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ABSTRACT 

A pole approximation to the Dyson-Schwinger equations for the 

fermion self-energy parts is proposed to investigate the conse- 

quences of dynamical symmetry breaking on the pattern of 

lepton mass generation in gauge theories. This approach fines- 

ses known difficulties, encountered by Georgi and Glashow, in 

attempts to calculate the electron-muon mass ratio perturbati- 

vely in theories with elementary Higg’ s fields. Its self-consi- 

stency would imply, via an eigenvalue equation, the existence 

of ultra-heavy gauge bosons. 
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Among the long-standing unresolved puzzles of particle 

physics, the role of the muon has proved as frustrating as 

it is, presumably, of central importance. Intimately con- 

nected to this question is the relationship between the 

muon and electron masses. Recently, Georgi and Glashow’ 

emphasized the possibi 1 i ty’ that a solution to both of these 

problems may be found within the context of a perturbative 

approach to renormal izable gauge theories of the weak in- 

teractions3 and illustrated their ideas with “rational if 

implausible” models. The “r-a i son d’etre” for the muon in 

these models is that it is part of the multiplet that pro- 

vides the representation space for the gauge group. The 

electron mass is made calculable in terms of the muon mass 

by forcing the electron to be massless in zeroth order of 

the gauge coup1 ing and by 

as a result of finite rad 

i nvo lving a virtual muon. 

mass comes entirely from 

A consistent and satisfactory implementation of these 

the 

nult i cc 

ideas turns out I to be difficult to achieve because of 

iple conditions that need to be imposed on the cho 

then letting it acquire a mass 

ative corrections of order c1 

The suggestion that the electron 

ts being a “part-time muon” due 

to an interaction of electromagnetic strength is aesthe- 

tically appealing and also supported by the numerological 

observation that the electron mass Cm,) is roughly O. 

times the muon mass (m,,>. 
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of the gauge group, the lepton representation and the 

zeroth order lepton mass spectrum (generated through the 

Yukawa coupling by the vacuum expectation value (VEV) of 

the elementary canonical scalar (Higg’s) fields present 

in the Lagrangian). For i ns tance, the zeroth order spectrum, 

which differentiates between electron and muon by giving 

the muon a mass while keeping the electron massless, must 

obviously correspond to a configuration of VEV which rep- 

resents a minimum of the effective potential, stable under 

small variations of any of the parameters in the tagrangian. 

Such a condition is hard to meet in simple models because 

its specific symmetry breaking character *- tends to conflict 

with the symmetrical structure of the theory as embodied 

in the gauge interaction. 

This conflict is clearly exemplified by cons i tier i ng 

Weinberg’s chiral SU(3)xSU(3) model , The observed leptons 

are arranged in a Konopinski-Mahmoud triplet (j~*,v,@-) 

wi th left-handed and right-handed components transforming 

under the gauge group as a (1,73, and (3,1), respectively. 

The only meson representation which couples to the leptons 

by the gauge-invariant Yukawa coupling ({&,~~~ +H.C.) is a 

complex 3-by-3 elementary spinless matrix field ilk trans- 

forming as a (3,3). Since the VEV of the latter is 

responsible for the zeroth order lepton masses, to obtain 

the des i red zeroth order spectrum we must insi st that the 
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meson field in the array which Yukawa-couples to the 

electron (#?.?.I have identically vanishing VEV at the 

physical minimum of the action. A necessary condition 

for such a minimum to exist is that there be no (des- 

tablizing) terms in the effective Lagrangian linear in 

55 
which may arise from the coup1 i ng of 4 to other meson 

representations (Xc> also acquiring a non-vanishing VEV. 

