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ABSTRACT 

The role played by orbital angular momentum Lz in parton models 

at P =m is delineated. By postulating similar behavior for parton wave 

functions of equal L z, we are able to relate the electroexcitation form 

factors of the low-lying resonances to the elastic form factors of the 

nucleon. 
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The electromagnetic form factors of the hadrons have been considered 

within the context of parton [l] models by several authors 12-41. In the absence 

of more specific properties of the wave functions involved, one cannot extract 

much information beyond the Drell-Yan-West [ 2,3] relation. I would like in 

this note to propose a statement of approximate universality (eq. (4)) for transi- 

tion form factors which is suggested (but not proved! ) by writing these in terms 

of parton wave functions in the infinite momentum frame. 

In constructing form factors in the parton model, it will suffice (as dis- 

cussed in ref. [ 21) for us to consider the matrix element < h2 A2P_t I Jo I hIAlP_>, 

where hlP, (h2P,‘) denote the helicity and momentum of hadron hl (h,), and 

~~=~+Q=P~z + QFx. The parton model then leads [ 2] to a statement that 

(1) 

where j, is the bare charge density operator of parton type a, and $(z,@) is the 

initial (final) hadron state expanded onto a Hilbert space of many-parton wave 

functions at infinite momentum [ 21. In momentum space, IC, and +’ carry as 

arguments the longitudinal fractions ni, the transverse momenta I$ and the z 

components of spin Siz of the partons at infinite momentum. (The Siz differ 

from parton helicities only by corrections of O(Q/P). ) It is a simple fact (and 

essential to our discussion) that at infinite momentum the bare charge density 

& cannot flip the spin of the parton from which it scatters. From the expres- 

sion (1) it then follows that none of the parton spins are flipped during the contact 

with the current. Therefore, if the physical matrix element < h2 AZ?’ I Jo I hlhlP> 

does not vanish at infinite momentum for A2#hl, there is of necessity a flip in 

Lz’ the total z-component of orbital angular momentum of the partons; this 

consideration implies the presence of components with different Lzls, including 
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Lz f 0, in the a-momentum parton wave functions of any hadron with spin. As 

an example, it can be seen that the Pauli form factor of the nucleon F2 is 

proportional to such a flip matrix element. The nonvanishing of F2 then neces- 

sitates a classification scheme at P= 03 in which Lz and Sz are not separately 

diagonal. This is the parton model realization of the conclusion of Dashen and 

Gell-Mann [ 51. 

Let us expand the hadron ket in terms of eigenstates IL >, I S> of Lz , Sz 

respectively 

Ih,P, Jz=h> = c Cp 
L 

IL> ISz=h-L> (2) 

with e I Cp I 2 = 1. The kets IL > and I S> should display additional labelling 

to indicate the intermediate angular, momenta which couple to give the final 

values.of L and S, but we omit this for the sake of typographic clarity. 

It will now prove convenient to project the state vectors IL > onto kets 

El.. .Nx,; T$. . . n,> which provide a basis set in transverse position space. It 

is then a straightforward exercise, starting from momentum space and Fourier 

transforming, to write the form factor in terms of the transverse position space 

wave functions. We shall only state the result here: 

lim p- P-1<h21/A21JOlhl,PAl> 

= 5 c ea s i (dni/qi) d2X; 6(Q&$) 6(Zni - I) 
n=l a i=l 

e (3) 
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In eq. (3), “af? labels the struck parton, with charge ea. The 5; are equal 

to Nxi-XOI the displacement of zi from the “center-of-mass” z. = && . All 

the spin parts have dotted out, conforming to the previous discussion; and the 

independence of the $1~ of the momenta ,P and P’ is a result of the Galilean 

invariance in the infinite momentum frame. 

Needless to say, we know little or nothing about the wave functions $. 

However, let us explore the consequences of a most naive possibility: we 

conjecture that for equal values of L there is enough similarity in the wave 

functions such that the Q2 behavior of the integrals s 
h2” iQ-g hi 

$L+& e - ZC’L 3 for 

Q not too small, is not very different for any of the nonstrange low-lying baryons 

with given charge. IQ I should be at least large enough to deaccentuate the orthog- 

onality properties of the wave functions for hI $ h2, Al # h2 . 

We also assume that the representations at P-+co are sufficiently mixed 

such that each of the different Lz values is reasonably represented in the wave 
hh 

functions of all the low-lying nonstrange baryons - more concisely, the CL Is 

for given h are nonzero over the whole spread of L’s for any of the low-lying 

nonstrange baryons. 

