ju(x) JV(O)|P> generates a
J =0 F.P. with polynomial residue, while all the other terms
generate only moving poles or F.P. at J. <0.

The analysis is not without assumptions. Most important is
the assumption that as t changes from zero any quantity which can
be t-dependent, is. This is crucial and is violated if there

are J = 0 fixed poles in photoproduction (or electroproduction)

of specific final states (eg. yp - pp).
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To begin, consider the Regge behavior which might arise
from a leading free field singularity in C(xz—ie, Xep):
! -?z’x-p)

C(xz»te x.pj R e e
| ] T oy2oie

which contributes to T(qz,v) as follows:*

=2 ) ! ?:scii —p{)\‘!
EEE.Q,;W = L’T:}“} ’ in)\ Q 4_}‘2 “Lé}

-

(10.5)

where

Eg. (10.5) establishes that vW(qz,v) scales. As ¢ = —q2/2v
goes to zero Regge behavior in W(qz,v) is obtained if f()) is

proportional to A~ % for small i:

Xt na
Lh %) } Q = jlicé

wlp OO

We will therefore parameterize Regge behavior in ?ﬁqz,v)

by:
. w
NS JORVIN Y

(10.6)

*The subscript on T indicates this particular contribution
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where the absolute value and e(A) are required by crossing.

Egs. (10.5) and (10.6) are not entirely correct as they stand.

T?(qz,v) must be analytic in v. Im T?(

(10.5) and (10.6) is zero for |&| > 1 and equals to

qz,v) generated by Egs.

21 T B(a)|E| (&) for |E] <1 - which is clearly not analytic.
a
To remedy this we define*:

. v N ¥ - 04
R [ dhL pr AT e

)

i
g

(10.7)
We will need only to consider trajectories with non-negative

intercept (o > 0). These may be isolated from Eg. (10.7) regard-

less of q2:
L"‘?mb
8 -t
i - .M;wg;, 2 Y e Z % 5
STV DR (- KAV ) €
W iy 0O : % Q 9(>O SLAA/V'@; y
%ﬂ-ﬁxeaJ

(10.8)

Note the following:

1) An @ = 0 term in Eg. (10.7) would contribute a logarithm

* This is the familiar problem that Regge parametrization of

the form v® does not incorporate the physical threshold. Since
only asymptotic (v + =) behavior is of interest, this is unim-
portant. Alternatively the parametrization (v—vo)a (or in our
case (w—l)u) may be used. This form has the correct threshold
and is analytic. Use of this Regge parametrization is developed

in an appendix to Ref. 4.
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to Eg. (10.8), not a real constant. For convenience we ignore

such a term. It presents only technical problems which are

treated in Ref. 4.

2) Eq. (10.7) generates no purely real constant term.

To proceed we subtract from Egq. (10.5) its leading Regge

terms {(all o > 0)

- A2 - R o t
T =T @) = ol 22

(10.9)
I+ is understood that f()A) vanishes outside [-1,1]. All terms
which vanish less rapidly than 1/v have been explicitly sub-

tracted. Therefore the v » « limit of Egqg. (10.9) exposes the

u

LA 35
(10.10)
where
N' - 1 ¢ sy X
fov= £y -1 el in™ e
TR

. 2 . . -
* Remember our assumption that T(g ,v) Reggeizes like vu l, =Y}

aJ =0 F.P. is a term proportional to 1/v at large v.
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is explicitly finite since all terms which would have produced
divergences in the integral have been subtracted off. Also it
is manifestly a (constant) polynomial in q2.
As for t-dependence, we shall assume that as t departs
from zero everything which may develop a t-dependence does:
£(A) = £(2,t)
o + o{t)
B(a) » Bla,t)
However the light-cone singularity is a c-number so its strength
is independent of t. The location of the fixed pole at J = 0
was determined by the strength of the singularity (we shall
make that clearer momentarily) and is consequently independent
of t.*
So far we have discussed only the contribution of a leading

free-field singularity. It remains to show that non-leading

singularities generate no J = 0 F.P. To do this consider a

specific example: a singularity one power weaker:

[C(x%-ie, x*p)] = log (x°-ie) h(x*p)

non-leading

whose contribution to T(qz,v) we label T2:

¢ d} \?“‘(‘}\\;§
~2 {

/ 4, ' H
-1 (Avh- G2 MM* - Le)

Consider a term of the form |A| “e(A) in h(X) [Again the limits

of the A-integral must be extended to *=]. Such a term contributes

*Note, of course, the residue TFP(qZ) may develop a t-dependence
although the location is fixed at J = 0.
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to T2(q2,v) as follows in the Regge limit:

v - N— \ ,1,,“ .
L1 Q5] < &1y €

v - 00 R4

Q.2 tixed

Non-leading singularities are damped only by factors of Q2 not
V in the Regge limit.*

Now a term of the form B(O)|X|0€(X) in h(X) will contribute
a real constant to T(qz,v) at large v. According to our assump-
tion (everything develops a t-dependence if possible) this is

a moving pole:

e . {0} =0 oA ILS

= T = Dy

and is of no concern to us. If we subtract off all Regge con-

tributions with o > -1 then a J = -1 F.P. emerges:
o0
|RY
4 % A g \ o NEE R Rl ‘\
| ?1‘; 2.0 1‘R{1_ - - [h} - CIARY 6%
! Vi - . vj} ol FLiAd FRYN! € LA
P e A I SRy

but no J = 0 F.P. is found. (Actually the residue of this J = -1
F.P. is zero by crossing h{(A) = -~h(-1A) though this is not the
case for other singularities).

In fact: The location of the fixed pole generated by a

given light-cone singularity is determined by the strength of

* Parenthetically this is explicit evidence that the Regge limit

is not light cone dominated.
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the singularity. A free field singularity generates a J = 0 F.P.

The pole is fixed because the singularity is a c-number.

This completes the argument that J = 0 F.P. residues are
simple polynomials in q2. Generalizations to vector currents
and non-integer dimensional singularities are found in Refs. 10
and 11. Several warnings are in order:

1. Such poles are very difficult to isolate experimentally
since moving poles, cuts, etc. may have intercept arbitrarily
close to or even fortuitously at J = 0.

2. We have assumed that it makes sense to expand the current
correlation function about the light cone to all orders. Perhaps
some non-uniformity in this expansion generates an o = 0 fixed
pole in lower order and foils the proof.

3. J = 0 fixed poles are not excluded from photoproduction,

P P
If we now append a photon to the rho, a non-polynomial residue

F.P. would seem to occur in Compton scattering:

It is instructive to see what goes wrong with our argument if
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there are fixed poles in photoproduction. The fixed pole term

is of the form*

FAP. ’ 2 —

; e 7 T
Now Q%) v QE- g HLE
POLYNOMIAL

In coordinate space this yields a string of light-cone singular-
ities multiplying functions of x-p which are t-independent.

We had assumed such terms (which are matrix elements of bilocal

operators) to be t-dependent. The presence of fixed poles in
photoproduction will generally destroy the proof that F.P. in

Compton scattering have polynomial residues.

10.5 Application I. CCNRR Sum Rule

This sum rule is simply the precise statement of the fact
that the residues of fixed poles in virtual Compton scattering

are polynomials in q2. The derivation followed here was developed

with Llewellyn Smith.12 Parton mode18 and liqht—cone9 deriva-

tions are also instructive. To begin we must write a kinematic
constraint free decomposition to Tuv' The usual decomposition
is not satisfactory: as noted in Lecture 2, if Tuv is to remain

finite at q2 =0 Tl and T2 are constrained to obey

L

P X b,
e;ywx,. 2“%:1 %1(%7}\‘} - '{mw:ﬁfc
Q -

K

!
i PR

Lo Wimg g v)

QF-n o

T, 0] ~ e

*We continue to pretend that the amplitude in question Reggeizes

like v®~ 1,
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A constraint free decomposition is:

FOs——

Tor = = (g - ) £ (459)
+ "'ﬂz (-P’LPV q,z" 14 (P}‘q.v "‘-Pv?r-)"'vz%'w) {'z (%z'v)

(10.11)

T (ghy) = cr , (q%)

'T"(q‘z)v) + T (Q,,,\)) = Q,%' ‘Q.;\)) (10.12)

MZ 2
A rerun of the derivation of the last section with appropriate
free-field light—cone singularities establishes that t and t,

have polynomial residue J = 0 fixed poles.