The presence of such coupling terms as counterterms in 

the Lagrangian is sometimes forced by the requirement 

that the theory be renormal izible, i.e., by the need to 

absorb divergencies which appear in amplitudes involving 

both 9 and X . If no di rect coup1 ing between @ 

and X was introduced in the original Lagrangian, the 

amplitudes in question could obviously stil 1 be non- 

vanishing and actually formally divergent as a result of 

loop contributions present in some order of the gauge 

interaction. Unfortunately, this is precisely what happens 

in the case (under discussion) of Weinberg’s model. If 

the electron in this model is to acqui re its mass via 

radiative corrections involving the muon, it is necessary 

that there be a certain direct mass mixing between left- 

handed (W,) and right-handed (!dK) gauge fields induced by 

some scalar meson representation . But then there exist 

superficially divergent two-loop diagrams considered by 

Georgi and Glashow’ (see Fig. 11, with four external 
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elementary meson legs including one iX whose renormali- 

zation indeed requires the introduction of those un- 

wanted (destabil iting) Lagrangian terms we referred to 

lepton 

le 

above. Thus, the original choice of zeroth order 

mass spectrum appears to be inconsistent with simp 

stability criteria and ~4~ acquires an incalculable VEV.’ 

Georgi and Glashow, in their work , suggest, as a way 

to circumvent the above mentioned obstacle, enlarging 

the gauge group to S11(3JxSU( 3)xS11(3); i t is then pos- 

sible to avoid a direct mass mixing between W, and 

wfi. This prescription cures the specific difficulty 

addressed by Georgi and Glashow associated with the 

particular perturbation theory diagrams they consider. 

However, even if we assume that the ,introduction of 

the unwanted (destabilizing) Lagrangian terms is not 

forced upon this model in any other way, so that there 

does not appear to be any obvious inconsistencies with 

the choice made of VEV, such a solution may be regarded 

as too “ad hoc” to constitute anything more than a 

technical victory. The latter criticism may also apply to 

the SU(3)xU( 1) model proposed by the same authors. 1 n 

summary, the requirement that the electron mass be cal- 

culable as a result of the perturbative technique of 

electron mass generation mentioned above leads to con- 

straints which are selective enough to make it apparently 
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very hard to implement those ideas and still obtain ac- 

ceptable models. 

While the role of very discriminatory criteria may 

be regarded as quite useful in limiting the pro1 ifera- 

tion of models, we must clearly entertain the possibility 

that our presumption that the lepton mass spectrum is a 

perturbation theory effect off a non-perturbative spon- 

taneously broken zeroth order condition does not happen 

to be true in the real world. This would not necessarily 

imply that the electron and the muon masses are indepen- 

dent parameters since a relationship between the two 

could well exist as an entirely non-perturbative effect, 

i.e., completely outside of the realm of perturbation 

theory. This note is aimed at discussing some of the 

salient features of such a possibility in the general 

framework of gauge theor i es ‘. 

The idea that the solution to the electron-muon puzzle 

could be of non-perturbative character is relatively old. 

It was originally formulated in the framework of the 

ordinary electrodynamic interaction of muons and elec- 

trons by Eaker and Glashow7. The starting point for these 

authors (as well as for many others interested in non- 

perturbative phenomena of spontaneous symmetry breaking) 

is the consideration of the Dyson-Schwinger equations. 

They observe that, due to the non-linear nature of these 
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equations, non-perturbative solutions to the theory 

wi 11 not in general possess the symmetries of the equa- 

tions themselves and adopt the philosophy that the elec- 

tron-muon mass splitting is a reflection of this property. 

More precisely, Baker and Glashow consider electro- 

dynamies without bare mass terms 

where ++- ,tir, and A, are the electron muon and photon fields, 

respect i vel y, and e, is the bare electric charge. They 

seek solutions to the renormal ized Dyson-Schwinger equa- 

tions such that the renormalized electron Green‘s function 

G, has a pole at the physical electron mass rn<, and the 

renormalized muon Green’s function G,,, has a pole at the 

physical muon mass mL: (to be determined): 

Of course, since available techniques do not allow them 

to find solutions to the full system of coupled non- 

linear Dyson-Schwinger equations, they are forced to 

consider approximations to these equations. An approx- 

imation which is undoubtedly too crude consists of 

neglecting in the integral equations for the self-energy 

parts, E. .(Y P 1 and &+,($.,b), all spectral function parts. 