The end result of such an assumption is that the matrix element 

lim p+co <h2P + Q hl+ A I Jo I hlPhl > can be written as F&Q~) x G(Q~), where 

G(Q2) contains all the dependence on h 1, h2, AI, ha, but is a very slowly varying 

function of Q2. 
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In this paper we shall deal with the nonstrange baryons and M= 0, -1. In 

addition, we shall consider separately the isovector and isoscalar currents, so 

that the operational form of our ansatz is as follows: 

Define for each N* 

limp- CO 
<N* ,P’f l/2 IJ;’ ‘1 NE l/2 > 

v,s <NE’ i1/21Jo I N,p l/2> 
= L-z* ‘(Q2) (4) 

and hypothesize that for Q2 away from zero (say Q2 2 0.5 GeV2) 

(i) r is a very slowly varying function of Q2 (i.e. , much more slowly 

varying than the form factors themselves) and 

(ii) perhaps r(Q2) N 1. This is a guess based on the common normalization 

of the wave functions. A gross failure of this condition (say r 2 10 or 5 0.10) 

would indicate that something has gone awry in our reasoning, namely that the 

wave functions are not all that similar in the IMF. So this criterion will play 

an important role in the initial evaluation of predictions in the model. 

We now turn to some examples. 

“v ZE33CE?9 YN 

In terms of standard invariants, we have for the nucleon 

<NP’A’ I Jp INPA> = u,,(P’) [r3FT+ FYI yp f iopuq’ (TUFT+ F!$/2m]uh(P) 

(5) 

while for the A transition we simplify matters by keeping only the magnetic 

dipole transition (this being a very good approximation to the data [7J): 

< mthtl Jcl IN?%> = iF*(Q2)$G (PI) e,,prP@qY%(P) . (6) 

The spinors are normalized to u(P) u(P) = 2m, q”lqa = 2m, where M is the 

mass of the A. F* is related to G&(Q2) measured by Bartel et al. [ 81 through 
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the relation 

G$+Q2) = fi m Jn F* (7) 

Working in the infinite momentum frame [ 21 P’ = (Pi- m2/2P, 0, 0, P) , 

qp=(mdP,Q,W), q2=-Q2, and ignoring isoscalar pieces, we can process 

eqs. (5) and (6) through eq. (4) and use eq. (7) to obtain our working relation 

In fig. 1 is plotted the LHS of eq. (8) for the data in ref. [ 81 with 

0.5 GeV2<Q2(2.34GeV2. It is seen that ry(Q2) is indeed very slowly varying 

over this range of Q2. (Statistically, in fact, it is quite consistent with being 

constant (- 0.76) with a x2 = 8 for 11 degrees of freedom. ) Both the average 

value of r (Q2) and its behavior as a function of Q2 are in remarkable agreement 

with our hypotheses (i) and (ii). 

XVN - D, .(1525) 

In this case, we work with the three c. m. helicity amplitudes gl, g2, g3 

introduced by Bjorken and Wale&a [ 91. Our ansatz leads to the equations 

(2 w*(M+m) -Q2) g:’ ’ v,s - 3M(M+m) g2 

+ M(2u*+M+m) g3 v3s~2& ry” Fy”/Q2 (9) 

- Q3(2w*+M+m) gy7’ + 3MQ3 + QM(2w*(M+m) -Q2) gz’ ’ 

M $3 -rv” QFl”/rn (10) 

vs with W* = (M2-m2-Q2)/2M. The ratios r* ’ should satisfy our hypotheses (i) 

and (ii). [They are also different from the r’s in eq. (8) .l 
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The normalization of the g’s is such that the c. m. helicity peak cross 

sections are given by 

=K 

1 Q2 -- 
6 M2 

1 
otot = !? 

where 

K = 32~~ M4 (E* 4 m) q*4/(I’(M2 - m2) (11) 

Given our ignorance of the separate isospin amplitudes, we form the linear 
S combinations gv+gi to obtain a single pair of equations for the electroproduction 

amplitudes from protons. These are similar in form to eqs. (9) and (10) with 

v,s gi -p”z 9 and the right hand sides being replaced by 2 fi (ry Fy + r-f Fy) 

and $6 (rv Fl + r” F,“) , respectively. Since FE << Fz , we shall especially 

consider the new version of eq. (9) 

-Q3(2 W* + M+m) gy + 3MQ3 gz f QM (2w* (M+m) - Q2) gg 

M &i Qry Fi/m (12) 

At Q2=0, eq. (12) reduces to an identity. For Q2 > 0, the amplitude analysis 

of the cross section data is at present in a very confused state. Recent measure- 

ments on yvp - pr7’ [lo, ll] allow one to estimate with some confidence the 

peak cross section for yvp - Sll(1525). Subtracting this from the cross section 

for yvp - (1525 peak) [12] one can obtain an estimate for “(yvp - D13(1525)). 