Consider t2 (q2,\)) :
o0
Avl vl WZ (q‘z)vl)
12
-—Q—/,_

% (q,)\))

62__\)2.

(10.13)
The J = 0 fixed pole is a term proportional to l/\)2 as v > o,
t2 (qz,\)) contains all sorts of leading (a > 0) Regge terms
which mask the fixed pole. We will assume these to be only
simple poles with 0 <a <1 - cuts and a possible ol= 0 term
in W2 are discussed in detail in Ref. 4. To remove leading

Regge terms:
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i ol-
L5 = 2 T ik “— )

J
x>0 SAc T ol

write the dispersion relation

v'd
LD (g = % I v

Z Y(“J‘L )y a2

«>0

(10.14)

Note, the threshold is V= 0 rather than the physical threshold:

—q2/2. Now subtract Egs. (10.13) and (10.14):

3, (g3 - £X (@) = 1, (@)

4 dv’
) ?{2 Jo vitoy2 [w (q’ V) - uZ):QX(“JQ;)V

4 J'wv'c)v'

a . Vlz_\)z 2 q’/“
(]

%2
The leading term in 1~:2(q2,\)) as v » » is the fixed pole.

, Lome ’c L @) = 52Calq2)
...__"_2!‘__2 [ \)'clv' \7{2 (Q‘Z)\):)

vig

=2 ]

(10.15)

The integral over ﬁz is convergent since all terms which vanish
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slower than l/\)'2 have been subtracted out. Eq. (10.15) may

be evaluated in the Bjorken limit:

L C,(g%) = &g deo T, (w)
A 0

or at q2 = 0

(10.16)

oo

( ~
Cator =2t g | 2 BtV ]

(10.17)

To obtain Eqg. (10.17) from Eg. (10.15) note from Lecture 2 that:

L. —-sz (q,zn)) {
WAAL

o~
@ oe MG i T

where OTOT is the total photoabsorption cross section for real

photons. The "1" in Eg. (10.17) is from the Born term (Thompson

1imit) which has been separated out from under the integral.

g is defined in analogy to %2:

o~

{
o=
O (V) & Ompr (V) - )3 peor v

adyo

Fz(w) is defined from Wz(qz,v)

’\\::(w) = L -\:—“1\7\’2 (Qz.v)

v,45
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The final step is the trivial observation that the only
polynomial in q2 which is constant at q2 = 0 and at q2 = « is

a constant, hence C2(O) = CZ(W) or:

@ ~ 1 oo ~
5 dw F,(w) =4 + = J dv O (v)
o o

(10.18)
which is the CCNRR sum rule.
Damashek and Gilman13 and Dominguez, Suaya and Ferro-—Fontan14
have evaluated the right-hand side of Eg. (10.18) from photo-
production data.* They find within rather wide limits, C2(0)

to be consistent with 1, i.e.

devCNT (v) =0

Tov
o

From the sum rule we are led to expect the behavior pictured

below for Fz(w):

ANt
W

A

L

*These phenomenological analyses are open to various criticisms.
Most important we have shown that moving poles and/or cuts

may have contributions arbitrarily close to or even at J = 0.

One must assume that the operation of subtracting off known
trajectories with o > 0 isolates the J = 0 fixed pole. Addition-
al ambiguities regarding the intercept of Regge trajectories and
the onset of Regge behavior are discussed in Ref's. 13 and 14.
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Area A - Area BE 1

In particular Fz(w) must fall substantially below its
maximum before the onset of Regge behavior. Close and Gunion15
have verified that current data are not in contradition to
this - neither however is there any substantial support for the
/value 1. A significant test of the sum rule awaits NAL data

at high w.