Thus they replace the exact vertex operator 5, by the 

-7- 



bare vertex :i,i! , the exact photon propagator D(;2’ 1 by 

l/q’, and ignore the $‘P dependences of :I(?‘+” 1 (Fig. 2,a). 

This pole approximation reduces what is an integral 

equation problem to an algebraic one. Since divergent 

integrals appear, a cut-off parameter-A must also be 

introduced. In the limit&>>n?, andA>>‘m,L! one then finds: 

These equations are cl ear 1 y symmetri c i n :?.:‘C and i;‘,, and 
,, 

do yield the perturbative solution ?Y:* =i(,l.=O. But they 

possess nonsymmetric solutions as well, for example: 

There is however a very obvious and substantial objec- 

tion to Eqts. (3): the lack of mutual coup1 i ng between 

;l;r and .@!Li. In the present context of QED one could hope 

to find a remedy to this by including spectral function 

terms in the photon propagator such as the ones coni ng 

from ..?:)t’. and eceM intermediate states (Fig. 2,b). This 

would lead to : 
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and to solutions perhaps more interesting than Es. (4). 

There will however always remain a major objection to 

the implementation of the Baker-Glashow program in the 

context of pure QED: the lack of any obvious compelling 

reason for the introduction of a muon in the first place! 

I t is very tempting at this time to associate this di s- 

turbing conceptual difficulty with the abelian nature 

of pure QED. 

This is then the first objection that a reformula- 

tion of the Baker-Glashow program in the context of 

non-abelian gauge theories could clearly solve. The 

solution is in fact the same as the one already mentioned 

in discussing the perturbative approach, i.e., that the 

a priori existence of a dynamical group implies the a 

priori existence of a minimal number of independent 

“elementary” fields needed to make up the fundamental 

representat ion of the group. 

Besides this conceptual reason, there also appear to 

be other reasons of more practical nature that suggest 

persuing the idea of Baker-Glashow within gauge theories 

rather than pure QED. One of these reasons is the depen- 

dence of Eqts. (3) or (5) on the cutoff,‘i. If we are to 

compute the electron-muon mass ratio unambiguously, in 

terms of the fundamental parameters of the theory (01) 

alone, the cutoff dependence of the approximate equations 

-9- 



under study must clearly not leak into a cutoff depen- 

dence of the approximate solution for that ratio. It 

is by no means clear whether this can be achieved for 

nontrivial solutions in QED. On the other hand, wi thin 

the context of gauge theories one can obtain an approx- 

imate self-consistent set of equations for the electron 

and muon masses which is unambiguous, i.e., independent 

of external cutoffs (the role of cutoff being assumed 

by physical gauge bosons masses) provided a careful 

choice is made of the gauge group and of the lepton 

representat ion. 

Finally, let us notice a further advantage of very 

practical nature which, in the non-perturbati ve approach 

to the electron-muon problem, definitely favors the non- 

abel i an gauge theory framework over pure QED: in the for- 

mer case, when electron and muon are representation part- 

ners, there exists a direct coupling between the equations 

for the masses of these particles in the simplest approx- 

imation to the Dyson-Schwinger equations, which does not 

retain any spectral function correction to the gauge 

boson propagators. This al lows one the freedom of 

tentatively assuming that the effect of these correc- 

tions may be consistently ignored if one is only in- 

terested in approximate relations, thus leading to 

considerable technical simplifications. 
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Having made these remarks, let us now consider the 

class of gauge theories based on chiral SU(n>xSU(n) 

groups wi th the left-handed and right-handed components 

of the known and (possibly) unknown leptons assigned 

to the (l,n> and (n,l) fundamental vector representations, 

respectively. We shall set the coup1 i ng constants of 

the left-handed (1J 1 and right-handed (I+,) gauge fields .- 

to the fermions equal (g_=g,=g) so that the Lagrangian 

is parity-invariant and we have one-coupling-constant 

theories. We chose to restrict ourselves to this class 

of theories in the following discussion to have definite 

models in mind, in spite of the fact that our considera- 

tions have a wider range of applicabi 1 i ty. In particular, 

besides Meinberg’s SU(3)xSU(3) model and models based on 

SU(4)xSU(4) gauge symmetry, on a future occasion” we hope 

to discuss in detai 1 the possible implementation of the 

idea of non-perturbative lepton mass generation in an 

interesting class of models” in which the left-handed 

components of leptons and anti-leptons (e’-,e’; .:I-‘, a:‘.;~-,-;:;. . . 1 .: 

share the same representation of an SlJ(n) group. 