Three data points obtained in this way are shown in fig. 2. 
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We shall examine the implications of eq. (12) by testing three extreme 

possibilities: 

64 aL = a3/2 = 09 g112 f 0 - 

This allows us to solve eq. (12) for g3. However the solution is 

unphysical in that o 
l/2 

would develop a pole when 2 w*(M+m) -Q” = 0 which 

happens for Q2 = 1.04 Gev2. 

(b) crL = o1/2 = O, o-3/2 f O * 

Solving eq. (12) for g2, we substitute into eq. (ll), to obtain the cross 

section. The “best” fit in this case (with constant rV) is shown in fig. 2 as a 

dashed curve. Not only is the fit poor (x2 = 25 for 2d/f) but the required value 

of r V is on the low side (r V = 0.19). An increase by more than a factor of 2 

in r V over the Q 2 range of the data (0.5 - 1.5) would be required in order to 

obtain a good fit. This is not satisfactory. 

tc) (T1/2 = “3/2 = 0 9 us # O l 

In this case, we can solve eq. (12) for gl, and obtain o from eq. (ll), 

with E N 1. An excellent fit to the data (x2 = 0.37 for 2d/f) is obtained for 

constant r V = 0.47. This is shown as the solid curve in fig. 2. The value of 

rv . 1s entirely in accord with our hypothesis. 

Thus our model distinctly favors a strong longitudinal component in the 

electro-excitation of the D13. This result is favored by at least one recent 

data analysis [13], but is completely rejected in various versions of the rela- 

tivistic quark model 1147. 

One must note, however, that since the factor 2 w*(M+m) - Q2 multiplying 

g3 in eq. (12) is very small in the region Q2 - 1 GeV2 , a fair amount of (T 
l/2 

can be tolerated by our model ifoL is substantial in this region of Q2. 
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It is of interest to examine the high Q2 (Q2 >> (M+m)2) behavior of eqs. (19) 

and (10). If GE and GM continue to scale at such values of Q”, we have 

Fvm Fs 1 1 -Q-4, F; - Q? Then it is easy to see that a consistent solution 

to (9) and (10) in this limit implies 

g2(Q2) 5 const - g3(Q2) 
(13) 

g 1 (Q2) 5 const * g3 (Q2)/Q2 

From eqs. (13) and (14), we have the predictions that for large Q2 

oLbT 5 const/Q2 

o3/2/UI/2 5 const 
(14) 

So the dominance by oL in the region Q2 - 1 discussed above is predicted 

to be a temporary phenomenon, with oT taking over at large Q2. This is again 

contrary to the predictions of the quark model [ 141. 

- 2$X-- S11(1525) 

We may repeat the whole preceding discussion, with the simplification in 

the present case of dropping the g2 amplitude. 

The analogues of eqs. ( 9) and (10) are 

Q2(M-m) < f Q2M < = 2 (r:Fy + r+SFy) 

-Q2 g: -I- M(M-m) $ = ryFz/m 

with 

aT = l/2 5/2 = 87~~ M5 q*4 lg3 I 2/ (l?(M’-m2) (E*+m)) 

and 

(15) 

116) 

(17) 

crL = 8na M5 q*4 lg112/(I’(M2-m2)(E*+m)i 
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Exploring now the possibilities of total dominance by CT~,~ or oL, we find 

the following: 

(a) 9,2=0, aLO. 

The “best fit”, plotted in fig. 3 as a dashed line against the data of 

Kummer et al. [lo], is obtained for r V = 0.48, with x2 = 25 for 3 degrees of 

freedom. The fit is unsatisfactory, the required variation inr V in order to 

accommodate the data being a factor of 2.3 over our range of Q2. 

Plotted as a solid line in fig. 3, this fit is obtained for constant 

rv = 0.39, with x2 = 1.5 for 3 degrees of freedom. 

So in this case, our model shows a definite preference for an electric 

dipole excitation, this time in accord with the quark model [lq . 

As in the case of the D13, one finds in the high Q2 limit that aL /gT < 

const/Q2. , 

To conclude, we have conjectured a form of universality for excitation 

form factors of the low-lying baryons which is amenable to experimental veri- 

fication. The model can provide very good fits to the data in the region 

Q2 N 1 GeV2 if the electro-excitation of the P33(1236) is almost pure Ml; of 

the D13(1525), almost pure Coulomb; and of the Sll(1525), almost pure El. 

Kinematic details, the derivation of eq. (3), as well as further discussion 

will be given in a subsequent publication. 
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FIGURE CAPTIONS 

1. Ratio Gb(Q2)/ [z (l+Q2/(M+m)2j1’2 F~(Q~)] vs Q2. Data taken from 

ref. [S]. 

2. Theoretical fits to total D13 excitation cross sections. Data extracted 

from fig. 7 in A. B. Clegg, ref. [ll]. 

3. Theoretical fits to total Sll excitation cross section. Data taken from 

ref. [lo], based on a branching ratio (Sll - qp)/(Sll -all) = 0.55. 
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