10.6 Application IT Schwinger Term Sum Rule

Combining BJL techniques with the assumption of polynomial
fixed pole residues, a sum rule may be derived for the operator
Schwinger term.l6 This sum rule is rather important in several
theoretical applications including electromagnetic mass differ-
ences.l7 It also provides a superb laboratory for studying
the validity of canonical manipulations in perturbation theory.lg’lg’4
Our analysis again follows Ref. 4.

Schwinger terms are non-canonical derivative terms in

current commutators. The operator Schwinger term in the com-

mutator of electromagnetic currents is defined by:

: 3
ST, Tl| = i9,8°@)s
Xo =0
We may isolate it in electroproduction by taking the BJL limit

of TOi with a; fixed but not zero:
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e T = - | % e VR T 0, T ]
BTL

+ 0 /Q' )"‘Po(s.r\mwls
- 4.9 + ol ) + Puppeniale

Using our kinematic constraint free decomposition of Tuv we

obtain (taking P = 0):

Liwe gagi (4o (Q@)-1, (q,v)) = % (-;-;)-*i;?(@ﬁv)

BTL

where P(qz,v) is some polynomial in q2 and v which is to be
identified with terms on the left-hand side which do not vanish

as q,> io, TIdentifying coefficients of l/qO:
6’ = - LU.M.- ?,2 (%l— (q,z)v) - {:2 (.q};\)))
RIL

(10.19)
where EL , are defined to have all terms subtracted off which
in the limit vanish like 1/v or more slowly.

We write dispersion relations for tL and t2

[ ]

* i * ) 2m
'L.(Q,Z,V) =h(q,’,o) —%:f zu'(v-z_\,z) C{u\' +“7;.'1c“(Q)92
%4
t,(q5v) = %’S vf'fl"v,_ W, (¢7)v') +§: %w(q,)o’*

2
a'/z, (10.20)



-188-

Where WL(qz,v) = —q2/2ﬂ Im tL(qz,v).
In both dispersion relations we allow a real polynomial; in
that for tL we explicitly use the first term in the polynomial

to subtract the dispersion relation. Changing variables from

v to w Jw y
% (Q, w) = L(Q,;O) —-4—" S' (w2 - wz)w (‘1“’ )+7:£ (ff)( 5 )

(9% w) = éﬂjw_é:z,_ K@) +Z%w«f)( “)

qfk ufz—boi
! (10.21)

In the BJL limit V,—qz > @ but w > 0. From Egs. (10.21) we

isolate the finite terms for Eg. (10.19):

Lm@ (1. @w)-£,(¢2w) = Lim g2, (g30) =-S

q’z —_— --O

(10.22)

The Schwinger term is the q2 + —-» limit of a subtraction con-

stant. Any other result implicitly assumes the absence of the

subtraction constant or otherwise disposes of it.

We shall dispose of it and obtain a useful sum rule from
the assumption of polynomial residues. We perform the same
analysis on tL(qz,v) as we did on tz(qz,v) when obtaining the

CCNRR sum rule. That is we isolate the fixed pole by taking
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v to infinity in a finite energy sum rule:

00
o~
Co(q?) =t.(g%0) + %z ‘-";,‘-’ W, (¢4v)
e
(10.23)
and CL(qZ) is to be a polynomial in q2. We require
Lim quL(qZ,O) (remember the bar indicates the removal of

w00

all parts which fall slower than 1/v). Since CL(qZ) is a poly-

nomial in q2 it makes no contribution to EL(qz,v) and we find

im h(@0) =4 Lim [ BT (@)

CLZ_Q - oo q3—0-°° o

- -8

(10.24)
which is the sum rule. Now if the polynomial residue assumption
were inoperativezo, a l/q2 term in CL(qz) would contribute to
the sum rule. We call such a term aL(qz). In its most general

form the sum rule reads:

oQ

S = Lim [—QL<¢)+4J9§WL(<§~)}

Q _ - OO o

(10.25)

Note that S is never infinite unless the q2 + -» limit

does not exist, despite frequent assertions to the contrary.