The exact proper self-energy parts of our leptons satisfy 

a non-linear coupled system of integral equations whose kernels 

are expressible in terms of the exact vertex functions and 

gauge bosons propagators (Fig. 3,a). Suppose, now, that these 

quant i t i es (and, therefore, the kernels) were known in some 
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approximation corresponding to a spontaneously broken solu- 

tion of the theory. Then, assurni ng that the approximation 

of the kernels does not alter completely the nature of the 

solutions to the integral equations, we could use these to 

infer the implications of the spontaneous symmetry breaking, 

as manifested in the gauge boson sector, on the lepton mass 

spectrum. Since the most striking manifestation of the oc- 

curence of spontaneous symmetry breaking in the gauge boson 

sector is the acquisition of masses and the arisal of mass 

splittings between these particles, taking an optimistic 

attitude, one should hope that knowledge of the pole approx- 

imation to the gauge boson propagators would be enough to 

obtain the rough pattern in the generation of the lepton 
I 

masses 1- This is the approach we tentatively wish to persue. 

The approximation we are proposing amounts to substituting 

the system of integral equations corresponding to Fig. 3,a 

with an algebraic system corresponding to the set of diagrams 

of Fig. 3,b. The latter is similar to the set of diagrams one 

encounters in lowest order perturbation theory for the fermion 

self-energies except that the gauge boson and fermion propa- 

gators have now poles corresponding to the physical masses 

rather than at zero mass. Notice that such an approximation 

is not generally gauge invariant and must therefore be accom- 

panied by the specification of a restricted set of (renormali- 

zable) gauges. This will include, in particular, the Feynman 
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gauge in which the gauge boson propagators take the purely 

diagonal form .- g, (qV-M’ I-’ and in which our considerations 

are most easily carried out. 

in the Feynman gauge, each of the non-vanishing diagrams in 

Fig. 3,b is logarithmically divergent. However, due to the chi- 

ral nature of the gauge theories under consideration, there is 

a minimum of two gauge bosons, i.e., a mixture of left-handed 

(W,) and right-handed (WYJR) fields, contributing to the self- 

mass of lepton i for any fixed virtual lepton j. Hence, 

mutual cancellation of divergencies between diagrams with 

the same intermediate lepton j may then arise when these 

contributions are summed. The resulting finite self-masses 

depend on the angle of mixing between Wi and W,, in absence 

of which they clearly vanish. Let us assume, for the sim- 

plicity of the discussion, maximal mixing, so that the eigen- 

states of the gauge boson mass matrix (gauge bosons of def i - 

nite mass) are purely vector and axial-vector fields, W, and 

w >,, respectively. In the limit in which their masses are 

large compared to the physical mass of the virtual lepton j, 

their contribution to any lepton self-mass is proportional to 

the logarithm of their mass ratio (ln(M,/M2)). We also re- 

call that if WI =$ i s the photon, then the contribution of 

W, =J’ and W r=Z is proportional to the logarithm of the ratio 

of the Z mass to the mass of the lepton j=i ( ln(Mz/mi)). 

We, therefore, final 1 y wri te down the sys tern of equa- 
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tions corresponding to Fig. 3,b in the form 

where we have ignored numerical factors generally of order P 

depending on quantities of the type of Weinberg’s angle which 

are related to the geometry of the gauge group; and we have 

assumed that, except for the photon, all of the gauge bosons 

have masses far larger than any of the leptons. The photon-Z 

contribution is then the only contribution which communicates 

the notion of the mass scale existing in the gauge boson sec- 

tor to the world of leptons. In fact, if we ignore this con- 

tribution, the system of Eqts. (6) reduces to a linear homogeneous 

system whose solutions are determined only up to overall con- 

stant factors. 