-190-

10.7 Breakdown of Canonical Sum Rules in Perturbation Theory

Canonically we expect Eg. (10.25) to be fulfilled with
2 . .
a; (@”) = 0 and Lown Wi lgiw) = Fotw) o
2

¢=-=
= 24w

so that S = 0 in spin-1/2 theories where FL(w) = 0 by the Callan-
Gross relation.
In second order perturbation theory this does not happen.

18,19

Consider first a spin~1/2 quark vector-gluon model. Since

Eg. (10.25) should be valid Feynman diagram by Feynman diagram,

we may confine our attention to the box graph:

™

Direct calculation yields S = 0. However FL(w) # 0 instead

2
Folw) = .Oi}.._ O(w?-1)

w3 w

and moreocver

2 (% d 2 (1-x)
Lo 4.(q%w) = -91-2 —

2 _ _ <
V o GO ain O%X(\X)H
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This is a non-polynomial fixed pole residue:

Lo a(q?) = 12“ /e
¢ -

So the sum rule reads:

0 = - /g +%2/afrrzf %)'2

and is valid. The breakdown of the Callan-Gross relation is
accompanied by the appearance of a compensating non-polynomial

fixed pole.

In a spin-0 theory4 the following graphs

and only the seagull graph contributes to S:
%Z 'A {-x
= X 242
g au? x,»2+(\—x) M

o)
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Again the sum rule is verified, this time conventionally.

There are however three more graphs in a spin zero theory:

T

These have no imaginary part and therefore do not contribute
to FL(w). The third contributes a logarithmic divergence

to the Schwinger term

9 = Liam %2/81r2)ﬁ- [o%/\%/\z
N> oo

where A is some cutoff. And the three graphs contribute a

non-polynomial fixed pole:

\dbun' Cl(Qf) = Lihw' ;;E;F}'( F \0% é;;'-:Z)
q}_a..oo q}-»-—°° 2 .z
p= (V- 4M/$")/

which validates the sum rule

C=-lim a(g?
312_,__-0

In summary, the breakdown of canonical scaling laws is

accompanied by the appearance of non-polynomial residual fixed
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poles which conspire to satisfy the sum rule. Of course the
sum rule is only experimentally useful if the fixed pole has
polynomial residue since a(qz) is not directly measurable.
Finally we return to the question, raised several days
ago, regarding S&-functions at § = 0 in structure functions.
The problem was that light-cone derivations of sum rules in-
volve the integration of the Fourier transform of a bilocal
operator over the range -1 <& < 1. For £ # 0 the F.T. is pro-
portional tc an (observable) structure function. A useful sum
rule is obtained only if distributions at £ = 0 are excluded
by fiat. Now we can identify these distributions with the
asymptotic limit of non-polynomial residue fixed poles. Again
the Schwinger term sum rule provides the test case. Jackiw,
van Royen and West3 derived the S.T. sum rule by purely coor-
dinate space technigques and found (assuming no Regge terms with

a > 0):

S 4{“"’5&5)
= - L
° %
(10.26)
This seems to be violated in (e.g.) second order perturbation
dg 2 2
'——E-FL(g) = g~ /87

However, Zee18 showed that a careful calculation of FL(E) in

theory of spin-1/2 particles: S = 0; f;

perturbation theory uncovers an additional term:

F..(“{) = %22 <%_2'§ 5(5)) (10.27)

g
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The §-function is not present at finite q2 and v and its rather
arcane origin in the non-uniformity of the Bjorken limit in
perturbation theory need not concern us. Clearly Eg. (10.27)
now satisfies the sum rule, Eq. (10.26).

This treatment is completely equivalent to our earlier
(BJL + finite energy sum rule) formulation. In Eg. (10.25)
the integral is to be evaluated before letting q2 + -» go that
any §-function which materializes in the Bjorken limit will
not be encountered. The non-polynomial fixed pole then cancels
the integral. If, on the other hand, one insists on formula-
ting the sum rule as Eg. (10.26) it is necessary to treat
%FL(E) (or its regulated analog) as a distribution with singu-
larities at £ = 0 which reflect the existence of non-polynomial
fixed poles.

Finally let me note that there are many intriguing and
perhaps useful consequences of the techniques developed in
this lecture. The reader is directed to References 4, 12

and especially 21 for further applications.
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