In general, the system of Eqts. (6) wil 1 possess non-trivial 

solutions only if the obvious eigenvalue equation 

is satisfied. We are clearly interested in solutions that 

fulfill the following requirements: a) the electron-muon mass 

ratio has the correct value, of order ol; b) presently unob- 

served 1 eptons, if they are required by the choice of gauge 

group and of lepton representation, have masses large enough 

to justify their having escaped observation; c) neutrinos are 

massless as a manifestation of a residual unbroken (discrete) 
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symmetry. 

He seem to be able to satisfy al 1 of these requirements 

(including Eq. (7)) in a variety of models” if we postulate 

the existence of at least one gauge boson of ultra-large mass 

Cth is is, in fact, so large that it is difficult to conceive 

how such particles could ever play a role if not as highly vir- 

tual s tatesj , since this is the only obvious way we can make one 

of the c of order 1 and solve Eq. (7). In the natural basis i ;* 

defined by the physical leptons, a 111 tra-heavy gauge boson 

should correspond to a diagonal generator which couples only 

to the most massive lepton and to the neutrinos, but not to 

the electron. The electron, if the muon is the most massive 

1 epton, would then acquire its mass mostly through an ordinary 

matrix element c,,. (of order a> which couples it to the muon. ! : 

I f, on the other hand, some other lepton L rather than the 

muon is the most massive lepton and the muon itself acquires 

its mass of order a mostly through its coupling to L, to ob- 

tain the right pattern of masses we must make sure that in 

the system of Eqts. (6) there be no direct coupling (of 

order larger than a’> between the mass of the electron and 

the mass of L. This coupling could actually be identically 

vanishing if, e.g., the corresponding left-handed and right- 

handed gauge bosons were prevented from mixing. 

To sunmar i ze, we have argued in favor of a non-perturba- 

tive approach to the mass spectrum of leptons. Its use enables 
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us to bypass obstacles, main1 y connected wi th the stabi 1 i ty 

of certain choices of zeroth order VEV, encountered in attempts 

to solve the problem of the electron-muon mass ratio perturba- 

tively in theories with elementary Higg’s fields. In its crud- 

est form, the non-perturbative approach proposed here was based 

on a simple approximation to the Dyson-Schwinger equations for 

the fermion self-energy parts of a chiral gauge theory. We 

thus have reformulated the Baker-Glashow program for com- 

puting the electron-muon mass ratio in conventional QED. This 

reformulation solves various difficulties, both conceptual and 

practical, of the original program; e.g., a priori under- 

standing of the existence of the muon, dependence on external 

cutoffs, and lack of direct functional coupling between the 

muon and electron masses. To be sure, the approach proposed 

here is not without difficulties of its own as many of us will 

believe that the condition for the existence of ultra-heavy 

gauge bosons i s an unacceptably hi gh pr i ce to pay for the 

computabil i ty of the electron-muon mass ratio. However, 

such a condition could well be a feature of the approximation 

which can be remedied by a more sophisticated approximation 

without spoiling other desirable features of the general scheme. 

We hope to return on this point and to give a detailed dis- 

cussion of the implementation of these ideas in specific 

models on a future occasion. 
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FIGURE CAPTIONS 

1. Superficially divergent Feynman diagram leading to the loss of the zeroth 

order masslessness of the electron in Weinberg’ s SU(3)xSU(3) model with 

elementary Higg’ s fields. 

2, a Pole approximation to the Dyson-Schwinger equation for the self-energy of 

a fermion in conventional QED. 

2, b Inclusion of spectral function corrections to the photon propagator. 

3, a Dyson-Schwinger equations for the fermion self- energies in gauge theories. 

3, b Pole approximation to the equations of Fig. 3, a. 
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